The present invention relates generally to stents which are implantable or deployable in a vascular or endoluminal location within the body of a patient to maintain the lumen open at the implant site, and more particularly to improvements in stent coatings.
Stents are expandable prostheses employed to maintain narrow vascular and endoluminal ducts or tracts of the human body open and unoccluded, such as a portion of the lumen of a coronary artery after dilatation of the artery by balloon angioplasty, for example. In the exemplary case of an occluded coronary artery, the original blockage typically arises from a buildup of fatty deposits or plaque on the inner lining of the vessel. The balloon angioplasty procedure is used to compress the deposits against the inner lining of the vessel, or virtually entire removal may be achieved using other types of angioplasty such as laser or rotational cutting. A different mechanism, however, may cause a new blockage after the angioplasty procedure is performed. The blood vessel wall is subjected to trauma by the balloon, laser or rotating knife, as the case may be, which results in intimal hyperplasia, i.e., a rapid proliferation of smooth muscle cells in the affected region of the wall, to cause restenosis and re-occlusion of the vessel lumen in a significant percentage of angioplasty patients within a period of from three to six months following the initial procedure.
To avoid this re-occlusion and to maintain the lumen of the vessel open, it is now customary procedure to install a stent at the site in the vessel where the angioplasty was performed. The stent is deployed by radial expansion under pressure exerted, for example, by active inflation of a balloon of a balloon catheter on which the stent is mounted, or in some instances by passive spring characteristics of a pre-formed elastic stent, to engage the inner lining or inwardly facing surface of the vessel wall with sufficient resilience to allow some contraction but also with sufficient stiffness to resist to a great degree the natural recoil of the vessel wall that follows its expansion.
The stent itself, however, offers a surface that can promote thrombus formation as blood flows through the vessel. This can result in an acute blockage, which, in a coronary artery, is sufficient to produce an infarction. The thrombosis and clotting can be reduced or even eliminated by localized application of appropriate drugs in a biodegradable formulation, which act for only a period of time sufficient to stave off the thrombus reaction to the presence of the stent in the bloodstream. Some difficulty is encountered in providing a stent surface which is suitable for retention of the necessary drug(s) to achieve those purposes.
A similar situation is encountered at the outward facing surface of the stent that contacts and engages the inner lining of the vessel, duct or tract, where tissue irritation can exacerbate fibrosis of the vessel wall and restenosis in the region of the irritation. Here, also, it would be desirable to provide the stent with the capability to provide a timed release of suitable drug(s) from a biodegradable carrier on or in the affected stent surface, to reduce the occurrence of fibrosis and hyperplasia at the portion(s) of the vessel wall contacted by the stent.
An additional need encountered for stent usage in the human body include a capability to clearly visualize the stent as it is being implanted at the preselected site in the body, as by advancement on a stent delivery system through a portion of the patient's vascular system and into a coronary artery, and after the stent is implanted, for purposes of its examination from time to time at the implant site.
Among the most important features of a suitable stent are the following. The device should be flexible, and yet possess sufficient mechanical strength to resist vessel recoil. It should demonstrate a high rate of successful interventional placement, be highly visible on x-ray fluoroscopy, be very thin to minimize obstruction by its mere presence in the lumen intended to be dilated and held open, and not be an agent which promotes a re-narrowing or re-occlusion of the vessel or duct lumen in which it is implanted. Stent design, of course, can play a major role in influencing the aforementioned features, but also significant is the material(s) of which the stent is composed, with respect to visibility, flexibility, and recoil-resistant characteristics of the stent, as well as its surface characteristics that affect capability of the stent to prevent or inhibit thrombus formation and restenosis in a blood vessel in which the stent is implanted. Current stents have not proved to be capable of fulfilling all of these requirements.
Therefore, it is a principal aim of the present invention to provide a stent which has a composition that offers an enhanced capability to fulfill these important requirements.
A stent is adapted for deployment in a blood vessel of a human body to maintain the lumen of the vessel open for adequate flow of blood therethrough in the region in which the stent is deployed. The stent has the basic form of an open-ended tubular element with openings through a side thereof, which is adapted to be expanded from a first outside diameter, which is sufficiently small to allow the stent and its delivery system to traverse the vascular system of the human body to reach a site in the blood vessel at which the stent is to be deployed, to a second outside diameter sufficiently large to engage the inner lining of the vessel for retention at the site.
According to a preferred embodiment of the invention, the tubular element or sidewall of the stent includes a first solid layer or thickness of a biocompatible metal, and a second porous layer or thickness which is composed of spherically-shaped metal particles bonded together to leave spaces between the particles. The metal particles are composed at least in part of a noble metal, and specifically, of a platinum-iridium alloy. The spaces between the particles advantageously provide a repository for drugs to assist in maintaining the lumen of the vessel open. The second thickness overlies the first thickness in tightly adherent relation thereto, and has a radiopacity which substantially exceeds that of the first thickness, to provide a highly visible view of the stent by x-ray fluoroscopy during its advancement and deployment in the blood vessel, and thereafter whenever the stent is to be examined in place.
The stent includes at least one drug selected from a group consisting of anti-thrombotic, anti-platelet, anti-inflammatory and anti-proliferative drugs, residing in the repository. A biodegradable carrier may be used to retain the drugs for timed release thereof from the repository when the stent is deployed at the selected implant site in the blood vessel. Alternatively, the mere spacing of the metal particles may advantageously provide a timed release of the drugs from the repository. Preferably, for that purpose the particles, which are sized in a range of diameters, are located with the larger diameter sizes adjacent and bonded to the surface of the first thickness and with those and progressively smaller diameter sizes bonded together up to the outermost region of the second thickness. In either event, the anti-platelet and/or anti-thrombotic drugs are preferably infused into the porous layer repository, i.e., into the spaces or interstices between the particles, existing at the inward facing surface (and if desired, at directly adjacent edges of the openings) of the stent to inhibit clogging of the lumen as a result of interaction between the stent itself and the blood flow therethrough. Similarly, the anti-inflammatory and/or anti-proliferative drugs are preferably infused into the repository existing at the outward facing surface (and if desired, at directly adjacent edges of the openings) of the stent to inhibit restenosis as a result of fibrosis or proliferation of tissue from trauma to the inner lining of the vessel arising from contact with the stent.
According to another important feature of the invention, a third layer or thickness of a ceramic-like material—specifically, either iridium oxide or titanium nitrate—is applied as a coating overlying exposed surfaces of the metal particles in tightly adherent relation to the second thickness at those surfaces, without filling or blocking the spaces between the particles, so that the repository for drugs originally formed in the second thickness remains available. Consequently, the desired drugs may be infused into the spaces between particles, in preferential locations as noted above, for retention and dispensing in the same manner as if the third thickness had not been applied. Additionally, the ceramic-like material is resistant to tissue irritation to further avoid such traumatic response during contact of the stent with the inner lining of the vessel at the site.
In a method of fabricating such a multi-layer vascular or endoluminal stent, a porous layer of substantially spherical metal particles is applied atop surfaces of a base metal of the stent, the metal particles at the base metal surfaces being bonded thereto and the metal particles throughout the porous layer being bonded together, with voids therebetween forming a reservoir for retention and dispensing of drugs from the stent when deployed in its vascular or endoluminal location. The metal particles exhibit a radiopacity that substantially exceeds the radiopacity of the base metal for high visibility viewing of the stent by fluoroscopy when advanced and deployed in the body. After applying the porous layer, the exposed surfaces of the metal particles are coated with ceramic-like material consisting of iridium oxide or titanium nitrate while leaving the voids between the particles unblocked and substantially intact so that the reservoir remains available for infusing drugs therein.
The base metal may, for example, be 316L stainless steel, chromium, nickel, titanium, or iridium, or nitinol which is a shape memory nickel-titanium alloy, nominally of 70 micrometers or microns (μm) thickness. The metal particles of platinum-iridium alloy preferably have diameters ranging from about 50 to 500 nanometers, and the porous layer is applied atop the base metal to a thickness in a range from approximately 4 to 8 microns. The iridium oxide or titanium nitrate is coated on surfaces of the metal particles to a thickness in a range from approximately 50 to 500 nanometers. Thereafter, following steps of rinsing, cleaning and drying, the desired drugs or other selected agents are infused into the reservoir provided by the voids or interstices between particles of the porous layer. Timed release of the drugs may be achieved by incorporating them in a biodegradable carrier.
Gene transfer may alternatively be used to inhibit proliferation of smooth muscle cells, to prevent restenosis that could block the lumen of the vessel in which the stent is deployed. In this technique, a viral vector transfers at least part of the genetic information of interest to the target cell. A gene transfer agent constituting the viral vector or virus is incorporated in a biodegradable carrier, or microspheres or liposomes as the viral vector are contained in solution, and the combination is infused into the reservoir of the multi-layer stent from which it is released in a substantially programmed manner to effect the gene transfer.
As will be recognized from considering the detailed description below, a highly important aim of the invention resides in providing a basic structure of a stent which includes three fundamental layers, a first underlying layer constituting a base metal that functions to provide mechanical strength and flexibility, a second intermediate layer that functions to provide high fluoroscopic visibility—preferably a noble metal layer, and most preferably a principally platinum layer in which platinum is in an alloy with a small percentage (about 2%) of iridium—, and a top layer of particularly beneficial biocompatible material—preferably iridium oxide or titanium nitrate. Although the preferred embodiment utilizes a porous intermediate layer, and a remaining porous structure even after formation of the final biocompatible layer, in its most fundamental character the invention contemplates the use of a completely solid intermediate layer to provide the high visibility property and a highly suitable surface for strong bonding of the final coating. The latter itself offers a surface for attachment of the drug/agent-containing carrier.
The above and still further aims, objects, features, aspects and attendant advantages of the present invention will be better understood from the detailed description below of the best mode presently contemplated of practicing the invention, with reference to the accompanying drawings, in which:
In
The openings 16 are sized in a conventional manner to assure that body fluids (including blood, in the case of a vascular stent) can contact much of the tissue of the inner lining of the wall of a vessel, duct or tract of the human body in which the stent is to be implanted. For vascular stents, it is also important that side branches of vessels should remain open to the main branch of a vessel in which the stent is deployed. Considerations of stent expansion in a relatively symmetrical manner, and the presence of sufficient thickness of metal to provide enough rigidity to resist collapse as the vessel wall exerts its inward pressure during natural recoil when the stent is fully deployed, also play a significant role in determining the size and number of the sidewall openings, as well as the thickness and final configuration of the member 12 itself.
For implantation in a coronary artery, for example, the production diameter (outer diameter) of the stent 10 may be in a range from about 1.5 millimeters (mm) to 2.0 mm. In any event, the production diameter (or subsequent compressed diameter) constitutes a first diameter which is sufficiently small to allow the stent to be inserted into the vessel, duct or tract of the body in which it is being used, and to be advanced to the site at which it is to be deployed. At that point, the stent is deployed by inflation of the balloon on which it is mounted to radially expand the diameter to a second diameter which is at least slightly larger than the diameter of the lumen of the vessel, duct or tract at that point. In
Again using coronary artery implantation as an example, the mounted stent is inserted into the patient's vascular system (not shown) at an appropriate location, and is then advanced on the balloon catheter to the selected site. The path of the stent to the site of deployment as well as identification of the target site in the coronary artery are viewed and determined by fluoroscopy. When properly located at the target site, the balloon 20 is inflated by introducing a fluid through an inflation lumen of the catheter to radially expand the stent diameter to an extent that the stent will engage and exert at least slight pressure on the inner lining of the vessel wall. When the stent is fully deployed, the balloon is deflated and the catheter 23 is withdrawn from the patient's vascular system and body. The stent 10 should possess sufficient rigidity in the fully deployed expanded state to prevent it from collapsing under the radially directed inward pressure exerted by the artery wall from natural recoil thereof as the balloon is deflated.
When crimped onto the mounting balloon, the coronary artery stent outer diameter will typically lie in a range from about 0.9 to about 1.2 mm, with an inner diameter in a range from about 0.6 to about 0.7 mm. The inner diameter of the stent when fully deployed to the expanded diameter at the target site will typically lie in a range from about 2.5 to about 6.0 mm. The final deployed diameter should be a size which will assure that the stent is retained in place, firmly engaged with the inner lining of the artery wall.
For other vascular sites such as the renal artery, the carotid or femoral artery, or the ductus hepaticus in the liver, a diameter of approximately 4.0 to 8.0 mm is appropriate. This stent size range is produced from tubing of one of the aforementioned core metal materials, typically 316L stainless steel, of 3.2 mm outside diameter and arranged and adapted to be expanded (opened) to a larger outside diameter by cutting a predetermined pattern of openings through the sidewall of the stent. For applications in the bronchial location or in the vascular iliac location, a principal size range of from 8.0 to 12.0 mm outside diameter, fully opened, is desired. For esophageal applications in patients with malignant narrowing of the esophagus lumen, a range of diameter sizes from about 12.0 to 18.0 mm is adequate.
A stent 10 fabricated according to the present invention is composed of three different primary or fundamental layers as shown in the greatly exaggerated fragmentary cross-sectional view of
The base layer 30 of the tubular member 12 of stent 10 is a biocompatible metal or an alloy of metals which has been or can be demonstrated to be suitable for implantation in the human body. Each of the other layers of the multi-layer structure of the stent is also biocompatible but that feature is not necessarily its primary characteristic, as well be understood from the description below. Focusing on the base layer or core material thickness 30 of the stent, materials such as 316L stainless steel, or nickel-titanium alloy known as nitinol which has a shape memory property, among others, are popular in medical implants and possess favorable characteristics of elasticity, mechanical strength and fatigue. The mechanical strength must be adequate to resist recoil of the vessel wall and to provide a scaffold that maintains an adequate lumen opening for the vessel being stented. Stent deployment may be achieved by active balloon inflation, or by passive spring opening attributable to pre-formed elasticity of the stent base material. These results are typically achievable with very thin-walled stents, in a range from 60 to 80 micrometers or microns (.mu.m) thick. However, the customary materials and material thicknesses are inadequate for sufficient visibility under fluoroscopic x-ray implantation or examination. In practice, this means that identifying the stent for deployment at the precise target site might be difficult, especially if the stent delivery system (e.g., a balloon catheter such as 23 in
The atomic number (Z) of the base material may be about 28, in the case of medical grade stainless steel or nitinol, compared to Z=7.2 for the human body. To increase the visibility of a stent composed of such material under x-ray fluoroscopy, it is common practice to fabricate the stent tube to have a thickness of about 150 μm, which, however, results in an undesirable loss of lumen diameter of the vessel when the stent is implanted therein. Reducing the thickness of the stent by about half, to 75 μm, would result in a gain in lumen diameter of 150 μm (2×75 μm, or about 5% of the total lumen of a 3 millimeter (mm) vessel such as a coronary artery. Since the primary function of the stent is to maintain an unobstructed lumen in the vessel in which it is implanted, it is desirable, to the extent practicable, to avoid obstruction attributable to the mere thickness of the stent itself. Also, in general, the stiffness of a stent increases directly with the thickness of the material of which it is composed. Stent stiffness increases the order of difficulty of implanting the stent, which is another reason for finding ways to reduce thickness without seriously affecting mechanical strength and radiopacity of the stent.
In fabricating the stent 10, the base material 30 such as 316L stainless steel is formed into an open-ended tubular structure of approximately 70 μm thickness, for example, and of selected appropriate length. Openings are cut (in the case of a tubular member with a solid wall, in contrast to a mesh or spring wound type) in a predetermined pattern through its sidewall, as by laser cutting, for example. This allows the stent diameter to be expanded (opened, e.g., during deployment) from a selected production diameter which will depend on the inner diameter of the vessel or duct in which the stent is to be inserted and advanced to a selected site of implantation. After openings are provide in the sidewall of the tubular member, it is subjected to customary cleaning and polishing steps. All exposed surfaces of the stent, including the outward and inward facing surfaces, the edges of the through holes in the sidewall, and the ends of the sidewall, should be left at least slightly roughened, as by incomplete electro-polishing or by abrasion or by acid washing, or the like, to enhance adhesion of the next layer. Similar steps are followed if a shape memory or spring memory material is used, such as nitinol, although the stent itself in such a case might instead have a helical rather than a tubular configuration, which would eliminate the need for additional openings through a sidewall.
The next layer, which is to be applied atop the base metal layer 30, is intended to serve multiple purposes. In the preferred embodiment, this second, middle or intermediate layer 32 (again, these terms being used without limitation of the overall stent to only three layers or an absence of intervening layers) is preferably composed of a multiplicity of microspherical particles, or microspheres 33, of suitable metal or alloy, ranging in size (diameter) from about 50 to 500 nanometers (nm) and applied to form a layer thickness in a range from about 4 to about 8 μm, preferably nominally about 5 μm, atop the exposed surfaces of the sidewall constituted by base layer 30. The microspheres are built up on the surface of the tube in a manner such that the bottom or lowermost portion of the layer consists of microspheres adherent to the tube surface, and intervening portions up to the top or uppermost portion of this layer consist of microspheres connected or bonded (adherent) to one or more adjacent microspheres at points of tangency or near tangency (e.g., 35) therebetween. This configuration is such that voids or open spaces 37 are present throughout the layer, as interstices between adjacent microspheres. Thus, the intermediate layer may be characterized as being porous, and this is important for a purpose which will be discussed in detail presently.
To render the stent more radiopaque despite the relative thinness of the base layer (here, the tube sidewall) 30 as compared to prior or current stent configurations, the intermediate layer 32 is preferably composed of a noble metal, most preferably platinum. Platinum has an atomic number (Z=77) almost three times that of steel, and therefore provides a highly radiopaque presence even though the overall dimension of this layer is very thin. To provide increased hardness, the platinum is preferably incorporated in an alloy with iridium, the latter in a percentage by overall weight in a range from about 2% to about 10%, preferably at or near the lower end of the range. The presence of iridium, which is of similar atomic number to platinum (Z=78), does not detract from the enhanced radiopacity of the intermediate layer 32. If a nitinol base layer is utilized rather than stainless steel or other medical implant-grade material, the iridium serves to improve the match between the physical characteristics of the nitinol layer and the intermediate layer.
The process by which the intermediate layer is applied preferably employs powder metallurgy. In addition to its other significant attributes, the surface tension and friction characteristic of the product to this point is improved over a stent having an ultra smooth surface. In the process, the particulate or powder metal is applied to the base layer surface and tightly bonded thereto, and built up to the desired layer thickness of high porosity by forming an interconnected multiplicity of the particles (microspheres), through application of heat. Suitable powder metallurgy processing for this material has been developed by Hittman Materials & Medical Components, Inc. of Columbia, Md.
The interstices 37 constituting the spaces or voids between the spherical platinum-iridium particles 33 are sufficiently sized and plentiful as a result of the formation of layer 32, to provide in overall effect a reservoir or repository for the infusion and retention of drugs which are beneficial or an aid to the use of the stent when implanted in a particular vessel or duct, such as in a coronary artery or other blood vessel. So the intermediate layer 32 provides not only the benefits of increased radiopacity of the stent, but also enables retention of drugs which may be released over time from the surface of the stent to enhance or inhibit certain functions.
For example, when the stent is intended for deployment at a selected site to support the inner lining of a coronary artery which has undergone an angioplasty procedure, to maintain the lumen thereof open, the outward facing surface of the stent and at least part of the edges of the openings adjacent thereto in the stent will ultimately be placed in contact and engagement with tissue of the inner lining of the artery wall. In contrast, the inward facing surface forms the lumen of the stent, and portions of the edges of the openings 16 (in the multi-layer final structure) will be contacted by blood flowing through the artery (and thereby, through the lumen of the implanted stent).
Therefore, the voids or pores 37 in the outward facing surface and adjacent edge surfaces of intermediate layer 32 are advantageously used in total as a repository for drugs formulated to inhibit inflammation or proliferation of tissue from trauma of the stent engagement or related mechanism—drugs such as dexamethasone or taxol, respectively, or both. The spaces between particles in the inward facing surface and adjacent edge surface of intermediate layer 32 are, on the other hand, suitable for use as a repository of drugs to inhibit thrombus or platelet formation attributable to presence of the stent in the bloodstream—drugs such as hirudin or iloprost, respectively, or both.
Before depositing or infusing any such selected drugs in the voids 37 between particles 33, however, a third layer or coating 40 may be and preferably is formed on the exposed surface(s) of the intermediate highly porous layer 32 of interconnected spherical platinum-iridium particles 33. This third or upper or outermost or superficial layer 40 is preferably composed of either iridium oxide (IROX) or titanium nitrate. Each of these materials is in the nature of a ceramic, i.e., is ceramic-like, and although either one of them is preferred for this embodiment, each is exemplary of a biocompatible layer that serves a primary purpose of avoiding tissue irritation and thrombus formation. This outermost layer may be deposited as an inert coating over the surface(s) of the underlying intermediate layer 32 by any known method, preferably to a thickness in the range from about 10 to 500 nanometers (nm), preferably nominally 200 nm.
Layer 40 need not and preferably does not fully coat all surfaces in the interstices of the porous intermediate layer 32, but need merely cover the more exposed surfaces of particles 33 of that underlying layer, so that when the completed stent is ultimately deployed it is this outer coating 40 that principally if not solely contacts the inner lining of the vessel and the blood flowing through the lumen of the vessel. As shown in
The intermediate porous layer 32 also serves the purpose of providing, a suitable underlayer, along with base layer 30, to allow flexing of the stent over a vast number of cycles encountered in actual use without loss of the overlying iridium oxide or titanium nitrate coating from flaking, shedding or disintegration. After the outermost layer 40 is formed (or upon completion of the spherical platinum-iridium particulate layer 32, if only that layer is to be applied atop the base layer to essentially complete the stent), including such cleaning, rinsing and drying as is necessary to complete the process, the desired anti-inflammatory and/or anti-proliferation drugs are applied to enter the interstices of the porous medium constituting the outward facing surface and adjacent edges of openings of the stent. The desired anti-thrombotic and/or anti-platelet agents are applied to enter the interstices at the inward facing surface and adjacent edges of openings of the stent. By virtue of the very nature of this repository, the drugs or agents are, to an extent, time released therefrom to provide a primarily acute response to tissue trauma and clotting mechanisms.
The drug release response may be more carefully controlled by fabricating the intermediate layer 32 in a manner to position the larger spheres of the platinum-iridium particulate matter 33 directly adjacent and bonded to the base layer surface, and increasingly smaller-sized particles as the uppermost region of the layer is approached, as represented in the showing of
Additionally, or alternatively, the timed release of the beneficial drugs from the interstices of the porous layer 32 may be controlled by incorporating the drugs in a biodegradable carrier, preferably of a type described in the applicant's U.S. patent application Ser. No. 08/798,333. This carrier that contains the drugs or other applicable agents is represented at 43, by way of example, in the fragmentary exaggerated cross-section of
As an alternative to the infusion or incorporation of anti-proliferative or anti-inflammatory drugs into the reservoir along the outward facing porous structure of the intermediate layer, which is substantially retained and available after application of the non-filling, non-blocking final biocompatible coating, gene transfer may be used to inhibit the smooth muscle cell growth that leads to neointima and restenosis. In principle, a viral vector is used to transfer the desired information into the genome of the target cells. Viruses capable of such gene transfer are, for example, adenovirus and herpervirus, or fractions of the virus. By viral transfer, which is believed to occur by virtue of absorption and diffusion, part of the genetic information of interest is provided to the target cell. Such information can relate to several mechanisms of smooth muscle cell proliferation, with the aim of inhibiting restenosis which, if unchecked, could result in at least partial and perhaps complete blockage of the vessel's lumen, despite the presence of the deployed stent at the site.
One important technique involves blocking the proliferation stimulating factors such as cytoKines, n Fkappa b, platelet derived growth factors or other growth factors that originate from platelet deposition, thrombus formation, mechanical stress, or injury and inflammation. The applicant herein is currently investigating whether selective inducement of apotosis—or programmed cell death—may be achieved via the fas-ligand, which would enable a programmed intervention against overshooting cellular proliferation in a narrowly controlled region of the tissue.
The virus transfer is performed by incorporating the gene transfer agent—a viral vector or virus of the above-mentioned type that contains the viral genetic information desired to be transferred to the target cell(s)—into a biodegradable carrier, as at 43 of
The invention also contemplates the use of an intermediate high visibility layer which is completely solid, rather than porous, between the mechanical strength- and flexibility-providing layer which is the base material of the stent and the uppermost biocompatible layer. Such a solid intermediate layer is also preferably composed of a noble metal, and most preferably a platinum-iridium alloy in which the percentage of iridium is relatively small, e.g., about 2%, and which provides excellent surface characteristics to promote a strong bonding or adherence of the final coating of iridium oxide or titanium nitrate. The intermediate layer here may be applied by a conventional electroplating, for example, or other suitable process, instead of a powder metallurgy technique, for example, by which a porous thickness can be provided. The final coating has a sufficiently rough exposed surface to assure some attachment of a carrier incorporating the aforementioned drugs or other agents therein, albeit not to an extent offered by the reservoir or repository provided by the porous layer of the preferred embodiment. Layer thicknesses are substantially the same as those for the preferred embodiment which utilizes a porous intermediate layer.
The basic process for fabricating a multi-layer stent of the type which has been described herein in conjunction with
Clinical studies required by protocols to obtain regulatory approval for marketing and use of medical devices in the United States generally mandate millions of cycles of flexation indicative of many years of deployment and usage of the stent, representative of the environment of the stent when implanted and in use in the human body.
Although a preferred embodiment and method of fabrication have been disclosed herein, it will be recognized by those of ordinary skill in the art to which the invention pertains, from a consideration of the foregoing description, that variations and modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention shall be limited only by the appended claims and the rules and principles of applicable law.
This application is a continuation application of and claims priority to U.S. application Ser. No. 10/651,562, filed on Aug. 29, 2003, now U.S. Pat. No. 7,713,297, which is a continuation application of and claims priority to U.S. application Ser. No. 09/740,570, filed on Dec. 18, 2000, now abandoned, which is a continuation application of and claims priority to U.S. application Ser. No. 09/059,053, filed on Apr. 11, 1998, now abandoned. Each of the above noted application is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3751283 | Dawson | Aug 1973 | A |
3758396 | Vieth et al. | Sep 1973 | A |
3910819 | Rembaum et al. | Oct 1975 | A |
3948254 | Zaffaroni | Apr 1976 | A |
3952334 | Bokros et al. | Apr 1976 | A |
3970445 | Gale et al. | Jul 1976 | A |
3993072 | Zaffaroni | Nov 1976 | A |
4044404 | Martin et al. | Aug 1977 | A |
4101984 | MacGregor | Jul 1978 | A |
4143661 | LaForge et al. | Mar 1979 | A |
4202055 | Reiner et al. | May 1980 | A |
4237559 | Borom | Dec 1980 | A |
4308868 | Jhabvala | Jan 1982 | A |
4321311 | Strangman | Mar 1982 | A |
4330891 | Branemark et al. | May 1982 | A |
4334327 | Lyman et al. | Jun 1982 | A |
4401546 | Nakamura et al. | Aug 1983 | A |
4407695 | Deckman et al. | Oct 1983 | A |
4475972 | Wong | Oct 1984 | A |
4565744 | Walter et al. | Jan 1986 | A |
4585652 | Miller et al. | Apr 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4657544 | Pinchuk | Apr 1987 | A |
4665896 | LaForge et al. | May 1987 | A |
4705502 | Patel | Nov 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4738740 | Pinchuk et al. | Apr 1988 | A |
4743252 | Martin et al. | May 1988 | A |
4784659 | Fleckenstein et al. | Nov 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4842505 | Annis et al. | Jun 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4902290 | Fleckenstein et al. | Feb 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4976692 | Atad | Dec 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5061914 | Busch et al. | Oct 1991 | A |
5073365 | Katz et al. | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5102403 | Alt | Apr 1992 | A |
5120322 | Davis et al. | Jun 1992 | A |
5125971 | Nonami et al. | Jun 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5171607 | Cumbo | Dec 1992 | A |
5195969 | Wang et al. | Mar 1993 | A |
5205921 | Shirkanzadeh | Apr 1993 | A |
5219611 | Giannelis et al. | Jun 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5236413 | Feiring | Aug 1993 | A |
5250242 | Nishio et al. | Oct 1993 | A |
5270086 | Hamlin | Dec 1993 | A |
5279292 | Baumann et al. | Jan 1994 | A |
5290585 | Elton | Mar 1994 | A |
5302414 | Alkhimov et al. | Apr 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5314453 | Jeutter | May 1994 | A |
5322520 | Milder | Jun 1994 | A |
5326354 | Kwarteng | Jul 1994 | A |
5348553 | Whitney | Sep 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5368881 | Kelman et al. | Nov 1994 | A |
5378146 | Sterrett | Jan 1995 | A |
5380298 | Zabetakis et al. | Jan 1995 | A |
5383935 | Shirkhanzadeh | Jan 1995 | A |
5397307 | Goodin | Mar 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5439446 | Barry | Aug 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5449382 | Dayton | Sep 1995 | A |
5464450 | Buscemi et al. | Nov 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5474797 | Sioshansi et al. | Dec 1995 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5551954 | Buscemi et al. | Sep 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5578075 | Dayton | Nov 1996 | A |
5587507 | Kohn et al. | Dec 1996 | A |
5591224 | Schwartz et al. | Jan 1997 | A |
5603556 | Klink | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5614549 | Greenwald et al. | Mar 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5649951 | Davidson | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5672242 | Jen | Sep 1997 | A |
5674192 | Sahatjian et al. | Oct 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679440 | Kubota | Oct 1997 | A |
5681196 | Jin et al. | Oct 1997 | A |
5690670 | Davidson | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5693928 | Egitto et al. | Dec 1997 | A |
5711866 | Lashmore et al. | Jan 1998 | A |
5733924 | Kanda et al. | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741331 | Pinchuk | Apr 1998 | A |
5744515 | Clapper | Apr 1998 | A |
5749809 | Lin | May 1998 | A |
5758562 | Thompson | Jun 1998 | A |
5761775 | Legome et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5772864 | Moller et al. | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5788687 | Batich et al. | Aug 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5795626 | Gabel et al. | Aug 1998 | A |
5797898 | Santini, Jr. et al. | Aug 1998 | A |
5807407 | England et al. | Sep 1998 | A |
5817046 | Glickman | Oct 1998 | A |
5824045 | Alt | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5824077 | Mayer et al. | Oct 1998 | A |
5830480 | Ducheyne et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843089 | Sahatjian et al. | Dec 1998 | A |
5843172 | Yan | Dec 1998 | A |
5852088 | Dismukes et al. | Dec 1998 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874134 | Rao et al. | Feb 1999 | A |
5879697 | Ding et al. | Mar 1999 | A |
5882335 | Leone et al. | Mar 1999 | A |
5888591 | Gleason et al. | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5902266 | Leone et al. | May 1999 | A |
5922021 | Jang | Jul 1999 | A |
5928247 | Barry et al. | Jul 1999 | A |
5951881 | Rogers et al. | Sep 1999 | A |
5954706 | Sahatjian | Sep 1999 | A |
5962136 | Dewez et al. | Oct 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5968092 | Buscemi et al. | Oct 1999 | A |
5968640 | Lubowitz et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5977204 | Boyan et al. | Nov 1999 | A |
5980551 | Summers et al. | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980566 | Alt et al. | Nov 1999 | A |
6013591 | Ying et al. | Jan 2000 | A |
6017577 | Hostettler et al. | Jan 2000 | A |
6022812 | Smith et al. | Feb 2000 | A |
6025036 | McGill et al. | Feb 2000 | A |
6034295 | Rehberg et al. | Mar 2000 | A |
6045877 | Gleason et al. | Apr 2000 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6074135 | Tapphorn et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099561 | Alt | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6106473 | Violante et al. | Aug 2000 | A |
6110204 | Lazarov et al. | Aug 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120660 | Chu et al. | Sep 2000 | A |
6122564 | Koch et al. | Sep 2000 | A |
6139573 | Sogard et al. | Oct 2000 | A |
6139913 | Van Steenkiste et al. | Oct 2000 | A |
6147329 | Okamura et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6156435 | Gleason et al. | Dec 2000 | A |
6159142 | Alt | Dec 2000 | A |
6171609 | Kunz | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6180184 | Gray et al. | Jan 2001 | B1 |
6187037 | Satz | Feb 2001 | B1 |
6190404 | Palmaz et al. | Feb 2001 | B1 |
6193761 | Treacy | Feb 2001 | B1 |
6200685 | Davidson | Mar 2001 | B1 |
6203536 | Berg et al. | Mar 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6206916 | Furst | Mar 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6212434 | Scheiner et al. | Apr 2001 | B1 |
6214042 | Jacobsen et al. | Apr 2001 | B1 |
6217607 | Alt | Apr 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6245104 | Alt | Jun 2001 | B1 |
6249952 | Ding | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6253443 | Johnson | Jul 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6280411 | Lennox | Aug 2001 | B1 |
6283386 | Van Steenkiste et al. | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6287331 | Heath | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306144 | Sydney et al. | Oct 2001 | B1 |
6315708 | Salmon et al. | Nov 2001 | B1 |
6315794 | Richter | Nov 2001 | B1 |
6323146 | Pugh et al. | Nov 2001 | B1 |
6325825 | Kula et al. | Dec 2001 | B1 |
6327504 | Dolgin et al. | Dec 2001 | B1 |
6331330 | Choy et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6337076 | Studin | Jan 2002 | B1 |
6342507 | Naicker et al. | Jan 2002 | B1 |
6348960 | Etori et al. | Feb 2002 | B1 |
6358532 | Starling et al. | Mar 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6364856 | Ding et al. | Apr 2002 | B1 |
6367412 | Ramaswamy et al. | Apr 2002 | B1 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6387124 | Buscemi et al. | May 2002 | B1 |
6390967 | Forman et al. | May 2002 | B1 |
6391052 | Bulrge et al. | May 2002 | B2 |
6395325 | Hedge et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6398806 | You | Jun 2002 | B1 |
6413271 | Hafeli et al. | Jul 2002 | B1 |
6416820 | Yamada et al. | Jul 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6436133 | Furst et al. | Aug 2002 | B1 |
6440503 | Merdan et al. | Aug 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6465052 | Wu | Oct 2002 | B1 |
6468304 | Dubois-Rande et al. | Oct 2002 | B1 |
6471721 | Dang | Oct 2002 | B1 |
6471980 | Sirhan et al. | Oct 2002 | B2 |
6475477 | Kohn et al. | Nov 2002 | B1 |
6478815 | Alt | Nov 2002 | B1 |
6479418 | Li et al. | Nov 2002 | B2 |
6488715 | Pope et al. | Dec 2002 | B1 |
6491666 | Santini, Jr. et al. | Dec 2002 | B1 |
6491720 | Vallana et al. | Dec 2002 | B1 |
6503921 | Naicker et al. | Jan 2003 | B2 |
6504292 | Choi et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6506972 | Wang | Jan 2003 | B1 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6514289 | Pope et al. | Feb 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6524274 | Rosenthal et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527938 | Bales et al. | Mar 2003 | B2 |
6530951 | Bates et al. | Mar 2003 | B1 |
6537310 | Palmaz et al. | Mar 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6545097 | Pinchuk et al. | Apr 2003 | B2 |
6558422 | Baker et al. | May 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6565602 | Rolando et al. | May 2003 | B2 |
6569489 | Li | May 2003 | B1 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6599558 | Al-Lamee et al. | Jul 2003 | B1 |
6607598 | Schwarz et al. | Aug 2003 | B2 |
6613083 | Alt | Sep 2003 | B2 |
6613432 | Zamora et al. | Sep 2003 | B2 |
6616765 | Wu et al. | Sep 2003 | B1 |
6620194 | Ding et al. | Sep 2003 | B2 |
6635082 | Hossainy et al. | Oct 2003 | B1 |
6638302 | Curcio et al. | Oct 2003 | B1 |
6641607 | Hossainy et al. | Nov 2003 | B1 |
6652575 | Wang | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6652581 | Ding | Nov 2003 | B1 |
6652582 | Stinson | Nov 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B2 |
6663664 | Pacetti | Dec 2003 | B1 |
6669980 | Hansen | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6673999 | Wang et al. | Jan 2004 | B1 |
6676987 | Zhong et al. | Jan 2004 | B2 |
6676989 | Kirkpatrick et al. | Jan 2004 | B2 |
6689803 | Hunter | Feb 2004 | B2 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6699281 | Vallana et al. | Mar 2004 | B2 |
6699282 | Sceusa | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709397 | Taylor | Mar 2004 | B2 |
6709451 | Noble et al. | Mar 2004 | B1 |
6710053 | Naicker et al. | Mar 2004 | B2 |
6712844 | Pacetti | Mar 2004 | B2 |
6712845 | Hossainy | Mar 2004 | B2 |
6713671 | Wang et al. | Mar 2004 | B1 |
6716444 | Castro et al. | Apr 2004 | B1 |
6723120 | Yan | Apr 2004 | B2 |
6725901 | Kramer et al. | Apr 2004 | B1 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6730120 | Berg et al. | May 2004 | B2 |
6730699 | Li et al. | May 2004 | B2 |
6733513 | Boyle et al. | May 2004 | B2 |
6736849 | Li et al. | May 2004 | B2 |
6740077 | Brandau et al. | May 2004 | B1 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6752829 | Kocur et al. | Jun 2004 | B2 |
6753071 | Pacetti | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6761736 | Woo et al. | Jul 2004 | B1 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6764579 | Veerasamy et al. | Jul 2004 | B2 |
6764709 | Flanagan | Jul 2004 | B2 |
6765144 | Wang et al. | Jul 2004 | B1 |
6767360 | Alt et al. | Jul 2004 | B1 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6776022 | Kula et al. | Aug 2004 | B2 |
6776094 | Whitesides et al. | Aug 2004 | B1 |
6780424 | Claude | Aug 2004 | B2 |
6780491 | Cathey et al. | Aug 2004 | B1 |
6783543 | Jang | Aug 2004 | B2 |
6790228 | Hossainy et al. | Sep 2004 | B2 |
6803070 | Weber | Oct 2004 | B2 |
6805709 | Schaldach et al. | Oct 2004 | B1 |
6805898 | Wu et al. | Oct 2004 | B1 |
6807440 | Weber | Oct 2004 | B2 |
6815609 | Wang et al. | Nov 2004 | B1 |
6820676 | Palmaz et al. | Nov 2004 | B2 |
6827737 | Hill et al. | Dec 2004 | B2 |
6830598 | Sung | Dec 2004 | B1 |
6833004 | Ishii et al. | Dec 2004 | B2 |
6846323 | Yip et al. | Jan 2005 | B2 |
6846841 | Hunter et al. | Jan 2005 | B2 |
6849085 | Marton | Feb 2005 | B2 |
6849089 | Stoll | Feb 2005 | B2 |
6852122 | Rush | Feb 2005 | B2 |
6861088 | Weber et al. | Mar 2005 | B2 |
6866805 | Hong et al. | Mar 2005 | B2 |
6869443 | Buscemi et al. | Mar 2005 | B2 |
6869701 | Aita et al. | Mar 2005 | B1 |
6875227 | Yoon | Apr 2005 | B2 |
6878249 | Kouyama et al. | Apr 2005 | B2 |
6884429 | Koziak et al. | Apr 2005 | B2 |
6896697 | Yip et al. | May 2005 | B1 |
6899914 | Schaldach et al. | May 2005 | B2 |
6904658 | Hines | Jun 2005 | B2 |
6908622 | Barry et al. | Jun 2005 | B2 |
6908624 | Hossainy et al. | Jun 2005 | B2 |
6913617 | Reiss | Jul 2005 | B1 |
6915796 | Sung | Jul 2005 | B2 |
6918927 | Bates et al. | Jul 2005 | B2 |
6918929 | Udipi et al. | Jul 2005 | B2 |
6923829 | Boyle et al. | Aug 2005 | B2 |
6924004 | Rao et al. | Aug 2005 | B2 |
6932930 | DeSimone et al. | Aug 2005 | B2 |
6936066 | Palmaz et al. | Aug 2005 | B2 |
6939320 | Lennox | Sep 2005 | B2 |
6951053 | Padilla et al. | Oct 2005 | B2 |
6953560 | Castro et al. | Oct 2005 | B1 |
6955661 | Herweck et al. | Oct 2005 | B1 |
6955685 | Escamilla et al. | Oct 2005 | B2 |
6962822 | Hart et al. | Nov 2005 | B2 |
6971813 | Shekalim et al. | Dec 2005 | B2 |
6973718 | Sheppard, Jr. et al. | Dec 2005 | B2 |
6979346 | Hossainy et al. | Dec 2005 | B1 |
6979348 | Sundar | Dec 2005 | B2 |
6984404 | Talton et al. | Jan 2006 | B1 |
7001421 | Cheng et al. | Feb 2006 | B2 |
7011680 | Alt | Mar 2006 | B2 |
7014654 | Welsh et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7041130 | Santini, Jr. et al. | May 2006 | B2 |
7048939 | Elkins et al. | May 2006 | B2 |
7052488 | Uhland | May 2006 | B2 |
7056338 | Shanley et al. | Jun 2006 | B2 |
7056339 | Elkins et al. | Jun 2006 | B2 |
7056591 | Pacetti et al. | Jun 2006 | B1 |
7060051 | Palasis | Jun 2006 | B2 |
7063748 | Talton | Jun 2006 | B2 |
7066234 | Sawitowski | Jun 2006 | B2 |
7077859 | Sirhan et al. | Jul 2006 | B2 |
7078108 | Zhang et al. | Jul 2006 | B2 |
7083642 | Sirhan et al. | Aug 2006 | B2 |
7087661 | Alberte et al. | Aug 2006 | B1 |
7099091 | Taniguchi et al. | Aug 2006 | B2 |
7101391 | Scheuermann et al. | Sep 2006 | B2 |
7101394 | Hamm et al. | Sep 2006 | B2 |
7105018 | Yip et al. | Sep 2006 | B1 |
7105199 | Blinn et al. | Sep 2006 | B2 |
7144840 | Yeung et al. | Dec 2006 | B2 |
7160592 | Rypacek et al. | Jan 2007 | B2 |
7163715 | Kramer | Jan 2007 | B1 |
7169177 | Obara | Jan 2007 | B2 |
7169178 | Santos et al. | Jan 2007 | B1 |
7195640 | Falotico et al. | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7198675 | Fox et al. | Apr 2007 | B2 |
7208011 | Shanley et al. | Apr 2007 | B2 |
7208172 | Birdsall et al. | Apr 2007 | B2 |
7229471 | Gale et al. | Jun 2007 | B2 |
7235096 | Van Tassel et al. | Jun 2007 | B1 |
7235098 | Palmaz | Jun 2007 | B2 |
7238199 | Feldman et al. | Jul 2007 | B2 |
7244272 | Dubson et al. | Jul 2007 | B2 |
7247166 | Pienknagura | Jul 2007 | B2 |
7247338 | Pui et al. | Jul 2007 | B2 |
7261735 | Llanos et al. | Aug 2007 | B2 |
7261752 | Sung | Aug 2007 | B2 |
7273493 | Ledergerber | Sep 2007 | B2 |
7294409 | Lye et al. | Nov 2007 | B2 |
7311727 | Mazumder et al. | Dec 2007 | B2 |
7344563 | Vallana et al. | Mar 2008 | B2 |
7368065 | Yang et al. | May 2008 | B2 |
7393589 | Aharonov et al. | Jul 2008 | B2 |
7396538 | Granada et al. | Jul 2008 | B2 |
7402173 | Scheuermann et al. | Jul 2008 | B2 |
7416558 | Yip et al. | Aug 2008 | B2 |
7435256 | Stenzel | Oct 2008 | B2 |
7482034 | Boulais | Jan 2009 | B2 |
7494950 | Armitage et al. | Feb 2009 | B2 |
7497876 | Tuke et al. | Mar 2009 | B2 |
7547445 | Chudzik et al. | Jun 2009 | B2 |
7563324 | Chen et al. | Jul 2009 | B1 |
7575593 | Rea et al. | Aug 2009 | B2 |
7635515 | Sherman | Dec 2009 | B1 |
7638156 | Hossainy et al. | Dec 2009 | B1 |
7691461 | Prabhu | Apr 2010 | B1 |
7713297 | Alt | May 2010 | B2 |
7749264 | Gregorich et al. | Jul 2010 | B2 |
7771773 | Namavar | Aug 2010 | B2 |
7837726 | Von Oepen et al. | Nov 2010 | B2 |
20010001834 | Palmaz et al. | May 2001 | A1 |
20010002000 | Kumar et al. | May 2001 | A1 |
20010002435 | Berg et al. | May 2001 | A1 |
20010013166 | Yan | Aug 2001 | A1 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010014821 | Juman et al. | Aug 2001 | A1 |
20010027299 | Yang et al. | Oct 2001 | A1 |
20010029660 | Johnson | Oct 2001 | A1 |
20010032011 | Stanford | Oct 2001 | A1 |
20010032013 | Marton | Oct 2001 | A1 |
20010044651 | Steinke et al. | Nov 2001 | A1 |
20020000175 | Hintermaier et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020007102 | Salmon et al. | Jan 2002 | A1 |
20020007209 | Scheerder et al. | Jan 2002 | A1 |
20020009604 | Zamora et al. | Jan 2002 | A1 |
20020010505 | Richter | Jan 2002 | A1 |
20020016623 | Kula et al. | Feb 2002 | A1 |
20020016624 | Patterson et al. | Feb 2002 | A1 |
20020028827 | Naicker et al. | Mar 2002 | A1 |
20020032477 | Helmus et al. | Mar 2002 | A1 |
20020038146 | Harry | Mar 2002 | A1 |
20020042039 | Kim et al. | Apr 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020051846 | Kirkpatrick et al. | May 2002 | A1 |
20020052288 | Krell et al. | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020072734 | Liedtke et al. | Jun 2002 | A1 |
20020077520 | Segal et al. | Jun 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091375 | Sahatjian et al. | Jul 2002 | A1 |
20020095871 | McArdle et al. | Jul 2002 | A1 |
20020098278 | Bates et al. | Jul 2002 | A1 |
20020099359 | Santini, Jr. et al. | Jul 2002 | A1 |
20020099438 | Furst | Jul 2002 | A1 |
20020103527 | Kocur et al. | Aug 2002 | A1 |
20020103528 | Schaldach et al. | Aug 2002 | A1 |
20020104599 | Tillotson et al. | Aug 2002 | A1 |
20020121497 | Tomonto | Sep 2002 | A1 |
20020123801 | Pacetti et al. | Sep 2002 | A1 |
20020133222 | Das | Sep 2002 | A1 |
20020133225 | Gordon | Sep 2002 | A1 |
20020138100 | Stoll et al. | Sep 2002 | A1 |
20020138136 | Chandresekaran et al. | Sep 2002 | A1 |
20020140137 | Sapieszko et al. | Oct 2002 | A1 |
20020142579 | Vincent et al. | Oct 2002 | A1 |
20020144757 | Craig et al. | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020165265 | Hunter et al. | Nov 2002 | A1 |
20020165600 | Banas et al. | Nov 2002 | A1 |
20020165607 | Alt | Nov 2002 | A1 |
20020167118 | Billiet et al. | Nov 2002 | A1 |
20020168466 | Tapphorn et al. | Nov 2002 | A1 |
20020169493 | Widenhouse et al. | Nov 2002 | A1 |
20020178570 | Sogard et al. | Dec 2002 | A1 |
20020182241 | Borenstein et al. | Dec 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20020187260 | Sheppard, Jr. et al. | Dec 2002 | A1 |
20020193336 | Elkins et al. | Dec 2002 | A1 |
20020193869 | Dang | Dec 2002 | A1 |
20020197178 | Yan | Dec 2002 | A1 |
20020198601 | Bales et al. | Dec 2002 | A1 |
20030003160 | Pugh et al. | Jan 2003 | A1 |
20030003220 | Zhong et al. | Jan 2003 | A1 |
20030004563 | Jackson et al. | Jan 2003 | A1 |
20030004564 | Elkins et al. | Jan 2003 | A1 |
20030006250 | Tapphorn et al. | Jan 2003 | A1 |
20030009214 | Shanley | Jan 2003 | A1 |
20030009233 | Blinn et al. | Jan 2003 | A1 |
20030018380 | Craig et al. | Jan 2003 | A1 |
20030018381 | Whitcher et al. | Jan 2003 | A1 |
20030021820 | Ahola et al. | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030028242 | Vallana et al. | Feb 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030032892 | Erlach et al. | Feb 2003 | A1 |
20030033007 | Sirhan et al. | Feb 2003 | A1 |
20030044446 | Moro et al. | Mar 2003 | A1 |
20030047028 | Kunitake et al. | Mar 2003 | A1 |
20030047505 | Grimes et al. | Mar 2003 | A1 |
20030050687 | Schwade et al. | Mar 2003 | A1 |
20030059640 | Marton et al. | Mar 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030060873 | Gertner et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030064095 | Martin et al. | Apr 2003 | A1 |
20030069631 | Stoll | Apr 2003 | A1 |
20030074053 | Palmaz et al. | Apr 2003 | A1 |
20030074075 | Thomas et al. | Apr 2003 | A1 |
20030077200 | Craig et al. | Apr 2003 | A1 |
20030083614 | Eisert | May 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083731 | Kramer et al. | May 2003 | A1 |
20030087024 | Flanagan | May 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030088312 | Kopia et al. | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030104028 | Hossainy et al. | Jun 2003 | A1 |
20030105511 | Welsh et al. | Jun 2003 | A1 |
20030108659 | Bales et al. | Jun 2003 | A1 |
20030114917 | Holloway et al. | Jun 2003 | A1 |
20030114921 | Yoon | Jun 2003 | A1 |
20030118649 | Gao et al. | Jun 2003 | A1 |
20030125803 | Vallana et al. | Jul 2003 | A1 |
20030130206 | Koziak et al. | Jul 2003 | A1 |
20030130718 | Palmas et al. | Jul 2003 | A1 |
20030138645 | Gleason et al. | Jul 2003 | A1 |
20030139799 | Ley et al. | Jul 2003 | A1 |
20030144728 | Scheuermann et al. | Jul 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030153901 | Herweck et al. | Aug 2003 | A1 |
20030153971 | Chandrasekaran | Aug 2003 | A1 |
20030158598 | Ashton et al. | Aug 2003 | A1 |
20030167878 | Al-Salim et al. | Sep 2003 | A1 |
20030170605 | Long et al. | Sep 2003 | A1 |
20030181975 | Ishii et al. | Sep 2003 | A1 |
20030185895 | Lanphere et al. | Oct 2003 | A1 |
20030185964 | Weber et al. | Oct 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030195613 | Curcio et al. | Oct 2003 | A1 |
20030203991 | Schottman et al. | Oct 2003 | A1 |
20030204168 | Bosma et al. | Oct 2003 | A1 |
20030208256 | DiMatteo et al. | Nov 2003 | A1 |
20030211135 | Greenhalgh et al. | Nov 2003 | A1 |
20030216803 | Ledergerber | Nov 2003 | A1 |
20030219562 | Rypacek et al. | Nov 2003 | A1 |
20030225450 | Shulze et al. | Dec 2003 | A1 |
20030236323 | Ratner et al. | Dec 2003 | A1 |
20030236514 | Schwarz | Dec 2003 | A1 |
20040000540 | Soboyejo et al. | Jan 2004 | A1 |
20040002755 | Fischell et al. | Jan 2004 | A1 |
20040006382 | Sohier | Jan 2004 | A1 |
20040013873 | Wendorff et al. | Jan 2004 | A1 |
20040016651 | Windler | Jan 2004 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040019376 | Alt | Jan 2004 | A1 |
20040022824 | Li et al. | Feb 2004 | A1 |
20040026811 | Murphy et al. | Feb 2004 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040029303 | Hart et al. | Feb 2004 | A1 |
20040029706 | Barrera et al. | Feb 2004 | A1 |
20040030218 | Kocur et al. | Feb 2004 | A1 |
20040030377 | Dubson et al. | Feb 2004 | A1 |
20040039438 | Alt | Feb 2004 | A1 |
20040039441 | Rowland et al. | Feb 2004 | A1 |
20040044397 | Stinson | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040058858 | Hu | Mar 2004 | A1 |
20040059290 | Palasis | Mar 2004 | A1 |
20040059407 | Escamilla et al. | Mar 2004 | A1 |
20040059409 | Stenzel | Mar 2004 | A1 |
20040067301 | Ding | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040078071 | Escamilla et al. | Apr 2004 | A1 |
20040086674 | Holman | May 2004 | A1 |
20040088038 | Dehnad et al. | May 2004 | A1 |
20040088041 | Stanford | May 2004 | A1 |
20040092653 | Ruberti et al. | May 2004 | A1 |
20040093071 | Jang | May 2004 | A1 |
20040093076 | White et al. | May 2004 | A1 |
20040098089 | Weber | May 2004 | A1 |
20040098119 | Wang | May 2004 | A1 |
20040102758 | Davila et al. | May 2004 | A1 |
20040106984 | Stinson | Jun 2004 | A1 |
20040106985 | Jang | Jun 2004 | A1 |
20040106987 | Palasis et al. | Jun 2004 | A1 |
20040106994 | De Maeztus Martinez et al. | Jun 2004 | A1 |
20040111150 | Berg et al. | Jun 2004 | A1 |
20040116999 | Ledergerber | Jun 2004 | A1 |
20040117005 | Gadde et al. | Jun 2004 | A1 |
20040117008 | Wnendt et al. | Jun 2004 | A1 |
20040122504 | Hogendijk | Jun 2004 | A1 |
20040126566 | Axen et al. | Jul 2004 | A1 |
20040133270 | Grandt | Jul 2004 | A1 |
20040134886 | Wagner et al. | Jul 2004 | A1 |
20040142014 | Litvack et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040143321 | Litvack et al. | Jul 2004 | A1 |
20040148010 | Rush | Jul 2004 | A1 |
20040148015 | Lye et al. | Jul 2004 | A1 |
20040158308 | Hogendijk et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040167612 | Grignani et al. | Aug 2004 | A1 |
20040171978 | Shalaby | Sep 2004 | A1 |
20040172124 | Vallana et al. | Sep 2004 | A1 |
20040178523 | Kim et al. | Sep 2004 | A1 |
20040181252 | Boyle et al. | Sep 2004 | A1 |
20040181275 | Noble et al. | Sep 2004 | A1 |
20040181276 | Brown et al. | Sep 2004 | A1 |
20040185168 | Weber et al. | Sep 2004 | A1 |
20040191293 | Claude | Sep 2004 | A1 |
20040191404 | Hossainy et al. | Sep 2004 | A1 |
20040202692 | Shanley et al. | Oct 2004 | A1 |
20040204750 | Dinh | Oct 2004 | A1 |
20040211362 | Castro et al. | Oct 2004 | A1 |
20040215169 | Li | Oct 2004 | A1 |
20040215313 | Cheng | Oct 2004 | A1 |
20040219214 | Gravett et al. | Nov 2004 | A1 |
20040220510 | Koullick et al. | Nov 2004 | A1 |
20040220662 | Dang et al. | Nov 2004 | A1 |
20040224001 | Pacetti et al. | Nov 2004 | A1 |
20040225346 | Mazumder et al. | Nov 2004 | A1 |
20040225347 | Lang | Nov 2004 | A1 |
20040228905 | Greenspan et al. | Nov 2004 | A1 |
20040230176 | Shanahan et al. | Nov 2004 | A1 |
20040230290 | Weber et al. | Nov 2004 | A1 |
20040230293 | Yip et al. | Nov 2004 | A1 |
20040234737 | Pacetti | Nov 2004 | A1 |
20040234748 | Stenzel | Nov 2004 | A1 |
20040236399 | Sundar | Nov 2004 | A1 |
20040236415 | Thomas | Nov 2004 | A1 |
20040236416 | Falotico | Nov 2004 | A1 |
20040237282 | Hines | Dec 2004 | A1 |
20040242106 | Rabasco et al. | Dec 2004 | A1 |
20040243217 | Andersen et al. | Dec 2004 | A1 |
20040243241 | Istephanous | Dec 2004 | A1 |
20040247671 | Prescott et al. | Dec 2004 | A1 |
20040249444 | Reiss | Dec 2004 | A1 |
20040249449 | Shanley et al. | Dec 2004 | A1 |
20040254635 | Shanley et al. | Dec 2004 | A1 |
20040261702 | Grabowy et al. | Dec 2004 | A1 |
20050002865 | Klaveness et al. | Jan 2005 | A1 |
20050004663 | Llanos et al. | Jan 2005 | A1 |
20050010275 | Sahatjian et al. | Jan 2005 | A1 |
20050015142 | Austin et al. | Jan 2005 | A1 |
20050019265 | Hammer et al. | Jan 2005 | A1 |
20050019371 | Anderson et al. | Jan 2005 | A1 |
20050020614 | Prescott et al. | Jan 2005 | A1 |
20050021127 | Kawula | Jan 2005 | A1 |
20050021128 | Nakahama et al. | Jan 2005 | A1 |
20050027350 | Momma et al. | Feb 2005 | A1 |
20050033411 | Wu et al. | Feb 2005 | A1 |
20050033412 | Wu et al. | Feb 2005 | A1 |
20050033417 | Borges et al. | Feb 2005 | A1 |
20050037047 | Song | Feb 2005 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050042288 | Koblish et al. | Feb 2005 | A1 |
20050055080 | Istephanous et al. | Mar 2005 | A1 |
20050055085 | Rivron et al. | Mar 2005 | A1 |
20050060020 | Jenson | Mar 2005 | A1 |
20050060021 | O'Brien et al. | Mar 2005 | A1 |
20050069630 | Fox et al. | Mar 2005 | A1 |
20050070989 | Lye et al. | Mar 2005 | A1 |
20050070990 | Stinson | Mar 2005 | A1 |
20050070996 | Dinh et al. | Mar 2005 | A1 |
20050072544 | Palmaz et al. | Apr 2005 | A1 |
20050074479 | Weber et al. | Apr 2005 | A1 |
20050074545 | Thomas | Apr 2005 | A1 |
20050077305 | Guevara | Apr 2005 | A1 |
20050079199 | Heruth et al. | Apr 2005 | A1 |
20050079201 | Rathenow et al. | Apr 2005 | A1 |
20050079356 | Rathenow et al. | Apr 2005 | A1 |
20050087520 | Wang et al. | Apr 2005 | A1 |
20050092615 | Birdsall et al. | May 2005 | A1 |
20050096731 | Looi et al. | May 2005 | A1 |
20050100577 | Parker et al. | May 2005 | A1 |
20050100609 | Claude | May 2005 | A1 |
20050102025 | Laroche et al. | May 2005 | A1 |
20050106212 | Gertner et al. | May 2005 | A1 |
20050107869 | Sirhan et al. | May 2005 | A1 |
20050107870 | Wang et al. | May 2005 | A1 |
20050110214 | Shank et al. | May 2005 | A1 |
20050113936 | Brustad et al. | May 2005 | A1 |
20050119723 | Peacock | Jun 2005 | A1 |
20050129727 | Weber et al. | Jun 2005 | A1 |
20050131509 | Atanasoska et al. | Jun 2005 | A1 |
20050131521 | Marton | Jun 2005 | A1 |
20050131522 | Stinson et al. | Jun 2005 | A1 |
20050136090 | Falotico et al. | Jun 2005 | A1 |
20050137677 | Rush | Jun 2005 | A1 |
20050137679 | Changelian et al. | Jun 2005 | A1 |
20050137684 | Changelian et al. | Jun 2005 | A1 |
20050149102 | Radisch et al. | Jul 2005 | A1 |
20050149170 | Tassel et al. | Jul 2005 | A1 |
20050159804 | Lad et al. | Jul 2005 | A1 |
20050159805 | Weber et al. | Jul 2005 | A1 |
20050160600 | Bien et al. | Jul 2005 | A1 |
20050163954 | Shaw | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050165468 | Marton | Jul 2005 | A1 |
20050165476 | Furst et al. | Jul 2005 | A1 |
20050171595 | Feldman et al. | Aug 2005 | A1 |
20050180919 | Tedeschi | Aug 2005 | A1 |
20050182478 | Holman et al. | Aug 2005 | A1 |
20050186250 | Gertner et al. | Aug 2005 | A1 |
20050187608 | O'Hara | Aug 2005 | A1 |
20050192657 | Colen et al. | Sep 2005 | A1 |
20050192664 | Eisert | Sep 2005 | A1 |
20050196424 | Chappa | Sep 2005 | A1 |
20050196518 | Stenzel | Sep 2005 | A1 |
20050197687 | Molaei et al. | Sep 2005 | A1 |
20050197689 | Molaei | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050208098 | Castro et al. | Sep 2005 | A1 |
20050208100 | Weber et al. | Sep 2005 | A1 |
20050209681 | Curcio et al. | Sep 2005 | A1 |
20050211680 | Li et al. | Sep 2005 | A1 |
20050214951 | Nahm et al. | Sep 2005 | A1 |
20050216074 | Sahatjian et al. | Sep 2005 | A1 |
20050220853 | Dao et al. | Oct 2005 | A1 |
20050221072 | Dubrow et al. | Oct 2005 | A1 |
20050228477 | Grainger et al. | Oct 2005 | A1 |
20050228491 | Snyder et al. | Oct 2005 | A1 |
20050232968 | Palmaz et al. | Oct 2005 | A1 |
20050233965 | Schwartz et al. | Oct 2005 | A1 |
20050244459 | DeWitt et al. | Nov 2005 | A1 |
20050251245 | Sieradzki et al. | Nov 2005 | A1 |
20050251249 | Sahatjian et al. | Nov 2005 | A1 |
20050255707 | Hart et al. | Nov 2005 | A1 |
20050261760 | Weber | Nov 2005 | A1 |
20050266039 | Weber | Dec 2005 | A1 |
20050266040 | Gerberding | Dec 2005 | A1 |
20050267561 | Jones et al. | Dec 2005 | A1 |
20050271703 | Anderson et al. | Dec 2005 | A1 |
20050271706 | Anderson et al. | Dec 2005 | A1 |
20050276837 | Anderson et al. | Dec 2005 | A1 |
20050278016 | Welsh et al. | Dec 2005 | A1 |
20050278021 | Bates et al. | Dec 2005 | A1 |
20050281863 | Anderson et al. | Dec 2005 | A1 |
20050285073 | Singh et al. | Dec 2005 | A1 |
20050287188 | Anderson et al. | Dec 2005 | A1 |
20060013850 | Domb | Jan 2006 | A1 |
20060015175 | Palmaz et al. | Jan 2006 | A1 |
20060015361 | Sattler et al. | Jan 2006 | A1 |
20060020742 | Au et al. | Jan 2006 | A1 |
20060025848 | Weber et al. | Feb 2006 | A1 |
20060034884 | Stenzel | Feb 2006 | A1 |
20060035026 | Atanasoska et al. | Feb 2006 | A1 |
20060038027 | O'Connor et al. | Feb 2006 | A1 |
20060051397 | Maier et al. | Mar 2006 | A1 |
20060052744 | Weber | Mar 2006 | A1 |
20060052863 | Harder et al. | Mar 2006 | A1 |
20060052864 | Harder et al. | Mar 2006 | A1 |
20060062820 | Gertner et al. | Mar 2006 | A1 |
20060069427 | Savage et al. | Mar 2006 | A1 |
20060075044 | Fox et al. | Apr 2006 | A1 |
20060075092 | Kidokoro | Apr 2006 | A1 |
20060079863 | Burgmeier et al. | Apr 2006 | A1 |
20060085062 | Lee et al. | Apr 2006 | A1 |
20060085065 | Krause et al. | Apr 2006 | A1 |
20060088561 | Eini et al. | Apr 2006 | A1 |
20060088566 | Parsonage et al. | Apr 2006 | A1 |
20060088567 | Warner et al. | Apr 2006 | A1 |
20060088666 | Kobrin et al. | Apr 2006 | A1 |
20060093643 | Stenzel | May 2006 | A1 |
20060095123 | Flanagan | May 2006 | A1 |
20060100696 | Atanasoska et al. | May 2006 | A1 |
20060115512 | Peacock et al. | Jun 2006 | A1 |
20060121080 | Lye et al. | Jun 2006 | A1 |
20060122694 | Stinson et al. | Jun 2006 | A1 |
20060125144 | Weber et al. | Jun 2006 | A1 |
20060127442 | Helmus | Jun 2006 | A1 |
20060127443 | Helmus | Jun 2006 | A1 |
20060129215 | Helmus et al. | Jun 2006 | A1 |
20060129225 | Kopia et al. | Jun 2006 | A1 |
20060136048 | Pacetti et al. | Jun 2006 | A1 |
20060140867 | Helfer et al. | Jun 2006 | A1 |
20060141156 | Viel et al. | Jun 2006 | A1 |
20060142853 | Wang et al. | Jun 2006 | A1 |
20060149365 | Fifer et al. | Jul 2006 | A1 |
20060153729 | Stinson et al. | Jul 2006 | A1 |
20060155361 | Schomig et al. | Jul 2006 | A1 |
20060167543 | Bailey et al. | Jul 2006 | A1 |
20060171985 | Richard et al. | Aug 2006 | A1 |
20060178727 | Richter | Aug 2006 | A1 |
20060184235 | Rivron et al. | Aug 2006 | A1 |
20060193886 | Owens et al. | Aug 2006 | A1 |
20060193887 | Owens et al. | Aug 2006 | A1 |
20060193888 | Lye et al. | Aug 2006 | A1 |
20060193889 | Spradlin et al. | Aug 2006 | A1 |
20060193890 | Owens et al. | Aug 2006 | A1 |
20060199876 | Troczynski et al. | Sep 2006 | A1 |
20060200229 | Burgermeister et al. | Sep 2006 | A1 |
20060200231 | O'Brien et al. | Sep 2006 | A1 |
20060210595 | Singhvi et al. | Sep 2006 | A1 |
20060212109 | Sirhan et al. | Sep 2006 | A1 |
20060222679 | Shanley et al. | Oct 2006 | A1 |
20060222844 | Stinson | Oct 2006 | A1 |
20060224234 | Jayaraman | Oct 2006 | A1 |
20060229711 | Yan et al. | Oct 2006 | A1 |
20060229713 | Shanley et al. | Oct 2006 | A1 |
20060229715 | Istephanous et al. | Oct 2006 | A1 |
20060230476 | Atanasoska et al. | Oct 2006 | A1 |
20060233941 | Olson | Oct 2006 | A1 |
20060251701 | Lynn et al. | Nov 2006 | A1 |
20060263512 | Glocker | Nov 2006 | A1 |
20060263515 | Rieck et al. | Nov 2006 | A1 |
20060264138 | Sowinski et al. | Nov 2006 | A1 |
20060271169 | Lye et al. | Nov 2006 | A1 |
20060275554 | Zhao et al. | Dec 2006 | A1 |
20060276877 | Owens et al. | Dec 2006 | A1 |
20060276878 | Owens et al. | Dec 2006 | A1 |
20060276879 | Lye et al. | Dec 2006 | A1 |
20060276884 | Lye et al. | Dec 2006 | A1 |
20060276885 | Lye et al. | Dec 2006 | A1 |
20060276910 | Weber | Dec 2006 | A1 |
20060280770 | Hossainy et al. | Dec 2006 | A1 |
20060292388 | Palumbo et al. | Dec 2006 | A1 |
20070003589 | Astafieva et al. | Jan 2007 | A1 |
20070003817 | Umeda et al. | Jan 2007 | A1 |
20070032858 | Santos et al. | Feb 2007 | A1 |
20070032864 | Furst et al. | Feb 2007 | A1 |
20070036905 | Kramer | Feb 2007 | A1 |
20070038176 | Weber et al. | Feb 2007 | A1 |
20070038289 | Nishide et al. | Feb 2007 | A1 |
20070048452 | Feng et al. | Mar 2007 | A1 |
20070052497 | Tada | Mar 2007 | A1 |
20070055349 | Santos et al. | Mar 2007 | A1 |
20070055354 | Santos et al. | Mar 2007 | A1 |
20070059435 | Santos et al. | Mar 2007 | A1 |
20070065418 | Vallana et al. | Mar 2007 | A1 |
20070071789 | Pantelidis et al. | Mar 2007 | A1 |
20070072978 | Zoromski et al. | Mar 2007 | A1 |
20070073385 | Schaeffer et al. | Mar 2007 | A1 |
20070073390 | Lee | Mar 2007 | A1 |
20070106347 | Lin | May 2007 | A1 |
20070110888 | Radhakrishnan et al. | May 2007 | A1 |
20070112421 | O'Brien | May 2007 | A1 |
20070123973 | Roth et al. | May 2007 | A1 |
20070128245 | Rosenberg et al. | Jun 2007 | A1 |
20070129789 | Cottone et al. | Jun 2007 | A1 |
20070134288 | Parsonage et al. | Jun 2007 | A1 |
20070135908 | Zhao | Jun 2007 | A1 |
20070148251 | Hossainy et al. | Jun 2007 | A1 |
20070151093 | Curcio et al. | Jul 2007 | A1 |
20070154513 | Atanasoska et al. | Jul 2007 | A1 |
20070156231 | Weber | Jul 2007 | A1 |
20070173923 | Savage et al. | Jul 2007 | A1 |
20070181433 | Birdsall et al. | Aug 2007 | A1 |
20070190104 | Kamath et al. | Aug 2007 | A1 |
20070191923 | Weber et al. | Aug 2007 | A1 |
20070191928 | Rolando et al. | Aug 2007 | A1 |
20070191931 | Weber et al. | Aug 2007 | A1 |
20070191943 | Shrivastava et al. | Aug 2007 | A1 |
20070198081 | Castro et al. | Aug 2007 | A1 |
20070202466 | Schwarz et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208412 | Elmaleh | Sep 2007 | A1 |
20070212547 | Fredrickson et al. | Sep 2007 | A1 |
20070213827 | Arramon | Sep 2007 | A1 |
20070219626 | Rolando et al. | Sep 2007 | A1 |
20070224116 | Chandrasekaran et al. | Sep 2007 | A1 |
20070224224 | Cordeira Da Silva et al. | Sep 2007 | A1 |
20070224235 | Tenney et al. | Sep 2007 | A1 |
20070224244 | Weber et al. | Sep 2007 | A1 |
20070244569 | Weber et al. | Oct 2007 | A1 |
20070254091 | Fredrickson et al. | Nov 2007 | A1 |
20070255392 | Johnson | Nov 2007 | A1 |
20070264303 | Atanasoska et al. | Nov 2007 | A1 |
20070269480 | Richard et al. | Nov 2007 | A1 |
20070299509 | Ding | Dec 2007 | A1 |
20080003251 | Zhou | Jan 2008 | A1 |
20080004691 | Weber et al. | Jan 2008 | A1 |
20080008654 | Clarke et al. | Jan 2008 | A1 |
20080038146 | Wachter et al. | Feb 2008 | A1 |
20080050413 | Horvers et al. | Feb 2008 | A1 |
20080050415 | Atanasoska et al. | Feb 2008 | A1 |
20080051881 | Feng et al. | Feb 2008 | A1 |
20080057103 | Roorda | Mar 2008 | A1 |
20080058921 | Lindquist | Mar 2008 | A1 |
20080069854 | Xiao et al. | Mar 2008 | A1 |
20080071348 | Boismier et al. | Mar 2008 | A1 |
20080071349 | Atanasoska et al. | Mar 2008 | A1 |
20080071350 | Stinson | Mar 2008 | A1 |
20080071351 | Flanagan et al. | Mar 2008 | A1 |
20080071352 | Weber et al. | Mar 2008 | A1 |
20080071353 | Weber et al. | Mar 2008 | A1 |
20080071355 | Weber et al. | Mar 2008 | A1 |
20080071358 | Weber et al. | Mar 2008 | A1 |
20080086199 | Dave et al. | Apr 2008 | A1 |
20080086201 | Weber et al. | Apr 2008 | A1 |
20080097577 | Atanasoska et al. | Apr 2008 | A1 |
20080107890 | Bureau et al. | May 2008 | A1 |
20080124373 | Xiao et al. | May 2008 | A1 |
20080140186 | Grignani et al. | Jun 2008 | A1 |
20080145400 | Weber et al. | Jun 2008 | A1 |
20080147177 | Scheuermann et al. | Jun 2008 | A1 |
20080152929 | Zhao | Jun 2008 | A1 |
20080160259 | Nielson et al. | Jul 2008 | A1 |
20080171929 | Katims | Jul 2008 | A1 |
20080188836 | Weber et al. | Aug 2008 | A1 |
20080241218 | McMorrow et al. | Oct 2008 | A1 |
20080243231 | Flanagan et al. | Oct 2008 | A1 |
20080243240 | Doty et al. | Oct 2008 | A1 |
20080249600 | Atanasoska et al. | Oct 2008 | A1 |
20080249615 | Weber | Oct 2008 | A1 |
20080255508 | Wang | Oct 2008 | A1 |
20080255657 | Gregorich et al. | Oct 2008 | A1 |
20080262607 | Fricke | Oct 2008 | A1 |
20080275543 | Lenz et al. | Nov 2008 | A1 |
20080288048 | Rolando et al. | Nov 2008 | A1 |
20080290467 | Shue et al. | Nov 2008 | A1 |
20080294236 | Anand et al. | Nov 2008 | A1 |
20080294246 | Scheuermann et al. | Nov 2008 | A1 |
20080306584 | Kramer-Brown | Dec 2008 | A1 |
20090012603 | Xu et al. | Jan 2009 | A1 |
20090018639 | Kuehling | Jan 2009 | A1 |
20090018642 | Benco | Jan 2009 | A1 |
20090018644 | Weber et al. | Jan 2009 | A1 |
20090018647 | Benco et al. | Jan 2009 | A1 |
20090028785 | Clarke | Jan 2009 | A1 |
20090030504 | Weber et al. | Jan 2009 | A1 |
20090076588 | Weber | Mar 2009 | A1 |
20090076595 | Lindquist et al. | Mar 2009 | A1 |
20090081450 | Ascher et al. | Mar 2009 | A1 |
20090112310 | Zhang | Apr 2009 | A1 |
20090118809 | Scheuermann et al. | May 2009 | A1 |
20090118812 | Kokate et al. | May 2009 | A1 |
20090118813 | Scheuermann et al. | May 2009 | A1 |
20090118814 | Schoenle et al. | May 2009 | A1 |
20090118815 | Arcand et al. | May 2009 | A1 |
20090118818 | Foss et al. | May 2009 | A1 |
20090118820 | Gregorich et al. | May 2009 | A1 |
20090118821 | Scheuermann et al. | May 2009 | A1 |
20090118822 | Holman et al. | May 2009 | A1 |
20090118823 | Atanasoska et al. | May 2009 | A1 |
20090123517 | Flanagan et al. | May 2009 | A1 |
20090123521 | Weber et al. | May 2009 | A1 |
20090138077 | Weber et al. | May 2009 | A1 |
20090149942 | Edelman et al. | Jun 2009 | A1 |
20090157165 | Miller et al. | Jun 2009 | A1 |
20090157166 | Singhal et al. | Jun 2009 | A1 |
20090157172 | Kokate et al. | Jun 2009 | A1 |
20090177273 | Piveteau et al. | Jul 2009 | A1 |
20090186068 | Miller et al. | Jul 2009 | A1 |
20090202610 | Wilson | Aug 2009 | A1 |
20090208428 | Hill et al. | Aug 2009 | A1 |
20090220612 | Perera | Sep 2009 | A1 |
20090259300 | Dorogy, Jr. et al. | Oct 2009 | A1 |
20090264975 | Flanagan et al. | Oct 2009 | A1 |
20090281613 | Atanasoska et al. | Nov 2009 | A1 |
20090287301 | Weber | Nov 2009 | A1 |
20090306765 | Weber | Dec 2009 | A1 |
20090317766 | Heidenau et al. | Dec 2009 | A1 |
20090319032 | Weber et al. | Dec 2009 | A1 |
20100008970 | O'Brien et al. | Jan 2010 | A1 |
20100028403 | Scheuermann et al. | Feb 2010 | A1 |
20100030326 | Radhakrishnan et al. | Feb 2010 | A1 |
20100042206 | Yadav et al. | Feb 2010 | A1 |
20100057197 | Weber et al. | Mar 2010 | A1 |
20100070022 | Kuehling | Mar 2010 | A1 |
20100070026 | Ito et al. | Mar 2010 | A1 |
20100131050 | Zhao | May 2010 | A1 |
Number | Date | Country |
---|---|---|
232704 | Mar 2003 | AT |
288234 | Feb 2005 | AT |
4825696 | Oct 1996 | AU |
5588896 | Dec 1996 | AU |
5266698 | Jun 1998 | AU |
6663298 | Sep 1998 | AU |
716005 | Feb 2000 | AU |
5686499 | Mar 2000 | AU |
2587100 | May 2000 | AU |
2153600 | Jun 2000 | AU |
1616201 | May 2001 | AU |
737252 | Aug 2001 | AU |
2317701 | Aug 2001 | AU |
5215401 | Sep 2001 | AU |
5890401 | Dec 2001 | AU |
3597401 | Jun 2002 | AU |
2002353068 | Mar 2003 | AU |
2002365875 | Jun 2003 | AU |
2003220153 | Sep 2003 | AU |
2003250913 | Jan 2004 | AU |
770395 | Feb 2004 | AU |
2003249017 | Feb 2004 | AU |
2003256499 | Feb 2004 | AU |
771367 | Mar 2004 | AU |
2003271633 | Apr 2004 | AU |
2003272710 | Apr 2004 | AU |
2003285195 | Jun 2004 | AU |
2003287633 | Jun 2004 | AU |
2003290675 | Jun 2004 | AU |
2003290676 | Jun 2004 | AU |
2003291470 | Jun 2004 | AU |
2003295419 | Jun 2004 | AU |
2003295535 | Jun 2004 | AU |
2003295763 | Jun 2004 | AU |
2004202073 | Jun 2004 | AU |
2003300323 | Jul 2004 | AU |
2004213021 | Sep 2004 | AU |
2003293557 | Jan 2005 | AU |
780539 | Mar 2005 | AU |
8701135 | Jan 1988 | BR |
0207321 | Feb 2004 | BR |
0016957 | Jun 2004 | BR |
0316065 | Sep 2005 | BR |
0316102 | Sep 2005 | BR |
1 283 505 | Apr 1991 | CA |
1283505 | Apr 1991 | CA |
2172187 | Oct 1996 | CA |
2 178 541 | Dec 1996 | CA |
2178541 | Dec 1996 | CA |
2234787 | Oct 1998 | CA |
2235031 | Oct 1998 | CA |
2238837 | Feb 1999 | CA |
2340652 | Mar 2000 | CA |
2392006 | May 2001 | CA |
2337565 | Aug 2001 | CA |
2409862 | Nov 2001 | CA |
2353197 | Jan 2002 | CA |
2429356 | Aug 2002 | CA |
2435306 | Aug 2002 | CA |
2436241 | Aug 2002 | CA |
2438095 | Aug 2002 | CA |
2460334 | Mar 2003 | CA |
2425665 | Apr 2003 | CA |
2465704 | Apr 2003 | CA |
2464906 | May 2003 | CA |
2468677 | Jun 2003 | CA |
2469744 | Jun 2003 | CA |
2484383 | Jan 2004 | CA |
2497602 | Apr 2004 | CA |
2499976 | Apr 2004 | CA |
2503625 | May 2004 | CA |
2504524 | May 2004 | CA |
2505576 | May 2004 | CA |
2513721 | May 2004 | CA |
2505080 | Jun 2004 | CA |
2506622 | Jun 2004 | CA |
2455670 | Jul 2004 | CA |
2508247 | Jul 2004 | CA |
2458172 | Aug 2004 | CA |
2467797 | Nov 2004 | CA |
2258898 | Jan 2005 | CA |
2308177 | Jan 2005 | CA |
2475968 | Jan 2005 | CA |
2489668 | Jun 2005 | CA |
2490170 | Jun 2005 | CA |
2474367 | Jan 2006 | CA |
2374090 | May 2007 | CA |
2282748 | Nov 2007 | CA |
2336650 | Jan 2008 | CA |
2304325 | May 2008 | CA |
1430491 | Jul 2003 | CN |
1547490 | Nov 2004 | CN |
1575154 | Feb 2005 | CN |
1585627 | Feb 2005 | CN |
1669537 | Sep 2005 | CN |
3 516 411 | Nov 1986 | DE |
3516411 | Nov 1986 | DE |
3 608 158 | Sep 1987 | DE |
3608158 | Sep 1987 | DE |
19916086 | Oct 1999 | DE |
19855421 | May 2000 | DE |
19916315 | Sep 2000 | DE |
9422438 | Apr 2002 | DE |
1096902 | May 2002 | DE |
10064596 | Jun 2002 | DE |
10107339 | Sep 2002 | DE |
69712063 | Oct 2002 | DE |
10127011 | Dec 2002 | DE |
10150995 | Apr 2003 | DE |
69807634 | May 2003 | DE |
69431457 | Jun 2003 | DE |
10200387 | Aug 2003 | DE |
69719161 | Oct 2003 | DE |
02704283 | Apr 2004 | DE |
60106962 | Apr 2005 | DE |
60018318 | Dec 2005 | DE |
69732439 | Jan 2006 | DE |
69828798 | Jan 2006 | DE |
102004044738 | Mar 2006 | DE |
69830605 | May 2006 | DE |
102005010100 | Sep 2006 | DE |
602005001867 | May 2008 | DE |
69829015 | Mar 2009 | DE |
127 987 | Sep 1987 | DK |
127987 | Sep 1987 | DK |
914092 | Aug 2002 | DK |
0 222 853 | May 1987 | EP |
0222853 | May 1987 | EP |
0 129 147 | Jan 1990 | EP |
0129147 | Jan 1990 | EP |
0 734 721 | Oct 1996 | EP |
0734721 | Oct 1996 | EP |
0 850 604 | Dec 1997 | EP |
0650604 | Sep 1998 | EP |
0865762 | Sep 1998 | EP |
0875217 | Nov 1998 | EP |
0633840 | Nov 1999 | EP |
0953320 | Nov 1999 | EP |
0971644 | Jan 2000 | EP |
0982041 | Mar 2000 | EP |
1105169 | Jun 2001 | EP |
1124594 | Aug 2001 | EP |
1127582 | Aug 2001 | EP |
1131127 | Sep 2001 | EP |
1132058 | Sep 2001 | EP |
1150738 | Nov 2001 | EP |
1172074 | Jan 2002 | EP |
1181943 | Feb 2002 | EP |
0914092 | Apr 2002 | EP |
1216665 | Jun 2002 | EP |
0747069 | Sep 2002 | EP |
0920342 | Sep 2002 | EP |
1242130 | Sep 2002 | EP |
0623354 | Oct 2002 | EP |
0806211 | Oct 2002 | EP |
1275352 | Jan 2003 | EP |
0850604 | Feb 2003 | EP |
1280512 | Feb 2003 | EP |
1280568 | Feb 2003 | EP |
1280569 | Feb 2003 | EP |
1294309 | Mar 2003 | EP |
0824900 | Apr 2003 | EP |
1308179 | May 2003 | EP |
1310242 | May 2003 | EP |
1314405 | May 2003 | EP |
1316323 | Jun 2003 | EP |
1339448 | Sep 2003 | EP |
1347791 | Oct 2003 | EP |
1347792 | Oct 2003 | EP |
1348402 | Oct 2003 | EP |
1348405 | Oct 2003 | EP |
1359864 | Nov 2003 | EP |
1365710 | Dec 2003 | EP |
1379290 | Jan 2004 | EP |
0902666 | Feb 2004 | EP |
1460972 | Feb 2004 | EP |
0815806 | Mar 2004 | EP |
1400219 | Mar 2004 | EP |
0950386 | Apr 2004 | EP |
1461165 | Apr 2004 | EP |
1416884 | May 2004 | EP |
1424957 | Jun 2004 | EP |
1429816 | Jun 2004 | EP |
1448116 | Aug 2004 | EP |
1448118 | Aug 2004 | EP |
1449545 | Aug 2004 | EP |
1449546 | Aug 2004 | EP |
1254674 | Sep 2004 | EP |
1453557 | Sep 2004 | EP |
1457214 | Sep 2004 | EP |
0975340 | Oct 2004 | EP |
1319416 | Nov 2004 | EP |
1476882 | Nov 2004 | EP |
1479402 | Nov 2004 | EP |
1482867 | Dec 2004 | EP |
1011529 | Jan 2005 | EP |
0875218 | Feb 2005 | EP |
1181903 | Feb 2005 | EP |
1504775 | Feb 2005 | EP |
1042997 | Mar 2005 | EP |
1754684 | Mar 2005 | EP |
1520594 | Apr 2005 | EP |
1521603 | Apr 2005 | EP |
1028672 | Jun 2005 | EP |
1539041 | Jun 2005 | EP |
1543798 | Jun 2005 | EP |
1550472 | Jun 2005 | EP |
1328213 | Jul 2005 | EP |
1551569 | Jul 2005 | EP |
1554992 | Jul 2005 | EP |
1560613 | Aug 2005 | EP |
1562519 | Aug 2005 | EP |
1562654 | Aug 2005 | EP |
1570808 | Sep 2005 | EP |
1575631 | Sep 2005 | EP |
1575638 | Sep 2005 | EP |
1575642 | Sep 2005 | EP |
0900059 | Oct 2005 | EP |
1581147 | Oct 2005 | EP |
1586286 | Oct 2005 | EP |
1254673 | Nov 2005 | EP |
1261297 | Nov 2005 | EP |
0927006 | Jan 2006 | EP |
1621603 | Feb 2006 | EP |
1218665 | May 2006 | EP |
1222941 | May 2006 | EP |
1359867 | May 2006 | EP |
1656961 | May 2006 | EP |
1277449 | Jun 2006 | EP |
0836839 | Jul 2006 | EP |
1684817 | Aug 2006 | EP |
1687042 | Aug 2006 | EP |
0907339 | Nov 2006 | EP |
1359865 | Nov 2006 | EP |
1214108 | Jan 2007 | EP |
1416885 | Jan 2007 | EP |
1441667 | Jan 2007 | EP |
1192957 | Feb 2007 | EP |
1236447 | Feb 2007 | EP |
1764116 | Mar 2007 | EP |
1185215 | Apr 2007 | EP |
1442757 | Apr 2007 | EP |
1786363 | May 2007 | EP |
1787602 | May 2007 | EP |
1788973 | May 2007 | EP |
1796754 | Jun 2007 | EP |
1330273 | Jul 2007 | EP |
0900060 | Aug 2007 | EP |
1355588 | Aug 2007 | EP |
1355589 | Aug 2007 | EP |
1561436 | Aug 2007 | EP |
1863408 | Dec 2007 | EP |
1071490 | Jan 2008 | EP |
1096902 | Jan 2008 | EP |
0895762 | Feb 2008 | EP |
0916317 | Feb 2008 | EP |
1891988 | Feb 2008 | EP |
1402849 | Apr 2008 | EP |
1466634 | Jul 2008 | EP |
1572032 | Jul 2008 | EP |
1527754 | Aug 2008 | EP |
1968662 | Sep 2008 | EP |
1980223 | Oct 2008 | EP |
1988943 | Nov 2008 | EP |
1490125 | Jan 2009 | EP |
1829626 | Feb 2009 | EP |
1229901 | Mar 2009 | EP |
1128785 | Apr 2009 | EP |
2051750 | Apr 2009 | EP |
1427353 | May 2009 | EP |
2169012 | Jul 2002 | ES |
2867059 | Sep 2005 | FR |
2397233 | Jul 2004 | GB |
7-002180 | Jan 1995 | JP |
7002180 | Jan 1995 | JP |
3-673973 | Feb 1996 | JP |
3673973 | Feb 1996 | JP |
3249383 | Oct 1996 | JP |
3-249383 | Nov 1996 | JP |
3614652 | Nov 1998 | JP |
10295824 | Nov 1998 | JP |
11188109 | Jul 1999 | JP |
2000312721 | Nov 2000 | JP |
2001098308 | Apr 2001 | JP |
2001522640 | Nov 2001 | JP |
2002065862 | Mar 2002 | JP |
2002519139 | Jul 2002 | JP |
2002523147 | Jul 2002 | JP |
2003024449 | Jan 2003 | JP |
2003521274 | Jul 2003 | JP |
2003290361 | Oct 2003 | JP |
2003533333 | Nov 2003 | JP |
2004500925 | Jan 2004 | JP |
2004522559 | Jul 2004 | JP |
2004223264 | Aug 2004 | JP |
2004267750 | Sep 2004 | JP |
2004275748 | Oct 2004 | JP |
2004305753 | Nov 2004 | JP |
2005501654 | Jan 2005 | JP |
2005502426 | Jan 2005 | JP |
2005040584 | Feb 2005 | JP |
2005503184 | Feb 2005 | JP |
2005503240 | Feb 2005 | JP |
2005507285 | Mar 2005 | JP |
2005511139 | Apr 2005 | JP |
2005511242 | Apr 2005 | JP |
2005131364 | May 2005 | JP |
2005152526 | Jun 2005 | JP |
2005152527 | Jun 2005 | JP |
2005199054 | Jul 2005 | JP |
2005199058 | Jul 2005 | JP |
2008516726 | May 2008 | JP |
20020066996 | Aug 2002 | KR |
20040066409 | Jul 2004 | KR |
20050117361 | Dec 2005 | KR |
331388 | Jan 2000 | NZ |
393044 | Dec 1973 | SU |
WO8606617 | Nov 1986 | WO |
WO 8606617 | Nov 1986 | WO |
WO 9306792 | Apr 1993 | WO |
WO9306792 | Apr 1993 | WO |
WO 9307934 | Apr 1993 | WO |
WO 9316656 | Sep 1993 | WO |
WO9316656 | Sep 1993 | WO |
WO 9416646 | Aug 1994 | WO |
WO9416646 | Aug 1994 | WO |
WO 9503083 | Feb 1995 | WO |
WO9503083 | Feb 1995 | WO |
WO9604952 | Feb 1996 | WO |
WO 9604952 | Feb 1996 | WO |
WO9609086 | Mar 1996 | WO |
WO 9609086 | Mar 1996 | WO |
WO9632907 | Oct 1996 | WO |
WO 9632907 | Oct 1996 | WO |
WO9741916 | Nov 1997 | WO |
WO 9741916 | Nov 1997 | WO |
WO9817331 | Apr 1998 | WO |
WO9818408 | May 1998 | WO |
WO9823228 | Jun 1998 | WO |
WO9836784 | Aug 1998 | WO |
WO9838946 | Sep 1998 | WO |
WO9838947 | Sep 1998 | WO |
WO9840033 | Sep 1998 | WO |
WO9857680 | Dec 1998 | WO |
WO9916386 | Apr 1999 | WO |
WO9923977 | May 1999 | WO |
WO9942631 | Aug 1999 | WO |
WO9949928 | Oct 1999 | WO |
WO9952471 | Oct 1999 | WO |
WO9962432 | Dec 1999 | WO |
WO0001322 | Jan 2000 | WO |
WO0010622 | Mar 2000 | WO |
WO0025841 | May 2000 | WO |
WO0027303 | May 2000 | WO |
WO0030710 | Jun 2000 | WO |
WO0048660 | Aug 2000 | WO |
WO0064506 | Nov 2000 | WO |
WO0135928 | May 2001 | WO |
WO0141827 | Jun 2001 | WO |
WO0145862 | Jun 2001 | WO |
WO0145763 | Jul 2001 | WO |
WO0166036 | Sep 2001 | WO |
WO0180920 | Nov 2001 | WO |
WO0187263 | Nov 2001 | WO |
WO0187342 | Nov 2001 | WO |
WO0187374 | Nov 2001 | WO |
WO0189417 | Nov 2001 | WO |
WO0189420 | Nov 2001 | WO |
WO0226162 | Apr 2002 | WO |
WO0230487 | Apr 2002 | WO |
WO0238827 | May 2002 | WO |
WO0242521 | May 2002 | WO |
WO0243796 | Jun 2002 | WO |
WO0247581 | Jun 2002 | WO |
WO02058753 | Aug 2002 | WO |
WO02060349 | Aug 2002 | WO |
WO02060350 | Aug 2002 | WO |
WO02060506 | Aug 2002 | WO |
WO02064019 | Aug 2002 | WO |
WO02065947 | Aug 2002 | WO |
WO02069848 | Sep 2002 | WO |
WO02074431 | Sep 2002 | WO |
WO02076525 | Oct 2002 | WO |
WO02078668 | Oct 2002 | WO |
WO02083039 | Oct 2002 | WO |
WO02085253 | Oct 2002 | WO |
WO02085424 | Oct 2002 | WO |
WO02085532 | Oct 2002 | WO |
WO02096389 | Dec 2002 | WO |
WO03009779 | Feb 2003 | WO |
WO03022178 | Mar 2003 | WO |
WO03024357 | Mar 2003 | WO |
WO03026713 | Apr 2003 | WO |
WO03035131 | May 2003 | WO |
WO03037220 | May 2003 | WO |
WO03037221 | May 2003 | WO |
WO03037223 | May 2003 | WO |
WO03037398 | May 2003 | WO |
WO03039407 | May 2003 | WO |
WO03045582 | Jun 2003 | WO |
WO03047463 | Jun 2003 | WO |
WO03051233 | Jun 2003 | WO |
WO03055414 | Jul 2003 | WO |
WO03061755 | Jul 2003 | WO |
WO03072287 | Sep 2003 | WO |
WO03077802 | Sep 2003 | WO |
WO03083181 | Oct 2003 | WO |
WO03094774 | Nov 2003 | WO |
WO2004004602 | Jan 2004 | WO |
WO2004004603 | Jan 2004 | WO |
WO2004006491 | Jan 2004 | WO |
WO2004006807 | Jan 2004 | WO |
WO2004006976 | Jan 2004 | WO |
WO2004006983 | Jan 2004 | WO |
WO2004010900 | Feb 2004 | WO |
WO2004014554 | Feb 2004 | WO |
WO2004026177 | Apr 2004 | WO |
WO2004028347 | Apr 2004 | WO |
WO2004028587 | Apr 2004 | WO |
WO2004043292 | May 2004 | WO |
WO2004043298 | May 2004 | WO |
WO2004043300 | May 2004 | WO |
WO2004043509 | May 2004 | WO |
WO2004043511 | May 2004 | WO |
WO2004045464 | Jun 2004 | WO |
WO2004045668 | Jun 2004 | WO |
WO2004058100 | Jul 2004 | WO |
WO2004060428 | Jul 2004 | WO |
WO2004064911 | Aug 2004 | WO |
WO2004071548 | Aug 2004 | WO |
WO2004072104 | Aug 2004 | WO |
WO2004073768 | Sep 2004 | WO |
WO2004080579 | Sep 2004 | WO |
WO2004087251 | Oct 2004 | WO |
WO2004096176 | Nov 2004 | WO |
WO2004105639 | Dec 2004 | WO |
WO2004108021 | Dec 2004 | WO |
WO2004108186 | Dec 2004 | WO |
WO2004108346 | Dec 2004 | WO |
WO2004110302 | Dec 2004 | WO |
WO2005004754 | Jan 2005 | WO |
WO2005006325 | Jan 2005 | WO |
WO2005011529 | Feb 2005 | WO |
WO2005014892 | Feb 2005 | WO |
WO2005027794 | Mar 2005 | WO |
WO2005032456 | Apr 2005 | WO |
WO2005034806 | Apr 2005 | WO |
WO2005042049 | May 2005 | WO |
WO2005044361 | May 2005 | WO |
WO2005049520 | Jun 2005 | WO |
WO2005051450 | Jun 2005 | WO |
WO2005053766 | Jun 2005 | WO |
WO2005063318 | Jul 2005 | WO |
WO2005072437 | Aug 2005 | WO |
WO2005082277 | Sep 2005 | WO |
WO2005082283 | Sep 2005 | WO |
WO2005086733 | Sep 2005 | WO |
WO2005089825 | Sep 2005 | WO |
WO2005091834 | Oct 2005 | WO |
WO2005099621 | Oct 2005 | WO |
WO2005099626 | Oct 2005 | WO |
WO2005110285 | Nov 2005 | WO |
WO2005115276 | Dec 2005 | WO |
WO2005115496 | Dec 2005 | WO |
WO2005117752 | Dec 2005 | WO |
WO2006014969 | Feb 2006 | WO |
WO2006015161 | Feb 2006 | WO |
WO2006020742 | Feb 2006 | WO |
WO2006029364 | Mar 2006 | WO |
WO2006029708 | Mar 2006 | WO |
WO2006036801 | Apr 2006 | WO |
WO2006055237 | May 2006 | WO |
WO2006061598 | Jun 2006 | WO |
WO2006063157 | Jun 2006 | WO |
WO2006063158 | Jun 2006 | WO |
WO2006083418 | Aug 2006 | WO |
WO2006104644 | Oct 2006 | WO |
WO2006104976 | Oct 2006 | WO |
WO2006105256 | Oct 2006 | WO |
WO2006107677 | Oct 2006 | WO |
WO2006116752 | Nov 2006 | WO |
WO2006124365 | Nov 2006 | WO |
WO2007016961 | Feb 2007 | WO |
WO2007034167 | Mar 2007 | WO |
WO2007070666 | Jun 2007 | WO |
WO2007095167 | Aug 2007 | WO |
WO2007124137 | Nov 2007 | WO |
WO2007126768 | Nov 2007 | WO |
WO2007130786 | Nov 2007 | WO |
WO2007133520 | Nov 2007 | WO |
WO2007143433 | Dec 2007 | WO |
WO2007145961 | Dec 2007 | WO |
WO2007147246 | Dec 2007 | WO |
WO2008002586 | Jan 2008 | WO |
WO2008002778 | Jan 2008 | WO |
WO2008024149 | Feb 2008 | WO |
WO2008024477 | Feb 2008 | WO |
WO2008024669 | Feb 2008 | WO |
WO2008033711 | Mar 2008 | WO |
WO2008034048 | Mar 2008 | WO |
WO2008036549 | Mar 2008 | WO |
WO2008039319 | Apr 2008 | WO |
WO2008045184 | Apr 2008 | WO |
WO2008057991 | May 2008 | WO |
WO2008061017 | May 2008 | WO |
WO2008063539 | May 2008 | WO |
WO2008082698 | Jul 2008 | WO |
WO2008106223 | Sep 2008 | WO |
WO2008108987 | Sep 2008 | WO |
WO2008124513 | Oct 2008 | WO |
WO2008124519 | Oct 2008 | WO |
WO2008134493 | Nov 2008 | WO |
WO2008140482 | Nov 2008 | WO |
WO2008147848 | Dec 2008 | WO |
WO2008147853 | Dec 2008 | WO |
WO2009009627 | Jan 2009 | WO |
WO2009009628 | Jan 2009 | WO |
WO2009012353 | Jan 2009 | WO |
WO2009014692 | Jan 2009 | WO |
WO2009014696 | Jan 2009 | WO |
WO2009020520 | Feb 2009 | WO |
WO2009059081 | May 2009 | WO |
WO2009059085 | May 2009 | WO |
WO2009059086 | May 2009 | WO |
WO2009059098 | May 2009 | WO |
WO2009059129 | May 2009 | WO |
WO2009059141 | May 2009 | WO |
WO2009059146 | May 2009 | WO |
WO2009059165 | May 2009 | WO |
WO2009059166 | May 2009 | WO |
WO2009059180 | May 2009 | WO |
WO2009059196 | May 2009 | WO |
WO2009089382 | Jul 2009 | WO |
WO2009091384 | Jul 2009 | WO |
WO2009094270 | Jul 2009 | WO |
WO2009126766 | Oct 2009 | WO |
WO2009135008 | Nov 2009 | WO |
WO2009137786 | Nov 2009 | WO |
WO2010030873 | Mar 2010 | WO |
9710342 | Jun 1998 | ZA |
Number | Date | Country | |
---|---|---|---|
20100286763 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10651562 | Aug 2003 | US |
Child | 12777705 | US | |
Parent | 09740570 | Dec 2000 | US |
Child | 10651562 | US | |
Parent | 09059053 | Apr 1998 | US |
Child | 09740570 | US |