The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
Hereinafter, a drum type washing machine according to a first embodiment of the present invention will be described with reference to accompanying drawings.
As shown in
Openings 30a and 40a are formed at front center portions of the water reservoir 30 and the spin tub 40 so as to allow the user to put the laundry into the spin tub 40 or to take out the laundry from the spin tub 40. A door 20 is hinged to the front surface of the housing 10 so as to open/close the openings 30a and 40a of the water reservoir 30 and the spin tub 40. Lifters 40c are provided on the inner peripheral wall of the spin tub 40 at a predetermined interval. As the spin tub 40 rotates in the forward and reverse directions, the laundry placed in the spin tub 40 is moved upward and then dropped downward in the spin tub 40 by means of the lifters 40c, so that the laundry is washed.
The spin tub 40 includes a spin tub body 41 having a cylindrical shape and being installed lengthwise along the spin tub 40, in which front and rear surfaces of the spin tub body 41 are opened, and covers 42 and 43 covering the front and rear surfaces of the spin tub body 41. The covers 42 and 43 include a front cover 42 (see
The driving motor 50 includes a stator unit 51 fixed to the rear surface of the water reservoir 30, a rotor unit 52 rotatably installed around the stator unit 51, and a rotating shaft 53 having a first end installed at the rotor unit 52 and a second end installed at the rear cover 43 forming the rear surface of the spin tub 40 by passing through the water reservoir 30.
In addition, a shaft flange 60 provided at the center thereof with the rotating shaft 53 is fixed to the rear surface of the spin tub 40 so as to uniformly transfer the rotational force of the driving motor 50 to the spin tub 40, so that the spin tub 40 is rotated by receiving the rotational force of the driving motor 50 through the shaft flange 60.
The shaft flange 60 uniformly transfers the rotational force of the driving motor to various portions of the spin tub 40, thereby preventing excessive force from being transferred to a specific part of the spin tub 40. As shown in
In addition, the front and rear covers 42 and 43 that form the front and rear surfaces of the spin tub 40 are provided with balancers 70F and 70R, respectively. The balancers 70F and 70R rapidly reduce vibration of the spin tub 40, which is generated during the rotation of the spin tub due to unbalance of the laundry placed in the spin tub, thereby stabilizing the rotation of the spin tub 40 in the early stage. In the present embodiment, the balancer 70F installed at the front side of the spin tub 40 is referred to as a front balancer 70F and the balancer 70R installed at the rear side of the spin tub 40 is referred to as a rear balancer 70R.
A mass is installed in the balancers 70F and 70R in such a manner that the mass can move in the circumferential direction of the balancers 70F and 70R. If the unbalance occurs due to the weight of laundry placed in the spin tub 40, the mass accommodated in the balancers 70F and 70R moves in the circumferential direction so as to compensate for the unbalance. Thus, the vibration of the spin tub 40 caused by the unbalance mass can be rapidly reduced.
The rear balancer 70R installed at the rear cover 43 includes first and second balancer housings 71 and 72 having an annular shape and being coupled with each other such that a race 73, which is a moving route of the mass, can be formed therebetween, and a plurality of balls 74 is movably installed in the race 73 so as to serve as the mass. The first balancer housing 71 may be coupled with the second balancer housing 72 through fusion welding, etc.
According to the drum type washing machine of the present invention, at least a part of the rear balancer 70R is supported on the rear surface of the rear cover 43 by means of the shaft flange 60, so that the front and rear surfaces of the rear balancer 70R are supported on the rear surface of the rear cover 43 and the front surface of the arm section 62 of the shaft flange 60, respectively. Thus, even if the connection part between the first and second balancer housings 71 and 72 is broken due to long-period use, the first and second balancer housings 71 and 72 can be secured to each other. Since the first balancer housing 71 can be secured to the second balancer housing 72, the balls 74 installed in the rear balancer 70R can be prevented from moving out of the rear balancer 70R. According to the present embodiment, the shaft flange 60 includes three arm sections 62, so at least three spots of the rear balancer 70R are supported by means of the three arm sections 62.
In addition, in order to allow the rear balancer 70R to be supported by the rear surface of the rear cover 43 and the front surface of the arm section 62 of the shaft flange 60, a groove 43a is formed in the rear cover 43. The groove 43a has an annular shape corresponding to the shape of the rear balancer 70R such that the rear balancer 70R can be rested in the groove 43a. In addition, a part of the rear end portion of the spin tub body 41 protrudes toward the rear side of the rear cover 43, so that the end portion of the arm section 62 of the shaft flange 60 is fixed to the protruding part of the rear end portion of the spin tub body 41, as shown in
According to the present embodiment, a supporter 43b is provided at the outer peripheral end portion of the rear cover 43. The supporter 43b extends in the rear direction in parallel to the spin tub body 41 and the outer peripheral surface of the rear balancer 70R is supported on the inner surface of the supporter 43b and the end portion of the arm section 62 is fixed to the inner surface of the supporter 43b.
The rear balancer 70R applied to the drum type washing machine according to a second embodiment of the present invention includes first and second balancer housings 71 and 72 having an annular shape and being coupled with each other such that a race 73, which is a moving route of the mass, can be formed therebetween, and a plurality of balls 74 movably installed in the race 73 so as to serve as the mass. The shaft flange 80 includes a hub section 81 for installing the rotating shaft 53, and a plurality of arm sections 82 extending radially outward from the hub section 81 while being spaced apart from each other in the circumferential direction at a predetermined interval.
In addition, at least a part of the first and second balancer housings 71 and 72 constituting the rear balancer 70R is installed on the shaft flange 80 such that the first and second balancer housings 71 and 72 are supported against each other. Thus, even if the connection part between the first and second balancer housings 71 and 72 is weakened due to long-period use, the first and second balancer housings 71 and 72 can be secured to each other, thereby preventing the balls 74 installed in the race 73 from moving out of the race 73.
To this end, balancer supports 83, which are opened toward the rear surface of the spin tub 40 so as to support the rear balancer 70R installed thereon, are provided at outer end portions of the shaft flange 80. The balancer supports 83 extend from end portions of the arm sections 82 of the shaft flange 80 and are formed with mounting grooves 83a which are opened toward the rear surface of the spin tub 40 so as to mount the rear balancer 70R thereon. In addition, end portions of the balancer supports 83 are fixed to the spin tub 40 by means of a coupling member, such as a bolt, so that the shaft flange 80 can be fixed to the spin tub 40 through the balancer supports 83.
According to the present embodiment, the shaft flange 80 includes three arm sections 62 and three balancer supports 83 extend from end portions of three arm sections 62. Thus, as shown in
In this manner, if the rear balancer 70R is installed in on the shaft flange provided with the rotating shaft 53 through the mounting grooves 83a, the rotational center of the rear balancer 70R precisely matches with the rotational center of the rotating shaft 53. Accordingly, there is no need to perform precision work for matching the rotational center of the rear balancer 70R with the rotational center of the rotating shaft 53, so that assembly work for the drum type washing machine can be simplified.
As shown in
Since the annular groove 93a is formed in the balancer support 93 for mounting the rear balancer 70R, the front, rear, outer peripheral and inner peripheral surfaces of the rear balancer 70R are wholly supported by the rear surface of the spin tub 40 and the inner surface of the annular groove 93a. Accordingly, even if the connection part between the first and second balancer housings 71 and 72 is broken, the first and second balancer housings 71 and 72 can be secured to each other, thereby preventing the balls 74 from moving out of the race 73. In addition, impact caused by collision of balls 74 is partially transferred to the balancer support 93, so that impact applied to the first and second balancer housings 71 and 72 can be reduced. Thus, the connection part between the first and second balancer housings 71 and 72 can be protected from breakage.
As described above, according to the drum type washing machine of the present invention, since the balancer is supported on the rear surface of the spin tub by means of the shaft flange, the balls accommodated in the balancer can be prevented from moving out of the balancer, even if the balancer is broken due to long-period use.
In addition, according to the drum type washing machine of the present invention, the balancer is mounted on the shaft flange provided at the center thereof with the rotating shaft, so that the rotational center of the balancer can be easily matched with the rotational center of the rotating shaft.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-49497 | Jun 2006 | KR | national |