The present disclosure relates to drug conjugates, drug compositions, methods to improve one or more of the pharmacokinetic properties of drugs such as antimicrobials by conjugating the antimicrobials with fluorinated hexose phosphates and methods to, deliver drugs such as antimicrobials using a hexose phosphate transporter by conjugating antimicrobial agents such as antibiotics with fluorinated hexose phosphates.
The discovery of antibiotics has saved innumerable lives over the last 75 years. However, the golden age of the antibiotic era is fading away and we are now entering a post-antibiotic dark age. Annually, in the US alone, more than 2 million hospital-acquired infections caused by multidrug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), creating an estimated $20 billion dollars in excess healthcare costs. These ESKPE pathogens have evolved to Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria, Pseudomonas aeruginosa, methicillin resistant Staphylococcus aureus (MRSA), and vancomycin resistant Enterococci (VRE) for which no treatment options remain. Despite the current antimicrobial resistance crisis, the major pharmaceutical companies are reluctant to develop new antimicrobial agents due to the average cost of about US $800 billion to develop it and the 10 years or longer time required for development. Also, pathogens soon develop resistance to new antimicrobial agents. In view of these problems, rather than developing new antimicrobial agents, the present disclosure is directed to a useful option is to reinforce currently existing antimicrobial agents by improving their efficacy and expanding their spectrum of activity.
This disclosure provides drug conjugates, drug compositions, methods to improve one or more of the pharmacokinetic properties of drugs such as antibiotics by conjugating the antibiotics with fluorinated hexose phosphates and delivering these conjugated antibiotics to bacteria via the uptake of hexose phosphate transporter (UhpT) and methods to, deliver drugs such as antimicrobials using a hexose phosphate transporter by conjugating antimicrobial agents such as antibiotics with fluorinated hexose phosphates.
In one embodiment, this disclosure provides the mechanism by which expression of bacterial UhpT is regulated by hexose phosphates.
In another embodiment, the disclosure improves one or more of the pharmacokinetic properties of antimicrobials such as antibiotics using fluorinated hexose phosphates as carrier molecules for transporting antimicrobial agents through the UhpT.
In another embodiment, this disclosure provides a method to synthesize non-metabolizable fluorinated hexose phosphates that stably induce high levels of expression of the UhpT.
In one specific embodiment, the disclosure provides a conjugated drug including a drug conjugated to hexose phosphate or a fluorinated hexose phosphate.
The drug component of the disclosure may be a conjugate of an antimicrobial such as an antibiotic. The antibiotic may preferably be selected from, linezolid and fosfomycin.
The hexose phosphate or fluorinated hexose phosphate of the disclosure may be selected from 3-fluoro-glucose-6-phosphate, 4-fluoro-glucose-6-phosphate, 3-deoxy-3,3-difluoroglucose, 2-deoxy-2-fluoroglucose, the 2,2-difluorinated derivative of 2-deoxy-2-fluoroglucose of formula (B2):
The 2,3-dideoxy-2,3-difluoroglucose, 2,3-dideoxy-2,2,3,3-tetrafluorinated analog of formula (C2):
1DG6P of formula (D1)
the corresponding 3-fluorinated analog of formula (D2):
and
4-deoxy-4-fluoroglucose, and phosphate analogs of formulae (F1) and F2):
The fluorinated hexose phosphate of the present disclosure may be selected from 3-fluoro-glucose-6-phosphate or 4-fluoro-glucose-6-phosphate.
In another specific embodiment, the disclosure provides a method of using a non-metabolizable hexose phosphate that constitutively activates a HptARS regulatory system and induces expression of hexose phosphate transporter (UhpT) to modify a drug to enhance UhpT uptake of the modified drug, as compared to uptake of the unconjugated form of the same drug.
In another specific embodiment, the disclosure provides a method for conjugating a non-metabolizable hexose phosphate to a drug to enhance UhpT uptake of the conjugated drug, as compared to uptake of the unconjugated form of the same drug, said method comprising a step of reacting the drug with a non-metabolizable hexose phosphate.
The drug component of the compositions and methods of the present disclosure may be an antimicrobial and is preferably an antibiotic. Preferably, the antibiotic is selected from linezolid and fosfomycin.
The non-metabolizable hexose phosphate used in the methods of the present disclosure may be selected from 3-fluoro-glucose-6-phenylated phosphate and 4-fluoro-glucose-6-phenylated phosphate.
In another specific embodiment, the present disclosure provides a method for making 3-fluoro-glucose-6-phenylated phosphate including a step of reacting 3-fluoro-glucose with diphenyl chlorophosphate in the presence of a base.
The method for making 3-fluoro-glucose-6-phosphate may include a step of subjecting 3-fluoro-glucose to enzymatic phosphorylation to form 3-fluoro-glucose-6-phosphate.
The enzymatic phosphorylation may be carried out using hexokinase to transfer a phosphate group from adenosine triphosphate (ATP) to a 6′—OH group of 3-fluoro-glucose to form the 3-fluoro-glucose-6-phosphate.
The 3-fluoro-glucose may be formed by steps of:
In another embodiment, the present disclosure provides a method for making (S)—N-[[3-[3-fluoro-4-(N-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide comprising steps of:
The disclosure also provides an example of a method of improving one or more pharmacokinetic properties of linezolid by conjugating the linezolid with 3-fluoro-glucose-6-phosphate or 4-fluoro-glucose-6-phosphate. This method may be employed to improve the antimicrobial activity of linezolid.
The disclosure also provides an example of a method of improving one or more pharmacokinetic properties of fosfomycin by conjugating it with 3-fluoro-glucose-6-phosphate or 4-fluoro-glucose-6-phosphate. This method may be employed to improve the antimicrobial activity of fosfomycin.
One method of the disclosure for conjugating 3-fluoro-glucose-6-phosphate with linezolid involves steps of:
reacting (S)—N-[[3-[3-fluoro-4-(N-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide of formula (11):
with γ-butyrolactone to provide an amide of the formula (14):
coupling the amide of the formula (14) with a 3-fluoro-glucose-6-phenylated phosphate of formula (13):
by an acid-catalyzed glycosylation reaction to produce a product of the formula (15):
and
deprotection of the product of the formula (15) to provide a conjugated product of the formula (16):
The disclosure also provides a method of treating a bacterial infection comprising administering to a patient with said bacterial infection a composition containing a conjugated antibiotic as described in any of the above embodiments.
In another specific embodiment, the disclosure relates to use of the conjugated antibiotic as described in any of the above embodiments, for treatment of a bacterial infection.
In another embodiment, the disclosure relates to a method of treating a bacterial infection comprising a step of co-administering one or more antibiotics with at least one non-metabolizable hexose phosphate or fluorinated hexose phosphate. In another embodiment, the disclosure relates to use of a non-metabolizable hexose phosphate or fluorinated hexose phosphate in combination with an antibiotic for treatment of a bacterial infection
In each of the embodiments of the previous paragraph, the hexose phosphate or the fluorinated hexose phosphate is selected from 3-fluoro-glucose-6-phosphate, 4-fluoro-glucose-6-phosphate, 3-deoxy-3,3-difluoroglucose, 2-deoxy-2-fluoroglucose, the 2,2-difluorinated derivative of 2-deoxy-2-fluoroglucose of formula (B2):
2,3-dideoxy-2,3-difluoroglucose, 2,3-dideoxy-2,2,3,3-tetrafluorinated analog of formula (C2):
1DG6P of formula (D1):
a corresponding 3-fluorinated analog of formula (D2):
and
4-deoxy-4-fluoroglucose, and phosphate analogs of formulae (F1) and F2):
wherein F/OH indicates that the substituent can be either —F or —OH, subject to the proviso that each compound of these formulae must have at least one substituent that is —F.
While the drug conjugates, compositions, and methods of the present disclosure are illustrated and described in detail in the figures and the description herein, results in the figures and their description with linezolid or Fosfomycin conjugated with 3-fluoro-glucose-6-phosphate (3FG6P) or 4-fluoro-glucose-6-phosphate or (4FG6P) are to be considered as exemplary and not restrictive in character; it being understood that all changes and modifications that employ fluorinated hexose phosphate moeities to induce expression of UhpT and/or to facilitate transport conjugated antibiotics through UhpT are within the scope of the invention.
Resistance to antimicrobial agents arises as a result of two main mechanisms. One mechanism involves modification of the target that the antibiotics act on by genetic mutation(s). The other mechanism prevents the antibiotic from reaching its target at a sufficiently high concentration by expressing antibiotic efflux pumps, decreasing permeability of the membrane, and/or destroying the antibiotics. The former mechanism can be addressed only by developing new antibiotics that can act on the new targets. The latter mechanism can be addressed by improving one or more of the pharmacokinetic properties of the antibiotics as in the present invention.
As used herein, the term. “hexose phosphate” may refer specifically to hexose phosphate or generically to hexose phosphate and fluorinated hexose phosphates.
As used herein, “pharmacokinetic properties” refers to one or more of drug delivery, drug absorption, drug distribution, drug metabolism, and drug excretion.
Recently, the bacterial gene regulatory system (HptARS) was characterized. HptARS controls expression of the Uptake of Hexose Phosphate Transporter (UhpT) from Staphylococcus aureus (
Importantly, bacterial genome sequence analysis showed that the UhpT system is highly conserved in many gram positive and gram-negative pathogens including the ESKAPE pathogens. These findings led us to develop a concept to exploit the HptARS and UhpT system for transporting antibiotics the use of which has been discouraged due to their low efficacy and/or narrow spectrum of activity against such pathogens. More specifically, these antibiotics are conjugated with hexose phosphate (HP) or a fluorinated hexose phosphate to provide hexose phosphate conjugated antibiotics (AB-HP). The hexose phosphate conjugated antibiotics activate the HptARS system and induce expression of UhpT. This facilitates uptake of the AB-HP through UhpT. Unconjugated antibiotics (AB) lacking the hexose phosphate moiety could not be transported through UhpT or otherwise into bacteria due to the lack of a suitable transport system. This conjugation with hexose phosphate or a fluorinated hexose phosphate increases the efficacy of such antibiotics and expands their spectrum of antimicrobial activity. This conjugation with hexose phosphate or a fluorinated hexose phosphate is applicable to many antibiotics that have been abandoned or discouraged for use due to their current low efficacy and/or narrow spectrum of antimicrobial activity.
The present disclosure relates to the conjugation of an antimicrobial such as an antibiotic to a hexose phosphate moiety via a linker. The linker may be selected to be relatively easy to conjugate to drugs to ensure versatile use with a diverse array of drugs such as antibiotic molecules. The linker may be a cleavable linker or a non-cleavable linker. Preferably, the linker is a cleavable linker since, in many cases, the antibiotic molecule needs to be released once inside the bacteria to provide the desired effect. However, depending on the SAR of the antibiotic molecule, a non-cleavable linker could be used in order to offer an enhanced stability.
Table 1 below shows a list of exemplary suitable antibiotics and, cleavable linkers of the present disclosure.
The third element of the conjugated drug is a glucose-6-phosphate (G6P) unit that is preferably stabilized against being metabolized. 3FG6P is one example of a suitable moiety that is sufficiently active as well as resistant to metabolism. 4FG6P and other FG6Ps may also be used. Suitable fluorinated hexose phosphates also include 3-deoxy-3,3-difluoroglucose (A), 2-deoxy-2-fluoroglucose (B1), the 2,2-difluorinated derivative of 2-deoxy-2-fluoroglucose (B2), the 2,3-dideoxy-2,3-difluoroglucose (C1) and 2,3-dideoxy-2,2,3,3-tetrafluorinated analogs (C2). Deoxygenation at the 1-position would prevent both the glycolysis and pentose phosphate pathways, thus 1DG6P (D1) and the corresponding 3-fluorinated analogs (D2) may also be suitable, as is 4-deoxy-4-fluoroglucose (E).
Suitable methods for the synthesis of the polyfluorinated compounds are available in the literature. Hexokinase can phosphorylate mono-fluorinated glucoses. For substrates that cannot be converted by hexokinase, chemical phosphorylation can be used.
A second type of suitable analogs includes the 6-phosphate group (F). Fluorination in the sugar ring does not affect the third avenue of metabolism, hydrolysis of a phosphate group. This can be addressed via the synthesis of non-hydrolysable phosphate analogs by replacement of the bridging oxygen of the phosphate with either methylene (F1) or a fluorinated methylene group (F2).
Where a substituent is indicated as “F/OH” in the formulae below, this indicates that the substituent can be either —F or —OH, subject to the proviso that each compound of these formulae must have at least one substituent that is —F.
Hexose phosphates are highly metabolizable nutrients that provide energy to bacteria and host cells. Therefore, normal hexose phosphates would have a very short half-life. To improve the pharmacodynamics of hexose phosphates, it is necessary to develop hexose phosphates that are not readily metabolized by bacteria and host cells. Fluorination modulates the electronic properties of the molecule, and it is known that fluorination of ligands allows attractive interactions with protein residues which can, in most cases, favorably modulate the binding affinity of carbohydrates to proteins. A recent study demonstrated that fluorinated carbohydrates can provide protection from enzymatic degradation in Mycobacterium. See Marriner G A, Kiesewetter D O, D'Hooge F, Lee S S, Boutureira O, Raj R, Khan N, Via L E, Barry C E, Davis B G. Evaluation of Trehalose Derivatives as Radiotracers Specific for Tuberculosis in Animal Models of Disease. Journal of Labelled Compounds and Radiopharmaceuticals. 2015; 58(S1):S250. doi: 10.1002/jlcr.3302_2.
In other aspects, the disclosure provides methods to improve one or more of the pharmacokinetic properties of drugs such as antibiotics by conjugating the antibiotics with fluorinated hexose phosphates and delivering these conjugated antibiotics to bacteria via the uptake of hexose phosphate transporter (UhpT) and methods to, deliver drugs such as antimicrobials using a hexose phosphate transporter by conjugating antimicrobial agents such as antibiotics with hexose phosphate or fluorinated hexose phosphates. Examples of methods of improving one or more pharmacokinetic properties of linezolid and fosfomycin by conjugating the linezolid or fosfomycin with 3-fluoro-glucose-6-phosphate or 4-fluoro-glucose-6-phosphate are described above. These methods may be employed to improve the antimicrobial activity of linezolid and fosfomycin.
This disclosure also provides the mechanism by which expression of bacterial UhpT is regulated by hexose phosphates.
In another embodiment, this disclosure provides a method to synthesize non-metabolizable fluorinated hexose phosphates that stably induce high levels of expression of the UhpT.
In another specific embodiment, the present disclosure provides a method for making 3-fluoro-glucose-6-phenylated phosphate including a step of reacting 3-fluoro-glucose with diphenyl chlorophosphate in the presence of a base as described in greater detail above.
The disclosure also provides a method of treating a bacterial infection comprising administering to a patient with said bacterial infection a composition containing a conjugated antibiotic as described in any of the above embodiments.
In another specific embodiment, the disclosure relates to use of the conjugated antibiotic as described in any of the above embodiments, for treatment of a bacterial infection.
In another embodiment, the disclosure relates to a method of treating a bacterial infection comprising a step of co-administering one or more antibiotics with at least one non-metabolizable hexose phosphate or fluorinated hexose phosphate. In another embodiment, the disclosure relates to use of a non-metabolizable hexose phosphate or fluorinated hexose phosphate in combination with an antibiotic for treatment of a bacterial infection
In each of the embodiments of the previous paragraph, the hexose phosphate or the fluorinated hexose phosphate is selected from 3-fluoro-glucose-6-phosphate, 4-fluoro-glucose-6-phosphate, 3-deoxy-3,3-difluoroglucose, 2-deoxy-2-fluoroglucose, the 2,2-difluorinated derivative of 2-deoxy-2-fluoroglucose of formula (B2):
2,3-dideoxy-2,3-difluoroglucose, 2,3-dideoxy-2,2,3,3-tetrafluorinated analog of formula (C2):
1DG6P of formula (D):
a corresponding 3-fluorinated analog of formula (D2):
and 4-deoxy-4-fluoroglucose, and phosphate analogs of formulae (F1) and F2):
wherein F/OH indicates that the substituent can be either —F or —OH, subject to the proviso that each compound of these formulae must have at least one substituent that is —F.
In a first step, 3-fluoro-glucose-6-phosphate is synthesized whereby a hydroxyl group at the third carbon of the glucose ring is replaced by a fluorine atom. The first step in this synthesis is the making of 3-fluoro-glucose. In this step, 1,2:5,6-Di-O-isopropylidene-α-D-glucofuranose was reacted with (diethylamino)sulfur trifluoride (DAST) in dichloromethane, which resulted in stereospecific fluorination at the 3′-position, yielding 3-fluoro-1,2:5,6-Di-O-isopropylidene-α-D-glucofuranose. The 3-Fluoro-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose was then reacted with trifluoroacetic acid (TFA) to remove the isopropylidene protecting group, which yielded 3-fluoro-glucose. 3-fluoro-glucose was purified by flash chromatography and subjected to enzymatic phosphorylation to form 3-fluoro-glucose-6-phosphate. In this reaction, hexokinase transfers a phosphate group from ATP to the 6′—OH group of 3-fluoro-glucose (
To test whether 3-fluoro-glucose-6-phosphate (3FG6P) is metabolized by host cells, 3FG6P (500 μM) was resuspended in RPMI1640 cell culture media and incubated in the presence and absence of primary canine bladder cells for a period of 24 h. Methanol extracts of culture medium containing x were evaporated to dryness under nitrogen gas, then reconstituted in 100 μL of 1:1 (v/v) acetonitrile/aqueous 25 mM ammonium formate. 2 μL of each sample was injected onto a 2.1 mm×100 mm HILIC column coupled to a Waters UPLC and Thermo Quantum triple-quadrupole mass spectrometer (electrospray ionization). The mass transition for 3FG6P (m/z 261.0>79.3) was monitored throughout the chromatographic run. The intensity of 3FG6P peak from cell culture media in the presence of canine bladder epithelial cells was not different from the peak for the same cell culture media in the absence of canine bladder epithelial cells indicating that 3FG6P is not metabolized by bladder epithelial cells (
To test whether 3FG6P can induce expression of the UhpT, we generated a bioluminescent reporter plasmid in which the promoter region of the uhpT was fused to the promoterless LuxABCDE operon (
To use 3FG6P as a carrier molecule to transport antibiotics into bacteria, the 3FG6P has to be recognized by UhpT even after conjugation to the antibiotic. To test this, we generated Staphylococcus aureus LAC lacking the uhpT gene (ΔUhpT), which, as a result, is unable to transport hexose phosphates. The PBS containing 3FG6P (500 PM) was incubated in the presence of both S. aureus LAC wild-type (WT) strain and the S. aureus LAC ΔUhpT strain, and in the absence of S. aureus (PBS control) for 6 hours. The concentration of 3FG6P was determined using an HILIC column coupled to a Waters UPLC and Thermo Quantum triple-quadrupole mass spectrometer as described above. When incubated with S. aureus LAC wild type (WT) strain for 2 hours, the 3FG6P concentration rapidly decreased to approximately 40% to the PBS control, and completely disappeared from PBS in 6 hours (
Collectively, these results demonstrate that fluorinated hexose phosphate (3FG6P) is able to induce stable and strong expression of UhpT and, despite the fluorine modification, fluorinated hexose phosphate (3FG6P) is still effectively recognized and transported into bacterial cells by UhpT. These results prove the concept that fluorinated hexose phosphates can be used as carrier molecules to transport antibiotics into bacterial cells via UhpT. This will enable reuse of antibiotics that have fallen out of favor due to their current low efficacy and/or narrow spectrum of antimicrobial activity.
Linezolid is a member of the family of 3-aryl-2-oxazolidinones which have an acetamidomethyl group attached to the 5-position of the oxazolidinone ring and fluorine substitutions at the 3 position of the phenyl group. As used herein, linezolid refers to (S)—N-[[3-[3-fluoro-4-(N-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide. Linezolid inhibits bacterial ribosomal protein synthesis at a very early stage. Linezolid binds to the 23S of the 50S ribosomal subunit which prevents the formation of a functional 70S initiation complex with the 30S subunit, fMet-RNA, initiation factors IF2 and IF3, and mRNA.
Linezolid is effective against all clinically important Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) with MIC90s ranging from 1-4 and 2 μg/ml, Staphylococcus epidermidis (MRSE) with MIC90s of 1-4 and 1 μg/ml, vancomycin-resistant Enterococcus (VRE)faecalis and faecium with MIC90s of 1-4 and 2 μg/ml. However, linezolid is less effective against aerobic Gram-negative pathogens due to their rapid efflux mechanisms. Linezolid is not active against Acinetobacter spp, Escherichia coli, Klebsiella pneumoniae. Proteus penneri, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Linezolid displays minimal activity against Haemophilus influenzae and Neisseria gonorrhea, with MIC90s of 16 μg/ml. See Jones R N. Johnson D M, Erwin M E. In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones. Antimicrob Agents Chemother 1996; 40(3):720-726 and Zhanel G G, Karlowsky J A, Low D E. Hoban D J. Antibiotic resistance in respiratory tract isolates of Haemophilus influenzae and Moraxella catarrhalis collected from across Canada in 1997-1998. J Antimicrob Chemother 2000; 45(5):655-66.
Synthesis of Linezolid Conjugated with 3FG6P
To demonstrate that fluorinated hexose phosphates can improve the efficacy and/or the spectrum of antimicrobial activity of linezolid, linezolid was conjugated with 3FG6P. The synthesis of linezolid conjugated with 3FG6P (17) was carried out in three parts, firstly by synthesis of linezolid moiety (S)—N-[[3-[3-fluoro-4-(N-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide (11) from 3,4-dinitrobenzene (1) in a series of 8 steps. 3,4-dinitrobenzen (1) was first reacted with piperazine to obtain 1-(2-fluoro-4-nitrophenyl)piperazine, which was subsequently reacted to give N-protected derivative (5). N-protected derivative (5) was then lithiated using n-BuLi and subsequently reacted with (R)-glycidyl butyrate (6) to obtain an oxazolidinyl derivative (7) which was then reacted with tosyl chloride to provide an O-tosylated product (8). The O-tosylated product (8) was made to undergo substitution reaction with potassium phthalimide to obtain (R)—N-[[3-[3-fluoro-4-[N-1-(4-carbobenzoxy) piperazinyl]-phenyl]-2-oxo-5-oxazolidinyl]methyl]phthalimide (9). Deprotection of (9) to primary amine and further protection with an acetate gave the N-acetyl product (10) which was deprotected with H2 and palladium on carbon to give the desired product (11) shown in
The synthesis of 3-fluoro-glucose-6-phenylated phosphate moiety (13) was carried out by reacting 3-fluoro-glucose with diphenyl chlorophosphate in the presence of the base, 4-dimethylamino pyridine (DMAP) (
The product (11) was then reacted with γ-butyrolactone to the intermediate amide (14), which was subsequently coupled with the 3-fluoro-glucose-6-phenylated phosphate moiety (13) via an acid-catalyzed glycosylation reaction to afford product (15). Final deprotection yields the desired product (16) (
To test the antimicrobial activity of linezolid and linezolid conjugated with 3FG6P (Lzd-3FG6P) against Gram-positive and Gram-negative pathogens, the pathogens Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 35657, Acinetobacter baumannii ATCC BAA1605, Escherichia coli ATCC 25922, Enterobacter cloacae ATCC 13047, Enterobacter aerogenes ATCC13048, and Salmonella typhimurium ATCC 14028 were used. The minimal inhibitory concentration (MIC) was determined using broth microdilution following the instructions of Clinical and Laboratory Standards Institute (CLSI) document M07-A9 (Clinical and Laboratory Standards Institute. 2012. M07-A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 9th ed. Clinical and Laboratory Standards Institute, Wayne, PA). Briefly, these bacterial strains were grown in Muller Hinton broth (MHB) until exponential phage (OD600<1.0). The exponentially grown testing bacteria were diluted to an OD600 of 0.01 in MHB and aliquoted in a 96 well plate. Stocks of linezolid (Lzd) and linezolid conjugated with 3FG6P (Lzd-3FG6P) were prepared at 10 mg/ml in DMSO which was diluted by two-fold serial dilutions from 64 μg/ml to 2 μg/ml (final concentration) and added to the 96 well plate. A DMSO control (0 μg/ml in the figures) was included. The plate was incubated at 37° C. and the growth of bacteria was monitored by measuring OD600 using a Cytation 5 plate reader (BioTek).
While linezolid successfully inhibited the growth of the Gram-positive pathogen, Staphylococcus aureus ATCC 25923 with a MIC of less than 2 μg/ml, linezolid failed to inhibit the growth of Gram-negative pathogens even at concentrations of 64 μg/ml (
Staphylococcus aureus ATCC 25923
Klebsiella pneumoniae ATCC 35657
Acinetobacter baumannii ATCC BAA1605
Escherichia coli ATCC 25922
Enterobacter cloacae ATCC13047
Enterobacter aerogenes ATCC13048
Salmonella typhimurium ATCC 14028
To test the in vivo antimicrobial activity of linezolid and linezolid conjugated with 3FG6P, clinical E. coli strains were constructed that constitutively express a bioluminescent light signal using pLuxABCDE plasmid. See Karsi A. Lawrence M L. Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria. Plasmid. 2007; 57(3):286-95. Epub 2007/01/09. doi: 10.1016/j.plasmid.2006.11.002. PubMed PMID: 17207855 for real time monitoring of the progress of infections. Six- to eight-week old female C57BL/6 mice were purchased from Harlan laboratory and were housed and maintained according to the protocol approved by the institutional animal care and use committee at Mississippi State University. Animals (n=6/group) were transurethrally infected with 50 μl of bioluminescent E. coli strain suspended in PBS (2×109 CFU/ml). Animals were treated with an intraperitoneal injection of linezolid (80 mg/kg), linezolid conjugated with 3FG6P (80 mg/kg) or PBS control at 2, 24, and 48 hours after infection. The progress of the infection was monitored by measuring the bioluminescent light signal using an IVIS Lumina X R small animal imaging system. After 72 hours infection, animals were humanely euthanized and the bladder and kidney samples were collected, homogenized, and serially diluted, and the serial dilutions were plated on blood agar to determine the bacterial burden. A transurethral inoculation of E. coli established persistent infections in the kidney and bladder in the absence of antibiotic treatment (PBS control group). The mean bacterial counts in the kidney and bladder were log10 6.328±0.132 and log10 6.171+0.155 CFU/g, respectively (
Fosfomycin is a bactericidal antibiotic with broad spectrum activity against both gram positive and gram negative bacteria since it is transported through the glycerol-3-phosphate transporter (GlpT) system and the glucose-6-phosphate transporter (UhpT) system, which systems are highly conserved in most bacteria. See Sastry S, Doi Y. 2016. Fosfomycin: Resurgence of an old companion. J Infect Chemother 22:273-80; Kahan F M, Kahan J S, Cassidy P J, Kropp H. 1974. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 235:364-86; Park J Y, Kim J W, Moon B Y, Lee J, Fortin Y J, Austin F W, Yang S J, Seo K S. 2015. Characterization of a novel two-component regulatory system, HptRS, the regulator for the hexose phosphate transport system in Staphylococcus aureus. Infect Immun 83:1620-8; and Sit B, Crowley S M, Bhullar K, Lai C C, Tang C, Hooda Y, Calmettes C, Khambati H, Ma C, Brumell J H, Schryvers A B, Vallance B A, Moraes T F. 2015. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen. PLoS Pathog 11:e1005107.
Fosfomycin is not metabolized in the liver, and is primarily excreted unchanged in the urine by glomerular filtration. See Segre G, Bianchi E, Cataldi A, Zannini G. 1987. Pharmacokinetic profile of fosfomycin trometamol (Monuril). Eur Urol 13 Suppl 1:56-63. Therefore, it is approved by the FDA for oral administration to treat uncomplicated urinary tract infections (UTIs). Fosfomycin has low toxicity and good distribution in serum, kidneys, the bladder wall, lungs, inflamed tissues, bone, cerebrospinal fluid, abscess fluid, and heart valves. See Schintler M V, Traunmuller F, Metzler J, Kreuzwirt G, Spendel S, Mauric O, Popovic M, Scharnagl E, Joukhadar C. 2009. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother 64:574-8. Fosfomycin inhibits the first step of peptidoglycan synthesis by blocking the MurA enzyme, catalyzing synthesis of early peptidoglycan precursors (6). This unique mechanism of action confers the synergistic effect of fosfomycin against ESAPKE pathogens in combination with other antibiotics such as beta-lactams, aminoglycosides, and fluoroquinolones. See Sastry S, Doi Y. 2016. Fosfomycin: Resurgence of an old companion. J Infect Chemother 22:273-80.
11. Falagas M E, Kastoris A C, Karageorgopoulos D E, Rafailidis P I. 2009. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 34:111-20; Walsh C C, Landersdorfer C B, McIntosh M P, Peleg A Y, Hirsch E B, Kirkpatrick C M, Bergen P J. 2016. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother 71:2218-29; and Ferrara A, Dos Santos C, Cimbro M, Gialdroni Grassi G. 1997. Effect of different combinations of sparfloxacin, oxacillin, and fosfomycin against methicillin-resistant staphylococci. Eur J Clin Microbiol Infect Dis 16:535-7. These characteristics make fosfomycin an important therapeutic option against MDR ESAPKE pathogens. Thus, there is an increasing interest in exploring the extended use of fosfomycin to treat other indications caused by MDR pathogens (Ref-KSS). However, oral administration of fosfomycin showed a low oral bioavailability of 30-37% and lower distribution to other tissues than in the bladder. Furthermore, the minimum inhibitory concentration (MIC) breakpoint of fosfomycin is relatively higher (8-32 mg/liter for Enterobacteriaceae) than other antibiotics and fosfomycin-resistant strains producing fosfomycin-modifying enzymes (FosA, FosB, and FosX) could be selected and rapidly spread.
To test whether 3FG6P and 4FG6P can potentiate the efficacy of fosfomycin, clinical fosfomycin resistant UTI E. coli isolates harboring the fosA gene and S. aureus COL strain were obtained. Overnight cultures of these bacteria were grown in brain heart infusion (BHI) broth diluted to 0.5 McFarland turbidity and inoculated into fresh BHI broth supplemented with various concentrations of fosfomycin alone or fosfomycin supplemented with 3FG6P for E. coli or 4FG6P for S. aureus (50 μM).
As shown in
These results clearly demonstrated that induction of UhpT expression by activating the three-component regulatory system significantly enhanced the fosfomycin efficacy to a level sufficient to reverse the resistance mechanism by fosfomycin modifying enzymes.
To test the in vivo antimicrobial activity of fosfomycin and fosfomycin co-administered with 4FG6P, S. aureus COL strain constitutively expressing a bioluminescent light signal using pLuxABCDE plasmid were generated for real time monitoring of the progress of infections. Six to eight-week old female C57BL/6 mice were purchased from Harlan laboratory and were housed and maintained according to the protocol approved by the institutional animal care and use committee at Mississippi State University.
Animals (n=3/group) were intraperitoneally infected with 50 μl of bioluminescent S. aureus strain suspended in PBS (2×109 CFU/ml). Animals were treated with an intraperitoneal injection of fosfomycin (3 mg/kg) alone or fosfomycin co-administered with 4FG6P (50 μg/kg) or PBS control at 2 and 24 hours after infection. The progress of the infection was monitored by measuring the bioluminescent light signal using an IVIS Lumina XR small animal imaging system.
After 48 hours infection, animals were humanely euthanized and the bacterial burdens in the lung, kidney, liver, spleen, and peritoneal lavage were determined. Animals treated with PBS or fosfomycin alone showed mean bacterial counts ranging from 5.34±0.154 to 6.47±0.115 CFU/g, respectively. By contrast, a treatment of fosfomycin co-administered with 4FG6P completely cleared infections at peritoneal lavage, lung, and kidney and significantly reduced the bacterial burdens more than 4 log scales at liver and spleen (
This application claims the benefit of U.S. provisional application No. 63/086,546, filed Oct. 1, 2020, the entire disclosure of which is specifically incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/052550 | 9/29/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63086546 | Oct 2020 | US |