Drum suspension apparatus

Information

  • Patent Grant
  • 11335307
  • Patent Number
    11,335,307
  • Date Filed
    Thursday, September 24, 2020
    4 years ago
  • Date Issued
    Tuesday, May 17, 2022
    2 years ago
Abstract
A percussion instrument mount includes a base that supports a percussion instrument in a playing position. The percussion instrument mount also includes a swing arm that is coupled to the percussion instrument, and is also coupled to the base via a joint such that the swing arm rotates about the joint from an equilibrium position in response to a playing impact on the percussion instrument. The percussion instrument mount still further includes a playing impact energy absorber that provides a restoring force to the swing arm so as to return the swing arm to the equilibrium position.
Description
BACKGROUND OF THE INVENTION

The disclosure relates to improvements in hardware for mounting percussion instruments, namely, acoustic and/or electronic drum suspension hardware.


Electronic percussion instruments are known as alternatives to acoustic drums or other percussion instruments. An electronic percussion instrument typically includes a trigger pad equipped with various sensors designed to sense the features (e.g., location, intensity, etc.) of the playing impact on the trigger pad. These sensors send a corresponding electronic signal via a wire to a sound module that produces synthesized or sampled percussion sounds based on the electronic signal, which sounds are played through speakers connected to the sound module.


Such electronic percussion instruments are known to be mechanically mounted on support structures, e.g., stands or kit frames, so that they may be played similarly to their corresponding acoustic instruments. However, problems arise due to this traditional mounting structure. First, is in that residual vibration from the playing/performing energy may be transferred to the support structure through the traditional ridged mounting hardware. This residual vibration causes interference with the propagating electronic signal, causing the signal to inaccurately reflect the features of the playing impact. The sound produced by the synthesizer is accordingly impacted. Second, the feel and stick response from the electronic trigger pad with ridged mounting structure, is significantly foreign to that of an acoustic drum mounted on a suspension system. Drumhead manufactures have made advancements to better emulate that of an acoustic drum feel and stick response, namely mesh head material. While this material improves the aforementioned feel characteristics, it still falls short of an acoustic drum and also introduced an undesirable trampoline stick response.


Problems also arise due to the traditional mounting of acoustic instruments on support structures. Again, residual vibration transferred to the support structure may negatively impact the sound properties of the acoustic instrument. Moreover, the sound quality may be further negatively impacted because, for traditional mounting, the acoustic boundary conditions vary significantly from mathematically pure boundary conditions due to the fixed nature and relatively static rigidity of traditional mounting. By way of explanation, mostly pure sound quality from a drum requires the drum to be essentially floating on air without any support. The presence of a support introduces a corresponding area that has a different acoustic boundary condition than areas where the support is not. This affects the acoustic properties of the drum and is equally fixed (i.e., non-adjustable), thus results in a compromise to the feel and/or sonic property of the drum.


It is therefore desirable to provide advantages over such systems and further be able to control to the feel, stick response and sonic properties of the instrument. Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the presently described embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of the percussion instrument mount according to at least one embodiment;



FIG. 2 is a further side view of the percussion instrument mount according to at least one embodiment;



FIG. 3 is a top view of the percussion instrument mount according to at least one embodiment;



FIG. 4 is a perspective view of the percussion instrument mount mounted to the support structure according to at least one embodiment;



FIG. 5 is a perspective view of the acoustic percussion instrument mount mounted to the support structure according to at least one embodiment;



FIG. 6 is a perspective view of the percussion instrument mount mounted to the support structure according to at least one embodiment;



FIG. 7 is a perspective view of the percussion instrument mount mounted to the support structure according to at least one embodiment;



FIG. 8 is a perspective view of the percussion instrument mount according to the at least one alternative embodiment;



FIG. 9 is a partially exploded perspective view of the percussion instrument mount according to the at least one alternative embodiment;



FIG. 10 is a fully exploded perspective view of the percussion instrument mount according to the at least one alternative embodiment;



FIG. 11 is a perspective view of the percussion instrument mount according to at least one alternative embodiment;



FIG. 12 is a perspective view of the percussion instrument mount according to at least one alternative embodiment;



FIG. 13 is a perspective view of the percussion instrument mount according to at least one alternative embodiment;



FIG. 14 is a perspective view of the percussion instrument mount according to at least one alternative embodiment;



FIG. 15 is a perspective view of the percussion instrument mount according to at least one alternative embodiment; and



FIG. 16 is a perspective view of the percussion instrument mount according to at least one alternative embodiment.



FIG. 17 is a perspective view of the percussion instrument mount according to at least one further embodiment.



FIG. 18 is a perspective view of aspects shown in FIG. 17.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The above-described drawing figures illustrate the disclosed invention in at least one of its preferred, best mode embodiments, which are further defined in detail in the following description. Those having ordinary skill in the art may be able to make alterations and modifications to what is described herein without departing from its spirit and scope. While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail at least one preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the invention to any embodiment illustrated. Therefore, it should be understood that what is illustrated is set forth only for the purposes of example and should not be taken as a limitation on the scope of the disclosed invention.



FIGS. 1-10 illustrate exemplary percussion instrument mounts in accordance with aspects of the disclosed invention.


A percussion instrument mount 10 comprises: a base 100 coupled to a swing arm 200 via a joint 300, the swing arm 200 configured to rotate about the joint 300 in response to a playing impact on a percussion instrument 20 coupled to the swing arm 200 via an instrument attachment mechanism 400; and a playing impact energy absorber 500 configured to absorb the rotation of the swing arm 200. The base 100 is also preferably coupled to a support structure 600, such as an instrument stand or kit frame, configured to support the percussion instrument 20 via the percussion instrument mount 10 on a playing surface, e.g., the ground or a stage.


The impact energy absorber 500 preferably absorbs the playing impact by progressively dampening the swing via magnetic field resistance. In particular, the respective strengths and locations of one or more magnets located in the percussion instrument mount 10 produce a magnetic field that defines an equilibrium position for the swing arm 200. Movement of the swing arm 200 away from the equilibrium position (e.g., due to playing impact) is resisted by the magnetic field, which provides a restoring force tending the swing arm 200 back towards the equilibrium position. Mechanical resistance or frictional resistance may also be provided, for example at various points of rotation, so as to dissipate the playing impact energy. Accordingly, playing impact energy transferred from the drum to the base 100 is significantly reduced, if not eliminated altogether.


Turning now to FIGS. 1-4, aspects of the percussion instrument mount 10 will be described in accordance with at least one embodiment.


The base 100 may comprise a first base portion 120 and a second base portion 140 having fixed relative positions with respect to each other. In particular, the first and second base portions may each comprise one or more grip elements 162 configured to secure the first and second base portions respectively to the support structure and/or an intermediate support 620.


The support structure and/or intermediate support preferably comprises at least one rod 640 having at least one longitudinal groove 642 formed therein and configured to accept a corresponding grip element 162 so as to form a sliding joint 160 via which the first and second bases are configured to slide longitudinally along the rod so as to adjust their relative positions with respect to the rod and each other. Moreover, in at least some embodiments, the first and second bases are able to be removably joined with the rod via the sliding joint 160. That is to say that first and second bases may be slid off of and on to the rod via engaging respective grip elements and grooves. In at least some embodiments, each groove and corresponding grip element together form a quasi-dovetail sliding joint, however, other sliding joints may be utilized without departing from the scope of the invention.


Each of the first and second base portions also preferably includes one or more fasteners configured to secure the first and second base portions to the support structure and/or intermediate support in respective fixed positions relative thereto. The fasteners may, for example, comprise threaded fasteners whose contact can be tightened and loosened via screwing and unscrewing the fastener so as to forcibly contact a wall of the support structure and/or intermediate support and thereby provide and remove a frictional staying force.


In some embodiments, the base 100 comprises a unitary base (not shown), including at least one corresponding grip element similarly configured to secure the base 100 to the support structure and/or the intermediate support.


The swing arm 200 may be a substantially rigid integral structure comprising: a first arm portion 220, a second arm portion 240, and a third arm portion 260 integrally connecting the first and second arm portions.


The first arm portion 220 is coupled to the first base portion 120 via the joint 300—and is thereby configured to swing or otherwise rotate about the joint 300 in response to the playing impact on the percussion instrument 20 coupled thereto.


As shown in FIGS. 1-4, the joint 300 is preferably a hinge joint comprising a hinge bolt 320 that couples the first arm portion 220 to the first base portion 120 via respective through-holes 340. The hinge joint may provide mechanical resistance so as to dissipate playing impact energy.


Accordingly, the hinge bolt 320 may further be provided with a deformable sheath 360 positioned between the outer surface of the hinge bolt 320 and the inner surface of the through-hole 340 of the first arm portion 220. To the extent alternative joint constructions are utilized, e.g., ball-and-socket joint, the deformable sheath 360 may engage appropriate pivot point structures of the joint 300.


A pressure exerting element 380 may extend through the first arm portion 220 substantially perpendicular to the through-hole 340 so as to engage with the sheath 360 and exert pressure thereon. This deforms the sheath 360 so as to adjust the frictional resistance to rotation of the hinge bolt 320. The pressure exerting element is preferably a threaded element (e.g., an Allen fastener, etc.) so as to enable control of the amount of pressure—and therefore frictional resistance—applied.


The third arm portion includes the instrument attachment mechanism 400, which is configured to attach the percussion instrument 20 to the swing arm 200. As shown in FIGS. 1-3, the instrument attachment mechanism 400 may comprise a slot 420 formed in the third arm portion, through which a fastener 440 secures mounting hardware 460 configured to accept the supported percussion instrument 20. Preferably, the fastener may be loosened and tightened so as to permit the mounting hardware to slide within the slot, thereby repositioning the mounting hardware with respect to the swing arm 200 and thereby adjusting the angle properties of the mounted instrument.


The second arm portion 240 extends distal to the first arm portion 220, and at least partially forms the playing impact energy absorber 500. As shown in FIGS. 1-3, the playing impact energy absorber 500 comprises at least one magnet pair 520, each magnet pair comprising a swing arm magnet 522 and a base magnet 524. The at least one magnet pair is configured to impart the aforementioned magnetic restoring force, tending the swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position. In at least one embodiment, the at least one magnet pair includes two magnet pairs.


The magnetic restoring force may be repulsive and/or attractive. Arrangement of the respective magnets of the magnet pairs such that their like polarities face each other provides a repulsive magnetic restoring force. In operation, the weight of the instrument causes the swing arm 200 to move the swing arm 200 magnet and base arm magnet closer together than when in the equilibrium position. The repulsive magnetic force then reestablishes the swing arm 200 in the equilibrium position. Arrangement of the respective magnets of the magnet pairs such that their unlike polarities face each other provides an attractive magnetic restoring force. In operation, the weight of the instrument causes the swing arm 200 to move the swing arm 200 magnet and base arm magnet further apart than when in the equilibrium position. The attractive magnetic force then reestablishes the swing arm 200 in the equilibrium position. Accordingly, movement of the swing arm 200 away from the equilibrium position (e.g., due to playing impact) is resisted by the magnetic field caused by the at least one magnet pair, which provides the restoring force tending the swing arm 200 back towards the equilibrium position.


In at least one embodiment, the relative distance between the respective magnets of the magnet pair in equilibrium is adjustable so as to vary the repulsive/attractive forces and/or the equilibrium position. For example, the base magnet may include an outer thread that couples with an inner thread of a magnet aperture of the base 100, and a turnkey portion that facilitates a screwing motion for extending or retracting the base magnet from the magnet aperture thus altering the magnetic field (e.g., work force values).


As shown, for example, in FIGS. 4-7, the support structure comprises at least one rod having at least one longitudinal surface groove 642 formed therein. In some embodiments, a further grip element 162 couples the base 100 (or the intermediate support) to the support structure in the manner of the grip elements described herein. In at least one embodiment, the further grip element 162 is coupled to the base 100 so as to enable the base 100 to rotate about its longitudinal axis (i.e., vertical z-axis) so as to adjust the playing position of the mounted percussion instrument 20.


The at least one rod preferably forms a frame on which the percussion instrument mount 10 (and consequently, the percussion instrument 20) is mounted. Accordingly, a plurality of rods may be coupled together at various joints, which joints may be configured to permit the rods to rotate about their longitudinal axis relative to each other. The joints may further be configured to fix the rotational position of each rod. In some embodiments, frictional elements (e.g., screws) are utilized at the joint to fix the rotational position of each rod. In this manner, the playing position of the mounted percussion instrument 20 may be further adjusted.


Turning now to FIGS. 5-10, aspects of at least one alternative embodiment are shown. Structural elements having similar functions are referred to with corresponding reference numerals of the embodiments shown in FIGS. 1-4, and for the sake of brevity will be described hereinafter in terms of their functional differences.


As shown in FIGS. 5-10, the base 100 is configured to couple to the support structure. For example, in at least some embodiments, the base 100 is configured to securely receive a rod of the support structure and/or an intermediate support.


The base 100 is further coupled to the swing arm 200 via the joint 300, which preferably comprises one or more hinge joints configured to permit the swing arm 200 to swing or otherwise rotate about the joint 300 in response to the playing impact on the percussion instrument 20 coupled thereto. The hinge joints may further provide mechanical resistance so as to dissipate playing impact energy.


The swing arm 200 further includes the instrument attachment mechanism 400, which is configured to attach the percussion instrument 20 to the swing arm 200. As shown in FIGS. 5-10, for example, the instrument attachment mechanism 400 may be configured to securely accept mounting hardware via which the instrument is supportable on the mount 10.


In some embodiments (not shown) the instrument attachment mechanism 400 may be slideably coupled to the swing arm 200, either directly or via an intermediate piece, such that its longitudinal position relative to the swing arm 200 (i.e., along the z-axis) may be adjusted. Accordingly, corresponding grip elements may be utilized in the manner similarly discussed herein so as to achieve this functionality. The instrument attachment mechanism 400 may also permit rotational adjustment about the x-axis and/or the y-axis so as to adjust the playing angle and/or additionally rotate/invert the drum 180 degrees for tuning the opposing drum head of the instrument without disengaging the instrument from the attachment mechanism 400. Such adjustment may be mechanically enabled either via the direct coupling or the indirect coupling. In some embodiments, an intermediate piece is configured to couple the instrument attachment mechanism 400 to the swing arm 200, as well as to enable such adjustment.


The playing impact energy absorber 500 may comprise: a dampening arm 560 configured to rotate about an intermediate hinge point 562; a swing arm coupler 570 configured to couple the dampening arm 560 to the swing arm 200 at respective terminal hinge points 564 and 566; a magnet block 580 configured to provide the magnetic restoring force.


As shown in FIGS. 5-10, the swing arm coupler 570 preferably includes a first hinge structure 572 defining the terminal hinge point of the dampening arm 560. The first hinge structure is preferably configured to couple the terminal hinge point of the dampening arm 560 to an intermediate arm 574. The intermediate arm is in turn coupled to a swing arm sleeve 576 via a second hinge structure 578 defining the terminal hinge point of the swing arm 200.


The swing arm sleeve preferably defines a hollow that is configured to accept the swing arm 200 therein such that the sleeve may be repositioned along at least a portion of the length of the swing arm 200. Accordingly, in at least some embodiments, the swing arm 200 and swing arm sleeve employ a sliding joint configuration. It is further preferable that the position of the swing arm sleeve on the swing arm 200 is fixable via a fastener, e.g., a screw. In this manner, the bias of the dampening arm 560 may be adjusted so as to improve sound quality of the mounted instrument.


As shown in FIGS. 5-10, the dampening arm 560 further includes an elongated aperture 564 that receives a third hinge structure 568 defining the intermediate hinge point. The third hinge structure is preferably repositionable within the elongated aperture so as to adjust the intermediate hinge point, thereby compensating for different shell construction/weight sonic properties of various percussion instrument 20s. Accordingly, the third hinge structure preferably couples the dampening arm 560 to the support structure and/or intermediate support via a dampening arm sleeve 570. The dampening arm sleeve is structurally similar to the swing arm sleeve—except that it couples the third hinge structure to the support structure and/or intermediate support. Additionally, the variable third hinge structure regulates leverage (force) transferred to the magnet field, also effecting the equilibrium stabilization position.


As shown in FIGS. 5-10, the dampening arm 560 is further coupled to the magnet block 580 at the opposite end from the swing arm coupler 570. The magnet block 580 preferably houses at least one magnet block magnet 582 that forms part of at least one magnet pair. The base 100 houses at least one corresponding base magnet opposite the magnet block magnet, the base magnet forming the other part of the at least one magnet pair. The magnetic forces of the at least one magnet pair defines the equilibrium position for the magnet block 580 (and consequently the swing arm 200). The at least one magnet pair is accordingly configured to impart the aforementioned magnetic restoring force, tending the dampening arm 560/swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position. In at least one embodiment, the at least one magnet pair includes two magnet pairs. As with the previously described magnet pairs, the equilibrium distances between the individual magnets may be adjustable.


In operation the playing impact cases the swing arm 200 to rotate about the joint 300. The rotation of the swing arm 200 is then translated to the dampening arm 560 via the swing arm coupler 570, which dampening arm 560 is thereby caused to rotate about the intermediate hinge point defined by the third hinge structure. The rotation of the dampening arm 560 then forces the magnet block 580 out of the equilibrium position, which results in the magnet pair providing the restoring force to the magnet block 580. The restoring force is then translated through the corresponding counter-rotation of the dampening arm 560 and the swing arm 200. The joint 300, and optionally, one or more of the hinge structures provide mechanical and/or frictional resistance so as to further dissipate the playing energy.


As shown in FIGS. 8-10, the playing impact absorber may comprise a system in which opposing dampening arms are arranged on either side of the swing arm 200. The opposing dampening arms may each individually couple to the magnet block 580, the intermediate hinge, and the swing arm 200 in the manners described herein.


Turning now to FIGS. 9-10, in at least some embodiments, the mounting hardware is configured to rotate in a plane perpendicular to plane of rotation of the swing arm 200. Accordingly, the mounting hardware may comprise an instrument support element 462 configured to accept the instrument for support thereon. The instrument support element may, for example, comprise top and inner surfaces shaped to form a substantially flush fit with a drum exterior, as well as mounting apertures extending through the top surface and positioned so as to accept hardware components of the drum and thereby secure the drum to the instrument support element. The instrument support element may further be fixed to a rotational element 464 configured to couple the instrument support element to the swing arm 200 so as to rotate perpendicular to the plane of the rotation of the swing arm 200.


It will be understood that, although the illustrated embodiments shows hinge structures that enable the swing arm 200 swinging in a plane whereby the range of rotational motion sweeps out an arc with the second arm portion 240, the inventive concepts described herein are intended to also include alternative joint structures that permit alternative ranges of motion of swing arm 200, e.g., where the swing arm 200 sweeps out a spherical cap surface via e.g., a ball and socket joint or compound perpendicular hinge joint. Accordingly, such configurations would utilize appropriately positioned magnet pairs to set equilibrium positions and provide restorative forces. The extension of the inventive aspects described herein to such configurations is expressly contemplated.


Moreover, while the use of a magnetic restoring force is described herein, other restoring forces (e.g., spring forces, elastomer forces or combinations of dislike mechanical forces) and corresponding structures may be utilized without departing from the scope of the invention.



FIGS. 11 thru 13 illustrate exemplary embodiments in which non-magnetic restoring forces are utilized in accordance with the principles described herein. The non-magnetic restoring force may be provided by one or more non-magnetic restoring elements, including: inflatable bladders (FIG. 11), foam cushions (FIG. 11), compression springs (FIG. 12), and elastic bands (FIG. 13). As with the magnetic restoring force, the non-magnetic restoring force may be repulsive and/or attractive.


The exemplary embodiments FIGS. 11 thru 13 will now be described. It will be understood, however, that similar structures and features to other embodiments will not be described again here for the sake of brevity, although one of ordinary skill in the art will understand that such descriptions are similarly applicable, where appropriate.



FIG. 11 illustrates an exemplary embodiment that includes at least an inflatable bladder 592 type restoring element. The inflatable bladder 592 may be gas or liquid inflatable via a fill valve 593, and may have an elasticity that imparts a predetermined amount of restoring force. The inflatable bladder 592 may tend the swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position.



FIG. 11 also illustrates a foam cushion 594 type restoring element. The foam cushion 594 may have an elasticity that imparts a predetermined amount of restoring force. The foam cushion 594 may tend the swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position.



FIG. 12 illustrates an exemplary embodiment that includes at least a compression spring 596 type restoring element. The compression spring 596 may have an elasticity that imparts a predetermined amount of restoring force. The compression spring 596 may tend the swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position.



FIG. 13 illustrates an exemplary embodiment that includes at least an elastic band 598 type restoring element. The elastic band 598 may have an elasticity that imparts a predetermined amount of restoring force. The elastic band 598 may tend the swing arm 200 back towards the equilibrium position when the swing arm 200 is moved from the equilibrium position.


As illustrated in FIGS. 11 thru 13, in some embodiments, the playing impact energy absorber 500 may include restoring elements (e.g., magnets, bladders, foam, springs, elastic bands, etc.) positioned to one or both of a load side and a stabilizing side of the swing arm 200. As used herein, the load side is the side to which the swing arm 200 initially moves in response to playing impact on the drum, and takes the initial load of the impact, whereas the stabilizing side is opposite the load side, and provides an additional restoring force.


Returning to FIG. 13, for example, in some embodiments, the elastic band type restoring element 598 may comprise a load-side elastic band restoring element 598a and/or a stabilizing-side elastic band restoring element 598b. Tension in the load-side elastic band 598a restoring element may be adjustably provided as follows: one end of the load-side elastic band 598a may be fixed to the swing arm 200; the intermediate portion of the load-side elastic band 598a may pulley-like engage a post 599 at the base 100; and the other end of the load-side elastic band 598a may be fixed to an end tensioner 599a in the support structure 600 (or alternatively, in the base 100). The position of the end tensioner 599a may be adjusted so as to increase and/or decrease tension in the load-side elastic band 598a. Such adjustability may be via fixedly repositioning the end tensioner 599a within a slide slot, or may be via fixedly rotating the tensioner to progressively wrap the load-side elastic band thereabout. In some embodiments, the post 599 may alternatively or additionally comprise an intermediate tensioner 599b. Tension in the stabilizing-side elastic band 598b may be adjustably provided in similar fashion via one or more end tensioners 598a and/or intermediate tensioners 599b. Tension (and thus the restoring force) may further be adjusted via the adjustment of the second base portion 140 along the support structure 600 via the grooves 642.


It will further be understood that the load and stabilizing sides may include the same type of restoring element, or may include different types of restoring elements. This is illustrated, for example, in FIG. 11, which shows the load side having the inflatable bladder 592 and the stabilizing side having the foam cushion 594 types of restoring elements. Although not expressly shown, any other combination of restoring elements (magnetic and/or non-magnetic) may be utilized without departing from the scope of the invention.


In addition, while the mount 10 is described herein as mounting drums 20, the principles of the invention may also be applied to cymbals 1400 and other percussion instruments (not shown). FIG. 14 illustrates an exemplary embodiment in which the principles of the invention are applied to a cymbal mount 10a, where the cymbal 1400 is partially shown via the hatched lines.


As shown, a base 100a may be coupled to a swing arm 200a via a joint 300a. The swing arm 200a may be configured to rotate about the joint 300a in response to a playing impact on the cymbal 1400 coupled to the swing arm 200a via a cymbal attachment mechanism 400a. A playing impact energy absorber 500a may be configured to absorb the rotation of the swing arm 200a. The base 100a is also preferably coupled to a support structure 600a, such as an instrument stand or kit frame, configured to support the cymbal 1400 via the percussion instrument mount 10a on a playing surface, e.g., the ground, stage or kit.


In accordance with the principles described herein, the impact energy absorber 500a preferably absorbs the playing impact by progressively dampening the swing via magnetic field resistance. In particular, the respective strengths and locations of one or more magnets 522a, 524a located in the cymbal mount 10a produce a magnetic field that defines an equilibrium position for the swing arm 200a. Movement of the swing arm 200a away from the equilibrium position (e.g., due to playing impact) is resisted by the magnetic field, which provides a restoring force tending the swing arm 200a back towards the equilibrium position. Mechanical resistance or frictional resistance may also be provided, for example at various points of rotation, so as to dissipate the playing impact energy. Accordingly, playing impact energy transferred from the cymbal to the base 100a is significantly reduced, if not eliminated altogether.


Moreover, similarly to the drum-based embodiments described herein, other non-magnetic restoring forces (e.g., spring forces, elastomer forces or combinations of dislike mechanical forces) and corresponding structures may be utilized without departing from the scope of the invention. As with the magnetic restoring force, the non-magnetic restoring force may be repulsive and/or attractive, and may be provided by one or more restoring elements, as discussed herein.


In at least some embodiments, the cymbal mount 10a is configured such that the cymbal is moveable along the swing arm 200a, towards/away from the hinge 300a, so as to alter the leverage with respect to the impact energy absorber 500a. As shown in FIG. 15, for example, the cymbal attachment mechanism 400a may couple the cymbal to the swing arm 200a via an actuator 480. The actuator 480 may be positioned internal to the swing arm 200a. The actuator 480 may include a longitudinal screw portion 482 configured to freely rotate therein, as well as a threaded nut portion 484 accepting the screw portion 482 therein such that rotation of the screw portion 482, via an exposed end thereof, causes the nut portion 484 to longitudinally traverse the screw portion 482. The nut portion 484 may be coupled (integrally or non-integrally) to a central shaft 486 of the cymbal attachment mechanism 400a. Rotation of the screw portion 482 may therefore move the cymbal towards/away from the hinge 300a, altering the sonic properties of the cymbal.


The principles of the invention described herein may also be applied to mounting drums (or other percussion instruments) on floor legs 490c, as shown, for example, in FIG. 16. In such embodiments, the swing arm 200c and base 100c of the mount may comprise a clam-shell arrangement, in which, opposite the hinge 300c, each engages the floor leg 490c in a respective through aperture. The base 100c may fixedly engage the floor leg 490c, while the swing arm 200c freely engages the floor leg 490c, such that a lug (or other structural portion) of the drum rests on top of the swing arm, forcing it towards the base. Additionally, or alternatively, the leg mount 10c may support the drum leg 490c on the floor, the swing arm 200c fixedly coupling to the drum leg 490c while the base 100c rests on the floor or other support. The restoring force may be provided by any the energy absorber utilizing one or more of the restoring elements discussed herein, or principles thereof, including magnetic and non-magnetic restoring elements, and is opposite the force exerted by the drum resting on top of the swing arm. Accordingly, the leg mount 10c ultimately supports the drum and absorbs the playing impact via the energy absorber.



FIGS. 17-18 illustrate exemplary embodiments in which the principles of the invention described are applied to leg rest mounted percussion instruments. In such embodiments, the hinge joint 710 couples the base 720, which is connected to a leg rest 730, to the swing arm 740, which is connected to the percussion instrument 790 (e.g., a drum) via a mount 750. As is known in the art, the leg rest 730 is generally configured to rest on a user's leg 1700, which is shown in planar cross-section in FIG. 17 via the hatched lines.


In accordance with the principles discussed herein, the base 720 and the swing arm 740 include respective opposing magnets 722, 742, which together provide a repulsive force that at least partially absorbs the otherwise falling motion of the percussion instrument that corresponds to the closing clam-shell motion of the base 720 and swing arm 740. In this manner, the opposing magnets 722, 742 establish an equilibrium position about which the playing impact of the percussion instrument is absorbed. Indeed, the respective opposing magnets 722, 742 preferably provide magnetic field repulsion sufficient to fully “catch” the percussion instrument such that contact between the base 720 and the swing arm 740 is prevented during use.


In at least some embodiments, one or more adjustments may be made to vary the impact absorption. For example, as shown in FIGS. 17-18, one or both of the opposing magnets 722, 742 may be adjustable so as to vary the strength of the magnetic field therebetween. Each such adjustable magnet 722, 742 may comprise a threaded exterior that mates with corresponding through apertures 723, 743 of the base 720 and the swing arm 740 so as to be linearly displaceable with respect to the its corresponding base 720 or swing arm 740.


In at least some embodiments, the leg rest 730 may be adjustably connected to the base 720. For example, as shown in FIGS. 17-18, one or more of the swing arm 720, the leg rest 730, the base 740 and the mount 750 may include a plurality of positioning apertures 702 via which the physical moment arm may be adjusted. The leg rest 730 and base 720 may respectively include positioning apertures 702 via which a fastener 704 may affix the leg rest 730 to the base 720. The swing arm 740 and the mount 750 may include may respectively include positioning apertures 702 via which a fastener 704 may affix the swing arm 740 to the mount 750. The positioning apertures 702 may, for example, be arranged vertically, so as to enable an adjustment to the physical moment arm.


As shown in FIG. 17, the mount 750 is preferably in the form of a so-called “free-floating” mount that engages the tie rods of the percussion instrument 790 without penetrating the shell of the percussion instrument 790. Exemplary principles of so-called “free-floating” mounts are discussed in U.S. Pat. No. 6,028,257, issued on Nov. 24, 1997, which is hereby incorporated by reference in its entirety. In at least one embodiment, the mount 750 is configured so as to provide access to the swing arm magnet 742 so as to permit manual adjustment thereto.


While the embodiments described with reference to FIGS. 17-18 refer to magnetic field absorption of the playing impact energy, such impact energy absorption may also be accomplished by non-magnetic configurations, in accordance with the principles discussed herein.


As shown in FIG. 18, the hinge joint 710 may comprise a hinge bolt coupling respective cylindrical receptacles of the base 720 and swing arm 740. The hinge joint 710 may also include a frictional resistance adjustment mechanism 712, whereby the frictional resistance to the pivoting of the hinge joint 710 may be adjusted. The frictional resistance adjustment mechanism 712 may comprise a deformable sheath or washer, such that the tightening of the hinge bolt with respect to a hinge nut causes the deformable sheath or washer to deform, thereby increasing the frictional resistance to the pivoting of the hinge joint 710. Thus, mechanical resistance may be provided, so as to further dissipate the playing impact energy.


The enabled features described in detail above are considered novel over the prior art of record and are considered critical to the operation of at least one aspect of the invention and to the achievement of the objectives of the invention. The words used in this specification to describe the exemplary embodiments are to be understood not only in the sense of their commonly defined meanings, but also to include any special definition with regard to structure, material or acts that would be understood by one of ordinary skilled in the art to apply in the context of the entire disclosure.


The definitions of the words or drawing elements described herein are meant to include not only the combination of elements which are literally set forth, but all equivalent structures, materials or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements described and its various embodiments or that a single element may be substituted for two or more elements in a claim without departing from the scope of the invention.


Changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalents within the scope intended and its various embodiments. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. This disclosure is thus meant to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, what can be obviously substituted, and also what incorporates the essential ideas.


The scope of this description is to be interpreted in conjunction with the appended claims.

Claims
  • 1. A percussion instrument leg mount, comprising: a base that supports a percussion instrument in a playing position on a user's leg;a swing arm coupled to the percussion instrument, the swing arm also coupled to the base via a joint such that the swing arm rotates about the joint from an equilibrium position in response to a playing impact on the percussion instrument; anda playing impact energy absorber that provides a restoring force to the swing arm so as to return the swing arm to the equilibrium position.
  • 2. The mount of claim 1, wherein the playing impact energy absorber progressively dampens the swing via magnetic field resistance.
  • 3. The mount of claim 2, wherein the magnetic field resistance is adjustable.
  • 4. The mount of claim 1, wherein the playing impact energy absorber comprises: at least one magnet pair, including: at least one first magnet coupled to the swing arm, and at least one second magnet coupled to the base, the magnetic pair generating a magnetic field defining the equilibrium position and providing the restoring force.
  • 5. The mount of claim 1, wherein the joint includes a frictional element configured to provide frictional resistance to the rotation of the swing arm.
  • 6. The mount of claim 1, wherein the joint is a hinge joint that permits the swing arm to pivot thereabout in a two-dimensional plane.
  • 7. A cymbal mount, comprising: a base that supports the cymbal in a playing position;a swing arm coupled to the cymbal, the swing arm also coupled to the base via a joint such that the swing arm rotates about the joint from an equilibrium position in response to a playing impact on the cymbal; anda playing impact energy absorber that provides a restoring force to the swing arm so as to return the swing arm to the equilibrium position.
  • 8. The mount of claim 7, wherein the playing impact energy absorber progressively dampens the swing via magnetic field resistance.
  • 9. The mount of claim 8, wherein the magnetic field resistance is adjustable.
  • 10. The mount of claim 7, wherein the playing impact energy absorber comprises: at least one magnet pair, including: at least one first magnet coupled to the swing arm, and at least one second magnet coupled to the base, the magnetic pair generating a magnetic field defining the equilibrium position and providing the restoring force.
  • 11. The mount of claim 7, wherein the joint includes a frictional element configured to provide frictional resistance to the rotation of the swing arm.
  • 12. The mount of claim 7, wherein the joint is a hinge joint that permits the swing arm to pivot thereabout in a two-dimensional plane.
  • 13. A drum leg attachment, comprising: a base that supports the drum in a playing position on a surface;a swing arm coupled to a leg of the drum, the swing arm also coupled to the base via a joint such that the swing arm rotates about the joint from an equilibrium position in response to a playing impact on the drum; anda playing impact energy absorber that provides a restoring force to the swing arm so as to return the swing arm to the equilibrium position.
  • 14. The mount of claim 7, wherein the playing impact energy absorber progressively dampens the swing via magnetic field resistance.
  • 15. The mount of claim 8, wherein the magnetic field resistance is adjustable.
  • 16. The mount of claim 7, wherein the playing impact energy absorber comprises: at least one magnet pair, including: at least one first magnet coupled to the swing arm, and at least one second magnet coupled to the base, the magnetic pair generating a magnetic field defining the equilibrium position and providing the restoring force.
  • 17. The mount of claim 7, wherein the joint includes a frictional element configured to provide frictional resistance to the rotation of the swing arm.
  • 18. The mount of claim 7, wherein the joint is a hinge joint that permits the swing arm to pivot thereabout in a two-dimensional plane.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 16/292,191, filed on Mar. 4, 2019, which is a continuation of PCT International Application No. PCT/US19/013335, filed on Jan. 11, 2019. U.S. application Ser. No. 16/292,191 is also a continuation-in-part of U.S. application Ser. No. 15/872,718, filed on Jan. 16, 2018, which is a continuation of PCT International Application No. PCT/US18/013566, filed Jan. 12, 2018, which claims priority to U.S. Appl. No. 62/536,402, filed Jul. 24, 2017, and to U.S. Appl. No. 62/446,207, filed Jan. 13, 2017. The entire contents of each of the aforementioned applications are hereby expressly incorporated by reference herein.

US Referenced Citations (27)
Number Name Date Kind
2245883 Walberg Jun 1941 A
3779618 Soglia et al. Dec 1973 A
3780613 Ludwig, Jr. Dec 1973 A
4158980 Gauger Jun 1979 A
4188853 Bills Feb 1980 A
4334458 Grauso Jun 1982 A
4669349 Hyakutake Jun 1987 A
4753408 Wailes Jun 1988 A
4779509 Weir Oct 1988 A
5046700 Hoshino Sep 1991 A
5140889 Segan et al. Aug 1992 A
5337645 Johnston Aug 1994 A
5520083 Falkner, Jr. May 1996 A
5544561 Isomi Aug 1996 A
5600080 Belli Feb 1997 A
6028257 May Feb 2000 A
6102358 McLeary Aug 2000 A
6195839 Patterson et al. Mar 2001 B1
6623015 Schill et al. Sep 2003 B2
7960634 Gauger Jun 2011 B2
8237038 Gauger Aug 2012 B2
8242343 Jones et al. Aug 2012 B2
9293122 Martin Mar 2016 B1
20050274854 May Dec 2005 A1
20100307316 Jones et al. Dec 2010 A1
20130000460 Johnston Jan 2013 A1
20160217775 May Jul 2016 A1
Foreign Referenced Citations (3)
Number Date Country
11-502640 Mar 1999 JP
2007-256625 Oct 2007 JP
2016-173417 Sep 2016 JP
Non-Patent Literature Citations (1)
Entry
Japanese-language Japanese Notice of Allowance in Japanese application No. 2019-558995 dated Nov. 2, 2021 (Three (3) pages).
Related Publications (1)
Number Date Country
20210012757 A1 Jan 2021 US
Provisional Applications (2)
Number Date Country
62536402 Jul 2017 US
62446207 Jan 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/013566 Jan 2018 US
Child 15872718 US
Continuation in Parts (3)
Number Date Country
Parent 16292191 Mar 2019 US
Child 17031512 US
Parent PCT/US2019/013335 Jan 2019 US
Child 16292191 US
Parent 15872718 Jan 2018 US
Child PCT/US2019/013335 US