The present invention relates to steel-concrete composite beams, more specifically to prefabricated steel-concrete composite beam assemblies.
Steel-concrete composite beam assemblies are a new structural type developed on the basis of a steel structure and a concrete structure. A shear connector is provided between the lower steel beam and the upper concrete flange slab (concrete slab) so as to resist any separation and/or relative slippage and/or displacement at the joint, thereby having the steel beam and concrete slab work together so as to form an intergrally functioning beam assembly. Existing connecting methods for steel beams and concrete slabs of a steel-concrete beam assembly is to weld one end of the shear connectors to the steel beam and pour concrete on the remaining parts to connect them with the concrete slab, and thereby unite the steel beam and the concrete slab on the construction site. Adjacent concrete slabs are wet connected by pouring concrete at the construction site. Large amounts of steel bar binding, connection and concrete pouring work are involved to connect steel beams to concrete slabs, and concrete slabs to concrete slabs, which usually consumes much construction time. In addition, pollution accompanying on-site concrete pouring and curing is unavoidable; furthermore, once steel beams are connected to the concrete slabs and concrete slabs to each other, it is impossible to separate them, rendering it difficult to use repeatedly.
The present invention aims to address deficiencies in the above-mentioned prior art, to provide a dry connection prefabricated assembled steel-concrete composite beam assembly which is capable of effectively reducing on-site construction work volume and environmental pollution, accelerating construction speed, and are detachable and reusable so as to improve prefabrication component levels in civil engineering and reduce construction and maintenance costs of the structure.
The technical solution of the present invention is a dry connection, a prefabricated assembled steel-concrete composite beam assembly which includes a steel beam, a concrete slab made of steel bars and concrete, a steel plate connector made from steel plates, shear connectors and connecting rods, wherein the assembly further includes a pair of concrete slab connectors respectively comprising an upper connection plate, a lower connection plate, a horizontal connection plate, a triangular stiffening steel plate, and first and second shear connectors. On the upper surface of the horizontal connection plate there is vertically connected the upper connection plate and the first shear connector, and upon its lower surface, the lower connection plate. A triangular stiffened steel plate is welded between the lower surface of the horizontal connection plate and one side of the lower connection plate, and the second shear connector is horizontally connected to one side of the upper connection plate.
Both ends of a transversely oriented steel bar has its ends embedded in the concrete slab and are equipped with threads such that the threaded ends pass through holes defined within upper portions of the upper connection plate of the two inter-slab connectors and are fixed with nuts thereon. Shear connectors on the steel plate connector are located centrally underneath a transversely embedded steel bar in the concrete slab, and the horizontally disposed steel plate is parallel to the horizontal connection plates in both of the inter-slab connectors. Concrete is then poured so as to embed the steel bar within the concrete slab, the first and second shear connectors of the inter-slab connectors and those in the steel plate connectors are also embedded within the concrete slab, so as to form the prefabricated steel-concrete composite beam assembly.
The prefabricated steel-concrete composite assembly is then connected to the steel beam via a plurality of connecting rods which extend vertically beneath the steel plate of the steel plate connector and are welded to the upper horizontal cross-beam of the I-shaped steel beam so as to form the steel-concrete composite beam unit, which is also known as a steel-concrete composite beam assembly.
Compared with the prior art, the beneficial effects of the invention are as follows:
The prefabricated steel-concrete assembly of the present invention can be made in a workshop. It is only necessary to connect the assembly with the steel beam, and neighboring assemblies at the construction site. Consequently, steel bar binding, concrete pouring, and curing work, necessary in the prior art and resulting in environmental pollution is effectively avoided, which greatly improves prefabricated assemblies of structures in bridge construction, and to a large extent expedites construction development. In the meantime as the composite beam adopts the prefabricated steel-concrete structural form, it is easy to disconnect the prefabricated steel-concrete assembly and the steel beam and replace any damaged components in case that the bridge structure needs repairs. In addition, where the bridge is to be dismantled, it is possible to keep the prefabricated steel-concrete assembly and the steel beam intact, reuse them, and thereby effectively reduce bridge maintenance and reconstruction costs. In addition, with the prefabricated composite beam assembly, the length and width of the concrete slabs and the steel plate connectors can be adjusted according to specific bridge conditions, which makes it applicable for maintenance and reconstruction of bridges of any dimension.
The dry connection of the present invention denotes a connection wherein the connection between a concrete member and a steel member or concrete members is achieved mechanically (such as by welding, bolts and nuts, mortise and tenon) to form an integral structure, which is contrary to the conventional “wet connection” made by concrete casting on site.
As is shown in
Opposite ends of a horizontally oriented concrete steel reinforcing bar 301, which is embedded within the concrete slab 300, are respectively provided with threads, and both ends pass through bolt holes 509 and working holes 5010 disposed within the upper ends of the upper connection plates 501, which in turn are located near the plurality of second shear connectors 507, and are fixed with nuts 302 as best seen in
The prefabricated steel-concrete assembly is then adapted to be connected to the steel I-beam 400 by welding the connecting rods 103 of the steel plate connector 100 to the upper cross-beam of the steel I-beam 400 so as to form a steel-concrete composite beam unit, also called a steel-concrete composite beam.
External sides 508 of each inter-slab connector of neighboring steel-concrete composite beams can be joined together as shown within
The connection rods 103 of the steel plate connector 100 may comprise any round steel rods, threaded rods, or rivets. Connections of the connection rods to the steel plate 101 may be by welding where the connection rods are steel round rods or rivets, and by threaded connections where the connection rods are threaded rods. Connection methods between the connection rods 103 and the steel beam 400 may be bolting where the connection rods 103 are threaded rods, welding where the connection rods 103 are steel round rods, and riveting where the connection rods 103 are rivets.
The concrete used in the prefabricated concrete slab 300 may be conventional concrete, fiber concrete, reactive powder concrete, or coarse aggregate containing reactive powder concrete.
Number | Date | Country | Kind |
---|---|---|---|
201710607086.8 | Jul 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/113886 | 7/24/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/196376 | 11/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5682635 | Tolliver | Nov 1997 | A |
20060230706 | Skendzic | Oct 2006 | A1 |
20080072511 | Phuly | Mar 2008 | A1 |
20080282644 | Hong | Nov 2008 | A1 |
20110225927 | Kim | Sep 2011 | A1 |
20110265422 | Kim | Nov 2011 | A1 |
20190084183 | Phuly | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
106481023 | Mar 1917 | CN |
107227821 | Oct 1917 | CN |
1721636 | Jan 2006 | CN |
204199537 | Mar 2015 | CN |
2007-211507 | Aug 2007 | JP |
10-2006-0068694 | Jun 2006 | KR |