The present disclosure relates to methods for determining the efficacy of a given drug for a specific patient with cancer in vitro prior to the initiation of treatment of the patient or after treatment to determine whether drug resistance has developed. The methods may also be useful in evaluating the toxicity of a given drug, or for quantifying the needed amount of a given drug. Generally, the methods may facilitate personalized medicine, enabling the choice and/or amount of drug to be tailored to the individual patient. The methods may also be useful experimentally as part of the drug development process.
Cancers, or malignant neoplasms, belong to a class of diseases in which a group of cells display uncontrolled growth, invade and destroy adjacent tissues, and metastasize (i.e. spread to other locations in the body). Cancers are one of the leading causes of disease in the world. They attack many different organs in the human body.
Cancers can be treated in many ways. Some drugs can be applied or taken by the cancer patient. Radiation treatment can be used to kill the cancerous tumor cells. Surgery can also be used to remove cancerous tumors, or the organs / body parts infected by such tumors.
In particular, many different types of anti-cancer drugs exist. These types include alkylating agents, antimetabolites, plant alkaloids, inhibitors of various enzymes, and monoclonal antibodies. Many different anti-cancer drugs have been synthesized. These drugs include, for example, vinblastine, vincristine, vinflunine, vindesine, vinorelbine, cabazitaxel, docetaxel, larotaxel, ortataxel, paclitaxel, tesetaxel, ixabepilone, aminopterin, methotrexate, pemetrexed, pralatrexate, raltitrexed, pemetrexed, pentostatin, cladribine, clofarabine, fludarabine, thioguanine, mercaptopurine, fluorouracil, capecitabine, tegafur, carmofur, floxuridine, cytarabine, gemcitabine, azacitidine, decitabine, hydroxycarbamide, camptothecin, topotecan, irinotecan, rubitecan, belotecan, etoposide, teniposide, aclarubicin, daunorubicin, doxorubicin, epirubicin, idarubicin, amrubicin, pirarubicin, valrubicin, zorubicin mitoxantrone, pixantrone, mechlorethamine, ifosfamide, trofosfamide, chlorambucil, melphalan, prednimustine, bendamustine, uramustine, estramustine, carmustine, lomustine, semustine, fotemustine, nimustine, ranimustine, streptozocin, busulfan, mannosulfan, treosulfan, carboquone, thiotepa, triaziquone, triethylenemelamine, carboplatin, cisplatin, nedaplatin, oxaliplatin, triplatin tetranitrate, satraplatin, procarbazine, dacarbazine, temozolomide, altretamine, mitobronitol, actinomycin, bleomycin, mitomycin, plicamycin, aminolevulinic acid/methyl aminolevulinate, efaproxiral, porfimer sodium, talaporfin, temoporfin, verteporfin, tipifamib, alvocidib, seliciclib, bortezomib, anagrelide, tiazofurine, masoprocol, olaparib, vorinostat, romidepsin, atrasentan, bexarotene, testolactone, amsacrine, trabectedin, alitretinoin, tretinoin, arsenic trioxide, asparaginase/pegaspargase, celecoxib, demecolcine, elesclomol, elsamitrucin, etoglucid, lonidamine, lucanthone, mitoguazone, mitotane, oblimersen, omacetaxine mepesuccinate, everolimus, temsirolimus, cetuximab, panitumumab, trastuzumab, catumaxomab, edrecolomab, bevacizumab, ibritumomab, ofatumumab, rituximab, tositumomab, alemtuzumab, gemtuzumab, erlotinib, gefitinib, vandetanib, afatinib, lapatinib, neratinib, axitinib, pazopanib, sunitinib, sorafenib, toceranib, lestaurtinib, axitinib, cediranib, pazopanib, regorafenib, semaxanib, sorafenib, sunitinib, toceranib, vandetanib, dasatinib, imatinib, nilotinib, bosutinib, lestaurtinib, crizotinib, aflibercept, and denileukin diftitox.
Unfortunately, anti-cancer drugs have many adverse side effects. These adverse side effects include immune system depression, infections, fatigue, tendency to bleed easily, nausea, vomiting, diarrhea, constipation, hair loss, damage to certain organs, infertility, pain or paralysis, and impotence. Many of these anti-cancer drugs target biological processes that simply occur in tumor cells at a faster rate than in healthy cells, but healthy cells can be affected as well. Each drug has a different side effect profile, and each drug also works differently between patients. In other words, a drug that works in one patient may be ineffective in another patient.
The conventional way of selecting an anti-cancer drug for use in a particular patient involves prescribing a drug and correcting the prescription based on an observation of the patient's response to the drug. This approach can be time-consuming and cause adverse side effects in the patient. It would be desirable to provide alternative methods or processes for determining what drugs are effective in a particular patient, or put another way which drugs the tumors in a particular patient are susceptible to.
The present disclosure relates to methods and processes for testing drug susceptibility in a cancer patient, or for evaluating the toxicity of a drug, or for quantifying the appropriate dose of a drug for a patient. Briefly, blood from the cancer patient is divided into a control test tube and an assay test tube. The blood in the assay test tube is exposed to a particular drug. The assay test tube and the control test tube are then compared to each other to determine the effect of the drug on cancer cells or other rare cells in the patient's blood. This provides information to a physician on whether the particular drug may be beneficial to the cancer patient or may continue to benefit the patient.
In some embodiments, a method of testing for drug susceptibility in a cancer patient comprises dividing a blood sample of the cancer patient into a control test tube and an assay test tube. A drug is added to the assay test tube. A separator float is introduced into the assay test tube and moved into alignment with the cancer cells to capture the cancer cells in an annular volume. The assay test tube is then visually examined. The effect of the drug on cancer cells in the assay test tube is compared to cancer cells in the control test tube.
The change in the shape of the cancer cells, or the number of intact cancer cells, may be compared between the assay test tube and the control test tube.
The method may further comprise staining the cancer cells prior to visually examining the assay test tube. In addition, the control test tube may be visually examined. For example, the visual examination may detect the quantity of fluorescence in the assay test tube due to the staining (e.g. immunofluorescence).
The visual examination can be performed by introducing a separator float into the assay test tube. The assay test tube is then centrifuged to move the float into alignment with the cancer cells. Subsequently, the rotational speed is reduced or stopped) to capture the cancer cells in a volume between the test tube and the separator float. The cancer cells can then be examined. The visual examination can also be performed using an optical system that generates light having a non-uniform spatial distribution.
In particular embodiments, the separator float comprises a main body portion, a plurality of axially oriented ridges protruding from the main body portion, and does not have end sealing ridges.
In other embodiments, a method of testing for drug susceptibility in a cancer patient, comprises dividing a blood sample from the cancer patient into a control test tube and an assay test tube. A drug is added to the assay test tube. The assay test tube is visually examined to determine the effect of the drug on cancer cells in the blood. The cancer cells in the assay test tube are then compared with the cancer cells in the control test tube.
Another method of testing for drug susceptibility in a cancer patient comprises receiving a first test tube and a second test tube, each tube containing the blood of the cancer patient. A drug is added to the first test tube to make an assay test tube. The assay test tube is visually examined. The effect of the drug on cancer cells in the assay test tube is compared with cancer cells in the control test tube.
Still another method of testing for drug susceptibility in a cancer patient, comprises receiving a blood sample of the cancer patient and dividing the blood sample into a control test tube and an assay test tube. The blood in the assay test tube is mixed with a drug. The assay test tube is visually examined to determine the effect of the drug on a cell type in the blood. The effect on the cell type in the assay test tube is compared with the cell type in the control test tube.
Yet another method of testing for drug susceptibility in a cancer patient comprises dividing a blood sample of the cancer patient into a control test tube and an assay test tube. The blood in the assay test tube is exposed to a drug. The assay test tube is visually examined to determine the effect of the drug on a cell type in the blood. The effect on the cell type in the assay test tube is compared with the cell type in the control test tube.
Another method of testing for drug susceptibility in a cancer patient comprises dividing a blood sample of the cancer patient into a control test tube and a series of assay test tubes. The blood in the assay test tubes is exposed to a drug, with the quantity of the drug varying between assay test tubes. The assay test tubes are visually examined to determine the effect of the amount of the drug on a cell type in the blood. This can help determine the effective dose of the drug, in addition to whether or not the drug is effective.
These and other non-limiting aspects and/or objects of the disclosure are more particularly described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
A more complete understanding of the processes and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the existing art and/or the present development, and are, therefore, not intended to indicate relative size and dimensions of the assemblies or components thereof.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The present disclosure relates to a test for drug susceptibility using at least two test tubes and a rare cell detection system. The test is used to help determine whether a given drug will be useful for treating a cancer patient, and perhaps determining how much drug will be useful, before the given drug is actually administered to the patient. The drug is administered to at least one test tube (“the assay test tube”) and the other test tube is used as a “control test tube”. A series of assay test tubes which vary in the dose or concentration of the drug can also be used. The assay test tube(s) are then visually examined to determine the impact on the circulating cancer cells or other cells in the blood sample. This provides insight into the potential efficacy of the administered drug, and can also indicate an effective concentration or dose, and could also be used during drug research to identify appropriate drug candidates and their potential effective dose(s).
Initially, a control test tube and at least one assay test tube are obtained, each test tube containing blood from the cancer patient. Different methods for preparing the two test tubes are contemplated. For example, a blood sample of the cancer patient could be received for testing 2310. The blood sample can be procured from the cancer patient using normal procedures. The blood sample can be received in the form of one large sample that is subsequently divided 2315 into at least two smaller samples, corresponding to the control test tube 2320 and one or more assay test tubes 2330. Alternatively, the blood sample can be received in the form of two or more test tubes (i.e. at least a first test tube and a second test tube), which can be considered as having been divided prior to receipt, and as corresponding to the control test tube and the assay test tube (marked with reference numeral 2312).
Next, a drug 2340 is added to the assay test tube(s). Depending on the methods of the present disclosure, the drug may be one that is already known to have anti-cancer activity, or is a candidate being tested for anti-cancer activity. The assay test tube(s) can be shaken, mixed, or otherwise manipulated to ensure that the drug contacts or reacts with the various types of cells in the blood. In this regard, whole blood contains many different types of cells, including packed red cells, reticulocytes, granulocytes, lymphocytes/monocytes, platelets, and plasma, which can be separated by density. The blood of a cancer patient can also include circulating tumor cells and other rare cells of interest, such as certain epithelial cells which are associated with a specific type of cancer.
The assay test tube(s) are then visually examined 2370. The control test tube is also visually examined 2372, so that the results of the test tubes can be compared to each other 2380. The order in which the test tubes are examined is not important. This visual examination allows the effect of the drug on cancer cells in the blood to be determined. The effects provide information on the potential efficacy (and effective concentration) of the drug. The visual examination can be directed, for example, to the morphology of a given cell type in the blood sample or changes in the shape of the given cell. Alternatively, the visual examination might be for lysis of a given cell type, or put another way the quantity of intact cancer cells. As another example, the blood sample can be stained 2362 with an immunofluorescent agent that identifies specific cells or cell types, and the visual examination is then conducted to locate and examine those cells or cell types. The term “visual” refers to an examination of the test tubes using information gathered by light, rather than other means such as radioactivity or electrical patterns. For example, visual examination can be carried out using the human eye or a microscope to inspect the test tube and the cells contained within.
In this regard, immunofluorescence is a technique that uses the specificity of antibodies to their antigen to atttach fluorescent dyes to specific biomolecule targets within a cell, and therefore allows visualisation of the target molecules in the sample. Primary, or direct, immunofluorescence uses a single antibody that is chemically linked to a fluorophore. The antibody recognizes the target molecule and binds to it, and the fluorophore it carries can be detected via microscope. Secondary, or indirect, immunofluorescence uses two antibodies. The first or primary antibody recognises the target molecule and binds to it. The second or secondary antibody carries the fluorophore and binds to the primary antibody. Alternatively, the drug can be a fluorescently labeled drug, whose presence in the cell could then be visualized. Methods of fluorescent labeling a drug and such labeled drugs are known in the art. The quantity of fluorescence could be detected and/or measured using visual examination. The fluorescence can be measured in bulk or locally (e.g. between layers).
In this regard, it is known, for example, that a drug having an amine functional group can be reacted with dansyl chloride to produce stable fluorescent sulfonamide adducts. Known fluorophores include rhodamine, coumarin, fluorescein, and cyanine, and derivatives thereof. These fluorophores can be modified to label a drug. For example, a fluorescent dye iodoacetamide can be used to label a drug having a thiol functional group.
It is particularly contemplated that the visual examination of the assay test tube can be enhanced by using a separator float system. Briefly, this includes introducing a separator float 2350 into the assay test tube(s), and moving the separator float into alignment with the cancer cells 2360 in the test tube to capture those cancer cells in an annular volume, usually by centrifugal spinning of the test tube(s). This makes it easier to visualize the cancer cells. See
It should be noted that the staining to enhance the visual examination (e.g. with a immunofluorescent agent) can be performed prior to introducing the separator float, or can be performed after the spinning of the test tube(s). For example, in
Specific embodiments are contemplated wherein more than one assay test tube is used. Different quantities (amount or concentration) of the drug can be added between different assay test tubes. This would permit a quantitative determination of the effective dose (if any) of the drug, rather than just a qualitative determination (works or does not work). As an example, four assay test tubes 2330, 2332, 2334, 2336 could be used, containing 1 mg/ml, 2 mg/ml, 4 mg/ml, and 8 mg/ml of the drug, respectively (see
The testing conditions may vary, depending on the drug being tested. For example, the temperature of the test tubes can vary between room temperature (23-25° C.) to 37° C. The time for which the assay test tube(s) is exposed to the drug before visual examination may vary from minutes to hours. The pH of the liquid in the test tubes is likely to be maintained close to physiological (pH=7.4), but could vary from pH 7.1 to 7.6, or more ideally from pH 7.2 to 7.55.
Some specific systems are contemplated for use in visual examination of the two test tubes used in the methods of the present disclosure. One system is a buffy coat separator float system as described in U.S. patent application Ser. No. 10/263,974, the entirety of which is hereby incorporated by reference herein.
The tube 130 is formed of a transparent or semi-transparent material sufficient for visual examination. The sidewall 136 of the tube 130 is sufficiently flexible or deformable such that it expands in the radial direction during centrifugation, e.g., due to the resultant hydrostatic pressure of the sample under centrifugal load. As the centrifugal force is removed, the tube sidewall 136 substantially returns to its original size and shape.
The tube may be formed of any transparent or semi-transparent, flexible material. Preferably, the tube material is transparent. However, the tube does not necessarily have to be clear, as long as the receiving instrument that is looking for the cells or items of interest in the sample specimen can “see” or detect those items in the tube.
Preferably, the tube 130 is sized to accommodate the float 110 plus at least about five milliliters of blood or sample fluid, more preferably at least about eight milliliters of blood or fluid, and most preferably at least about ten milliliters of blood or fluid. In an especially preferred embodiment, the tube 130 has an inner diameter 138 of about 1.5 cm and accommodates a volume of from about two milliliters to about ten milliliters of blood in addition to the float 110.
The float 110 includes a main body portion 112 and one or more support members 114. In the embodiment shown here, the support members are seen as two sealing rings or flanges disposed at opposite axial ends (i.e. first and second ends, or top and bottom ends) of the float 110. The float 110 is formed of one or more generally rigid organic or inorganic materials, preferably a rigid plastic material. In this regard, the use of materials and/or additives that interfere with the visual examination method should be avoided. For example, if fluorescence is used, the material utilized to construct the float 110 should not have much “background” fluorescence at the wavelength of interest.
The main body portion 112 has an outer diameter 118 which is less than the inner diameter 138 of the test tube 130, under pressure or centrifugation. The support members 114 of the float generally have a diameter corresponding to the inner diameter 138 of the test tube 130. The main body portion 112 of the float, the support members 114, and the sidewall 136 of the tube 130 thereby define an annular channel or gap 150. The main body portion 112 occupies much of the cross-sectional area of the tube, the annular gap 150 being large enough to contain a specified portion of the blood sample. Preferably, the dimensions 118 and 138 are such that the annular gap 150 has a radial thickness ranging from about 25-250 microns, most preferably about 50 microns.
An optional bore or channel 152 may extend axially through the float 110. In this regard, the tube/float system can be centrifuged to separate the blood components by density. During centrifugation, the tube expands, freeing the float in the blood sample. As centrifugation is slowed, the float is captured by the wall 136 of the tube as it returns to its original diameter. As the tube continues to contract, pressure may build up in the blood fraction trapped below the float, primarily red blood cells. This pressure may cause cells to be forced into the annular channel 150 containing the captured blood components, thus making imaging of the contents of the annular channel more difficult. The bore 152 allows for any excessive fluid flow or any resultant pressure in the dense fractions trapped below the float 110 to be relieved. The excessive fluid flows into the bore 152, thus preventing degradation of the captured blood components. The bore extends completely from one end of the float to the other. In the preferred embodiment, the bore 152 is centrally located and extends axially.
As previously stated, the support members 114 are sized to be roughly equal to, or slightly greater than, the inner diameter 138 of the tube. The float 110, being generally rigid, can also provide support to the flexible tube wall 136. The seal formed between the support members 114 of the float and the wall 136 of the tube may be, but is not necessarily, a fluid-tight seal. As used herein, the term “seal” is also intended to encompass near-zero clearance or slight interference between the flanges 114 and the tube wall 136 providing a substantial seal, which is, in most cases, adequate for purposes of the disclosure.
In particular embodiments, the overall specific gravity of the separator float 110 should be between that of red blood cells (approximately 1.090) and that of plasma (approximately 1.028). In a preferred embodiment, the specific gravity is in the range of from about 1.089-1.029, more preferably from about 1.070 to about 1.040, and most preferably about 1.05. The overall specific gravity of the float 110 and the volume of the annular gap 150 may be selected so that the annular channel contains the buffy coat layers. The expanded buffy coat region can then be examined, e.g., under illumination and magnification, to identify circulating epithelial cancer or tumor cells or other target analytes.
In one preferred embodiment, the density of the float 110 is selected to ride in the granulocyte layer of the blood sample. The granulocytes ride in, or just above, the packed red-cell layer and have a specific gravity of about 1.08-1.09. In this preferred embodiment, the specific gravity of the float is in this range of from about 1.08 to about 1.09 such that, upon centrifugation, the float rides in the granulocyte layer. The amount of granulocytes can vary from patient to patient by as much as a factor of about twenty. Therefore, selecting the float density such that the float rides in the granulocyte layer is especially advantageous since loss of any of the lymphocyte/monocyte layer, which rides just above the granulocyte layer, is avoided. During centrifugation, as the granulocyte layer increases in size, the float rides higher in the granulocytes and keeps the lymphocytes and monocytes at essentially the same position with respect to the float. Generally the cells of greatest interest are the “mononuclear cells,” which includes principally monocytes and lymphocytes, as well as other cells of interest, cancer cells and other epithelial cells. The “buffy coat” layer includes all the white cells, including all of the granulocytes, the platelets, and the other leukocytes that are not mononuclear cells.
A fluorescently labeled antibody, which is specific to the target epithelial cells or other analytes of interest, can be added to the blood sample in the assay test tube and incubated. In an exemplary embodiment, the epithelial cells are labeled with anti-EpCAM having a fluorescent tag attached to it. Anti-EpCAM binds to an epithelial cell-specific site that is not expected to be present in any other cell normally found in the blood stream. A stain or colorant, such as acridine orange, may also be added to the sample to cause the various cell types to assume differential coloration for ease of discerning the buffy coat layers under illumination and to highlight or clarify the morphology of epithelial cells during examination of the sample. Alternatively, as previously described above, the drug could be fluorescently labeled itself, so that the location of the drug could be determined during visual examination.
The separator float/tube system of
Referring to
The microscope system 10 may include a laser 18, such as a gas laser, a solid state laser, a semiconductor laser diode, or so forth, that generates source light 20 (indicated in
A beam spreader includes a concave lens 24 that generally diverges the laser beam, and a collimating lens 26 that collimates the spread beam at a larger diameter that substantially matches the diameter of a Gaussian spatial characteristic of a beam homogenizer 30. The beam homogenizer 30 flattens the expanded laser beam by substantially homogenizing the Gaussian or other non-uniform distribution of the source light to produce output light having improved spatial uniformity. Alternatively, a stationary diffuser can be used as component 30. The diffuser may, for example, be a holographic diffuser. Such holographic diffusers employ a hologram providing randomizing non-periodic optical structures that diffuse the light to impart improved spatial uniformity. However, the diffusion of the light also imparts some concomitant beam divergence. Typically, stronger diffusion of the light tend to impart more spatial uniformity, but also tends to produce greater beam divergence. Holographic diffusers are suitably classified according to the full-width-at-half-maximum (FWHM) of the divergence angle, with larger divergence angles typically providing more diffusion and greater light uniformity, but also leading to increased light loss in the microscope system due to increased beam divergence.
A focusing lens 34 and cooperating lenses 36 reduce the expanded and flattened or homogenized laser beam down to a desired beam diameter for input to an objective 40 that is focused on the microscope field of view. A dichroic mirror 44 is selected to substantially reflect light at the wavelength or wavelength range of the laser beam, and to substantially transmit light at the fluorescence wavelength or wavelength range of the fluorescent dye used to tag rare cells in the buffy coat sample.
The optical train 22 including the stationary optical components 24, 26, 30, 34, 36 is configured to output a corrected spatial distribution to the objective 40 that when focused by the objective 40 at the microscope field of view provides substantially uniform static illumination over substantially the entire microscope field of view. The objective 40 focuses the corrected illumination onto the microscope field of view. The objective 40 may include a single objective lens, or may include two or more objective lenses. The focus depth of the microscope system 10 is adjustable, for example by adjusting a distance between the objective 40 and the light-transmissive test tube wall 14. Additionally or alternatively, the focus depth may be adjusted by relatively moving two or more lenses or lensing elements within the objective 40.
The beam homogenizer 30 is designed to output a substantially uniform homogenized beam for a Gaussian input beam of the correct diameter. However, the objective 40 typically introduces some spatial non-uniformity. Accordingly, one or more of the stationary optical components, such as the spreading lens 24, collimating lens 26, focusing lens 34, and/or focusing lenses 36 are optionally configured to introduce spatial non-uniformity into the spatial distribution such that the beam when focused by the objective 40 provides substantially uniform static illumination of the microscope field of view. In some contemplated embodiments, this corrective spatial non-uniformity is introduced by one or more dedicated optical components (not shown) that are included in the optical train 22 for that purpose.
The substantially uniform static illumination of the microscope field of view can be used for fluorescence of any fluorescent dye-tagged epithelial cells disposed within the microscope field of view. Additionally, the fluorescent dye typically imparts a lower-intensity background fluorescence to the buffy coat. The fluorescence is captured by the objective 40, and the captured fluorescence 50 (indicated in
At least one first alignment bearing, namely two radially spaced apart first alignment bearings 80, 81 in the example test tube holder 70, are disposed on a first side of the annular sampling region 12. At least one second alignment bearing, namely two second radially spaced apart alignment bearings 82, 83 in the example test tube holder 70, are disposed on a second side of the annular sampling region 12 opposite the first side of the annular sampling region 12 along the test tube axis 75. The alignment bearings 80, 81, 82, 83 are fixed roller bearings fixed to a housing 84 by fastening members 85 (shown only in
At least one biasing bearing, namely two biasing bearings 86, 87 in the example test tube holder 70, are radially spaced apart from the alignment bearings 80, 81, 82, 83 and are spring biased by springs 90 to press the test tube 72 against the alignment bearings 80, 81, 82, 83 so as to align a side of the annular sampling region 12 proximate to the objective 40 respective to the alignment bearings 80, 81, 82, 83. In the example test tube holder 70, the two first alignment bearings 80, 81 and the first biasing bearing 86 are radially spaced apart by 120° intervals and lie in a first common plane 92 on the first side of the annular sampling region 12. Similarly, the two second alignment bearings 82, 83 and the second biasing bearing 87 are radially spaced apart by 120° intervals and lie in a second common plane 94 on the second side of the annular sampling region 12. The springs 90 are anchored to the housing 84 and connect with the biasing bearings 86, 87 by members 98.
More generally, the bearings 80, 81, 86 and the bearings 82, 83, 87 may have radial spacings other than 120°. For example the biasing bearing 86 may be spaced an equal radial angle away from each of the alignment bearings 80, 81. As a specific example, the biasing bearing 86 may be spaced 135° away from each of the alignment bearings 80, 81, and the two alignment bearings 80, 81 are in this specific example spaced apart by 90°.
Optionally, the first common plane 92 also contains the float ridge 76 so that the bearings 80, 81, 86 press against the test tube 72 at the ridge 76, and similarly the second common plane 94 optionally also contains the float ridge 78 so that the bearings 82, 83, 87 press against the test tube 72 at the ridge 78. This approach reduces a likelihood of distorting the annular sample region 12. The biasing bearings 86, 87 provide a biasing force 96 that biases the test tube 72 against the alignment bearings 80, 81, 82, 83.
The housing includes a viewing window 200 that is elongated along the tube axis 75. The objective 40 views the side of the annular sample region 12 proximate to the objective 40 through the viewing window 100. In some embodiments, the objective 40 is linearly translatable along the test tube axis 75 as indicated by translation range double-arrow indicator 204. This can be accomplished, for example, by mounting the objective 40 and the optical train 22′ on a common board that is translatable respective to the test tube holder 70. In another approach, the microscope system 10 is stationary, and the tube holder 70 including the housing 84 is translated as a unit to relatively translate the objective 40 across the window 100. In yet other embodiments, the objective 40 translates while the optical train 22 remains stationary, and suitable beam-steering components (not shown) are provided to input the beam to the objective 40. The objective 40 is also focusable, for example by moving the objective 40 toward or away from the test tube 72 over a focusing range 206 (translation range 204 and focusing range 206 indicated only in
Scanning of the annular sampling region 12 calls for both translation along the test tube axis, and rotation of the test tube 72 about the test tube axis 75. To achieve rotation, a rotational coupling 210 is configured to drive rotation of the test tube 72 about the tube axis 75 responsive to a torque selectively applied by a motor 212 connected with the rotational coupling 210 by a shaft 214. The rotational coupling 210 of the example test tube holder 70 connects with the test tube 72 at an end or base thereof. At an opposite end of the test tube 72, a spring-loaded cap 216 presses against the stopper 73 of the test tube 72 to prevent the rotation from causing concomitant translational slippage of the test tube 72 along the test tube axis 75.
In order to install the test tube 72 in the test tube holder 70, the housing 84 is provided with a hinged lid or door 230 (shown open in
The test tube holder 70 advantageously can align the illustrated test tube 72 which has straight sides. The test tube holder 70 can also accommodate and align a slightly tapered test tube. The held position of a tapered test tube is indicated in
Referring now to
Referring now to
Referring to
In
In
Additional embodiments of separator floats are shown in
The geometrical configurations of the endcap units 2416, 2516, and 2616 illustrated in
In operation, the piston portion 3354 is fully received within the central bore 3352 of the main body member 3312. As stated above, the float 3310 is oriented in the tube so that the sealing ridge 3315 is at the top and the sealing ridge 3314 is toward the bottom of the tube. The two portions may be formed of the same material or different materials, so long as the overall specific gravity of the float 3310 is in a suitable range for buffy coat capture. In an especially preferred embodiment, the central piston portion 3354 is formed of a slightly higher specific gravity material than the outer portion 3312, which insures that the two portions stay together during centrifugation. Alternatively, the two float members are formed of the same material and/or a frictional fit sufficient to keep the float members together during centrifugation is provided.
As the tube containing the blood sample and float 3310 is centrifuged, the two pieces 3312 and 3354 stay together and act in the same manner as a one-piece float to axially expand the buffy coat layers. When separation and layering of the blood components is complete and centrifugation is slowed, pressure may build in the red blood cell fraction trapped below the float, e.g., where contraction of the tube continues after initial capture of the float by the tube wall. Any such pressure in the trapped red blood cell region forces the center piece 3354 upward, thus relieving the pressure, and thereby preventing the red blood cells from breeching the seal between the sealing rings 3314 and the tube wall.
In operation, the piston member 3454 is fully received within the central bore 3452, with the flange 3456 abutting the upper end of the sleeve 3412. In use, the float 3410 is oriented in the tube so that the flange 3456 is located toward the top of the test tube 130, i.e., toward the stopper 140 (
Referring to
Each of the float embodiments of
Referring back to
In some embodiments of the microscope system 10′, the diffuser 30′ is a low-angle diffuser having a FWHM less than or about 10°. Lower angle diffusers are generally preferred to provide less divergence and hence better illumination throughput efficiency; however, if the divergence FWHM is too low, the diffuser will not provide enough light diffusion to impart adequate beam uniformity. Low diffusion reduces the ability of the diffuser 30′ to homogenize the Gaussian distribution, and also reduces the ability of the diffuser 30′ to remove speckle.
With reference to
In some embodiments, a tilt angle θ of at least about 30° respective to the optical path of the optical train 22″ is employed, which has been found to substantially reduce speckle for diffusers 30″ having a FWHM as low as about 5°. On the other hand, tilt angles θ of greater than about 45° have been found to reduce illumination throughput efficiency due to increased scattering, even for a low-angle diffuser having a FWHM of 5°.
In
The microscope system 10′″ of
The optical trains 22, 22′, 22″, 22′″ have components which are stationary in the sense that the components are not rotated, relatively oscillated, or otherwise relatively moved. It is, however, contemplated to move the optical train and the objective 40 as a whole, and/or to include beam-steering elements, or so forth, to enable relative scanning of the field of view respective to the sample.
Suitable microscope systems for imaging an annular sample contained in or supported by a test tube have been described in
A variation on the test tube holder of
With reference to
With reference to
With reference to
With reference to
Suitable processing approaches for identifying or quantifying fluorescent dye tagged cells in an annular biological fluid layer are now described in
With reference to
With reference to
In some embodiments, the analysis images are processed in optional operation 304 to identify one or more analysis images at about the depth of the biological fluid layer (such as the buffy layer) based on image brightness. This optional selection takes advantage of the observation that typically the fluorescent dye produces a background fluorescence that is detected in the acquired analysis images as an increased overall image brightness. Image brightness can be estimated in various ways, such as an average pixel intensity, a root-mean-square pixel intensity, or so forth.
In an image processing operation 306, the analysis images, or those one or more analysis images selected in the optional selection operation 304, are processed using suitable techniques such as filtering, thresholding, or so forth, to identify observed features as candidate cells. The density of dye-tagged cells in the biological fluid layer is typically less than about one dye-tagged cell per field of view. Accordingly, the rate of identified candidate cells is typically low. When a candidate cell is identified by the image processing 306, a suitable candidate cell tag is added to a set of candidate cell tags 310. For example, a candidate cell tag may identify the image based on a suitable indexing system and x- and y-coordinates of the candidate cell feature. Although the density of rare cells is typically low, it is contemplated that the image processing 306 may nonetheless on occasion identify two or more candidate cells in a single analysis image. On the other hand, in some analysis images, no candidate cells may be identified.
At a decision point 312, it is determined whether the sample scan is complete. If not, then the field of view is moved in operation 314. For example, the field of view can be relatively scanned across the biological fluid sample in the annular gap 12 by a combination of rotation of the test tube 72 and translation of the objective 40 along the test tube axis 75. Alternatively, using the tube holder of
Once the decision point 312 indicates that the sample scan is complete, a user verification process 320 is optionally employed to enable a human analyst to confirm or reject each cell candidacy. If the image processing 306 is sufficiently accurate, the user verification process 320 is optionally omitted.
A statistical analysis 322 is performed to calculate suitable statistics of the cells confirmed by the human analyst. For example, if the volume or mass of the biological fluid sample is known, then a density of rare cells per unit volume or per unit weight (e.g., cells/milliliter or cells/gram) can be computed. In another statistical analysis approach, the number of confirmed cells is totaled. This is a suitable metric when a standard buffy sample configuration is employed, such as a standard test tube, standard float, standard whole blood sample quantity, and standardized centrifuging processing. The statistical analysis 322 may also include threshold alarming. For example, if the cell number or density metric is greater than a first threshold, this may indicate a heightened possibility of cancer calling for further clinical investigation, while if the cell number or density exceeds a second, higher threshold this may indicate a high probability of the cancer calling for immediate remedial medical attention.
With reference to
With the depth of the biological fluid sample determined by the process operation 304′, the acquisition process 302′ acquires only one or a few analysis images at about the identified focus depth of highest brightness. To ensure full coverage of the biological fluid layer, the number of acquired analysis images should be at least the thickness of the annular gap 12 divided by the depth of view of the objective 40. For example, if the annular gap 12 has a thickness of about 50 microns and the depth of view is about 20 microns, then three analysis images are suitably acquired—one at the focus depth of highest brightness, one at a focus depth that is larger by about 15-25 microns, and one at a focus depth that is smaller by about 15-25 microns.
An advantage of the modified acquisition approach 300′ is that the number of acquired high resolution analysis images is reduced, since the focus depth is determined prior to acquiring the analysis images. It is advantageous to bracket the determined focus depth by acquiring analysis images at the determined focus depth and at slightly larger and slightly smaller focus depths. This approach accounts for the possibility that the rare cell may be best imaged at a depth that deviates from the depth at which the luminescence background is largest.
With reference to
With continuing reference to
With continuing reference to
The square filter kernel 334 is computationally advantageous since its edges align with the x- and y-coordinate directions of the analysis image 330. A round filter kernel 334′ or otherwise-shaped kernel is optionally used in place of the square filter kernel 334. However, the round filter kernel 334′ is more computationally expensive than the square filter kernel 334. Another advantage of the square filter kernel 334 compared with the round filter kernel 334′ is that the total filter edge length of the square filter 334 is reduced from twice the detection size to 1.414 times the detection size. This reduces edge effects, allowing use of data that is closer to the edge of the analysis image 330.
The size of the filter kernel should be selected to substantially match the expected image size of a dye-tagged cell in the analysis image 330 to provide the best SNR improvement. For example, the square filter kernel 334 with a positive (+1) region that is ten pixels across is expected to provide the best SNR improvement for a cell image also having a diameter of about ten pixels. For that matched case, the signal is expected to increase by about a factor of 78 while the noise is expected to increase by about a factor of 14, providing a SNR improvement of about 5.57:1. On the other hand, the SNR improvement for a smaller eight pixel diameter cell using the same square filter is expected to be about 3.59:1. The SNR improvement for a larger fourteen pixel diameter cell using the same square filter is expected to be about 3.29:1.
The matched filter processing 332 can be implemented in various ways. In one approach, each point in the input image is summed into all points in the output image that are in the positive inner region. Then all the points in the output image that are in the outer negative region but not in the inner positive region are subtracted off. Each point in the input image is touched once, while each point in the output image is touched the outer-box pixel area count number of times.
In another suitable approach, for each point in the output image, all points from the input image that are within the positive inner box are read and summed. All points outside the positive inner box but within the negative outer box are then subtracted. While each output image pixel is touched only once, each input image pixel is touched by the outer-box pixel count.
In another suitable approach, two internal values are developed for the current row of the input image: a sum of all points in the row in the negative outer box distance, and a sum of all points in the row in the inner positive box distance. All output image column points at the current row have the input image sum of all points in the outer-box subtracted from them. All the output image column points within the inner positive box get the sum of the input image row points in the inner positive box distance added in twice. The row sums can be updated for the next point in the row by one add and one subtract. This reduces the execution cost to be on the order of the height of the filter box.
In the matched filter processing 332, various edge conditions can be employed. For example, in one approach, no output is produced for any point whose filter overlaps an edge of the analysis image 330. This approach avoids edge artifacts, but produces an output image of reduced usable area. In another suitable example edge condition, a default value (such as zero, or a computed mean level) is used for all points off the edge.
With continuing reference to
In the illustrated approach, the threshold is determined by processing 340 based on the SNR of the unfiltered analysis image 330. By first determining the standard deviation of the input image, the expected noise at the filter output can be computed. The noise typically rises by the square root of the number of pixels summed, which is the outer-box area in pixel counts. In some embodiments, the threshold is set at approximately 7-sigma of this noise level. As this filter does not have an exact zero DC response, an appropriate mean level is also suitably summed to the threshold.
The thresholding 338 produces a binary image in which pixels that are part of a cell image generally have a first binary value (e.g., “1”) while pixels that are not part of a cell image generally have second binary value (e.g., “0”). Accordingly, connectivity processing 344 is performed to identify a connected group of pixels of the first binary value corresponding to a cell. The connectivity analysis 344 aggregates or associates all first binary value pixels of a connected group as a cell candidate to be examined as a unit. The center of this connected group or unit can be determined and used as the cell location coordinates in the candidate cell tag.
With reference to
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/536,303, filed on Sep. 19, 2011. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/225,074, filed Sep. 2, 2011, which is a continuation of U.S. Pat. No. 8,012,742, filed Mar. 21, 2011, which was a continuation of U.S. Pat. No. 7,915,029, filed Feb. 11, 2008, which was a continuation of U.S. Pat. No. 7,329,534, filed Mar. 7, 2006, which was a divisional of U.S. Pat. No. 7,074,577, filed Oct. 3, 2002. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/498,533, filed Jul. 7, 2009, which is a divisional of U.S. Pat. No. 7,560,277, filed Sep. 12, 2006, which was a divisional application of U.S. Pat. No. 7,397,601, filed Oct. 27, 2005, which claimed priority to three different provisional applications: U.S. Provisional Patent Application Ser. No. 60/631,025, filed Nov. 24, 2004; U.S. Provisional Patent Application Ser. No. 60/631,026, filed Nov. 24, 2004; and U.S. Provisional Patent Application Ser. No. 60/631,027, filed Nov. 24, 2004. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/371,761, filed Feb. 13, 2012, which is a continuation of U.S. Pat. No. 8,114,680, filed on Mar. 21, 2011, which was a continuation of U.S. Pat. No. 7,919,049, filed Nov. 9, 2009, which was a continuation of U.S. Pat. No. 7,629,176, filed Feb. 11, 2008, which was a continuation of U.S. Pat. No. 7,358,095, filed Dec. 11, 2006, which was a continuation of U.S. Pat. No. 7,220,593, filed Oct. 3, 2002. The disclosures of these applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61536303 | Sep 2011 | US | |
60631025 | Nov 2004 | US | |
60631026 | Nov 2004 | US | |
60631027 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10263975 | Oct 2002 | US |
Child | 11370635 | US | |
Parent | 11519533 | Sep 2006 | US |
Child | 12498533 | US | |
Parent | 11261105 | Oct 2005 | US |
Child | 11519533 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13052151 | Mar 2011 | US |
Child | 13225074 | US | |
Parent | 12029274 | Feb 2008 | US |
Child | 13052151 | US | |
Parent | 11370635 | Mar 2006 | US |
Child | 12029274 | US | |
Parent | 12614602 | Nov 2009 | US |
Child | 13052172 | US | |
Parent | 12029289 | Feb 2008 | US |
Child | 12614602 | US | |
Parent | 11609186 | Dec 2006 | US |
Child | 12029289 | US | |
Parent | 10263974 | Oct 2002 | US |
Child | 11609186 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13225074 | Sep 2011 | US |
Child | 13622645 | US | |
Parent | 12498533 | Jul 2009 | US |
Child | 10263975 | US | |
Parent | 13371761 | Feb 2012 | US |
Child | 11261105 | US | |
Parent | 13052172 | Mar 2011 | US |
Child | 13371761 | US |