The present invention relates generally to fire protection sprinkler assemblies and in particular, dry fire protection sprinklers.
Generally, automatic fire protection sprinklers include a sprinkler frame and/or housing having an inlet, an outlet and internal passageway through which firefighting fluid flows and discharged to impact a fluid deflection member that is coupled to the sprinkler frame and spaced from the outlet. Fluid flow through the sprinkler is controlled by a thermally responsive trigger which supports a sealing assembly in a position that seals the internal passageway of the sprinkler. The trigger has a nominal operating temperature and thermal sensitivity to define the thermal responsiveness of the sprinkler at which the sprinkler actuates in response to a fire. Upon thermal actuation of the trigger in response to a fire, the trigger fractures or collapses thereby releasing the sealing assembly to allow the flow of fluid through the sprinkler internal passageway, out the outlet and toward the fluid deflection member. Fluid deflection members can be formed to a variety of geometries to suit a given fire protection application. The deflector geometries can be categorized into one of two types. One type of fluid deflection member presents a central abutment to the fluid discharge from the outlet opening and fans the fluid discharge radially. Such a deflector geometry is shown, for example, in U.S. Pat.t No. 7,766,252. An alternate type of deflection geometry defines an unencumbered fluid flow path. As used herein, an “unencumbered fluid flow path” provides for a fluid discharge column in which its central core is not impacted by any sprinkler structure and fanned radially. Instead, the fluid deflection member geometry acts on the periphery of the discharge column to direct the fluid stream in a desired manner Such a deflector geometry is shown, for example, in U.S. Pat. No. 7,712,218.
One type of automatic sprinkler is the dry sprinkler assembly. An example of a dry sprinkler is shown in U.S. Pat. No. 8,636,075. Dry sprinklers can be configured for installation in a variety of orientations depending upon the application. Dry sprinklers can be configured for an upright installation, a pendent installation or a horizontal installation. An example of a horizontal dry sprinkler is shown and described in U.S. Pat. No. 7,921,928. A dry sprinkler assembly generally includes a tubular sprinkler housing with an inlet end fluid opening and a discharge outlet opening axially spaced from the inlet opening with an internal passageway extending therebetween. An internal fluid control assembly is supported within the housing between the inlet and outlet openings by a frangible thermally responsive glass bulb trigger to seal the sprinkler at the fluid inlet. When the bulb fractures in response to a fire, a component of the fluid control assembly is ejected from the outlet of the housing allowing the remainder of the fluid control assembly to axially translate out of its sealed position thereby opening the fluid inlet and sprinkler internal passageway. To ensure proper opening and operation of a dry sprinkler assembly, it is important that the ejected member completely clear the sprinkler structure and fluid flow path between the housing and the fluid deflection member. Accordingly, there remains a need for dry sprinkler assemblies and in particular for dry horizontal sidewall sprinkler assemblies that can properly eject the fluid control component for a variety of housing member and deflection member configurations.
Preferred embodiments of an automatic dry fire protection sprinkler assembly and more preferably, an automatic dry horizontal sidewall fire protection sprinkler assembly and their method of operation are provided. The preferred sprinkler assembly generally includes an elongate tubular outer housing having a first end and a second end opposite the first end. Within the tubular housing, an internal conduit extends from the first end to the second end along a longitudinal sprinkler axis. The first end of the housing defines a fluid intake end of the sprinkler assembly having an inlet opening and an internal sealing surface proximate the inlet opening. The second end of the housing defines a fluid discharge end of the sprinkler assembly having an outlet opening and a preferred internal channel and contact surface proximate the outlet opening. A fluid deflection member is affixed to the housing at a preferably fixed distance from the outlet opening.
The sprinkler is preferably an automatic sprinkler in which fluid flow through the sprinkler is regulated by a thermally responsive trigger assembly and a preferred internal fluid control assembly disposed within the housing. The trigger defines an unactuated state of the sprinkler assembly in which the trigger supports the internal fluid control assembly within the housing to form a fluid tight seal with the internal sealing surface. Upon thermal operation of the trigger, an actuated state of the sprinkler assembly is defined in which the internal fluid control assembly axially translates out of contact with the internal sealing surface.
The preferred fluid control assembly includes an ejectable member that is ejected out the outlet opening and displaced out of the fluid flow path between the housing and the fluid deflection member. In the preferred sprinkler assembly, a preferred structural and dynamic relationship is defined by a preferred mechanical interface between the ejectable member and the housing which ensures proper and complete ejection of the ejectable member. More specifically, upon trigger actuation, the sprinkler assembly and mechanical interface form a preferred surface interaction between the ejectable member and the internal channel and contact surface. The internal channel axially guides the fluid control assembly to inhibit and more preferably prevent rotation of the fluid control assembly about the sprinkler axis. The surface contact between the ejectable member and the internal shelf causes the ejectable member to pivot out clear of the sprinkler housing and the fluid flow path between the housing and the deflection member.
In one preferred embodiment of a dry sprinkler assembly, a tubular outer housing has one end forming an inlet end of the sprinkler assembly and an opposite end of the housing forming an outlet end of the sprinkler assembly defining an outlet opening. The outlet end preferably includes an internal axially extending channel. An internal conduit extends between the inlet end and the outlet end to house a preferred internal fluid control assembly that controls the flow of fluid therethrough. The fluid control assembly includes a seal subassembly located within the inlet end and a preferred support subassembly located within the outlet end interconnected with the seal subassemblies. The preferred support subassembly assembly includes a projection member that is received in the axially extending channel to guide the fluid control assembly in an axial translation from an unactuated state of the sprinkler assembly in which the seal subassembly forms a sealed engagement with a sealing surface to an actuated state of the sprinkler assembly in which the seal subassembly is spaced from the sealing surface.
A preferred method of operating an automatic dry sprinkler is provided that includes actuating a thermally responsive trigger; axially translating a fluid control assembly disposed within the internal conduit of an outer tubular housing; and inhibiting relative rotation between the fluid control assembly and the outer tubular housing. Another preferred method of operation is for operating an automatic dry sprinkler having an outer tubular housing with an outlet opening and a fluid deflection member affixed to the housing at a fixed distance from the outlet opening to define a fluid flow path for a column of fluid discharged from the outlet opening. The preferred method includes actuating a thermally responsive trigger axially aligned along the fluid flow path between the outlet opening and the fluid deflection member; and axially translating a projection member affixed to an ejectable member of an internal fluid control assembly within an axially extending channel formed along an inner surface of the housing proximate the outlet opening.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and together, with the general description given above and the detailed description given below, serve to explain the features of the invention. It should be understood that the preferred embodiments are some examples of the invention as provided by the appended claims.
Shown in
The sprinkler 10 is an automatic sprinkler in which fluid flow through the sprinkler is regulated by a thermally responsive trigger assembly 39 and a preferred internal fluid control assembly 100 disposed within the housing 12. The trigger 39 defines an unactuated state of the sprinkler assembly 10 in which the trigger 39 supports the internal fluid control assembly 100 within the housing 12 to form a fluid tight seal with the internal sealing surface 22 to seal the rest of the sprinkler assembly from the supply pipe. Upon thermal operation of the trigger 39 in response to a level of heat indicative of a fire, an actuated state of the sprinkler assembly 10 is defined in which support of the fluid control assembly 100 has been removed which permits the internal fluid control assembly 100 to axially translate out of contact with the internal sealing surface 22 under the fluid pressure in the fluid supply pipe of the system and/or an internal spring (not shown) that biases the fluid control assembly out of contact with the internal sealing surface 22. Firefighting fluid delivered to the intake end 10a of the sprinkler assembly flows through the internal conduit 18 and the internal fluid control assembly 100 and is discharged out of the outlet opening 24 of the housing 12 along a fluid flow path for effective fluid distribution fire protection by the fluid deflection member 30 affixed to the housing 12 preferably at a fixed distance from the outlet opening 24 which defines a frame window therebetween.
The fluid control assembly 100 includes an ejectable member that is translated out of the internal conduit 18 of the housing, ejected out the outlet opening 24 and displaced out of the fluid flow path between the outlet opening 24 and the fluid deflection member 30. In the preferred sprinkler assembly 10, a preferred structural and dynamic relationship between the ejectable member and the housing ensure proper guided and complete ejection and displacement of the ejectable member out of the fluid discharge fluid flow path. Generally, the ejectable member preferably defines a preferred mechanical interface with the housing, which facilitates ejection of the ejectable member through the housing outlet opening and out of the fluid flow path upon thermal actuation of the sprinkler. More specifically, upon trigger actuation, preferred embodiments of the mechanical interface include a surface contact between the ejectable member of the fluid control assembly 100 and an internal surface of the housing 12 to guide the ejectable member out of the housing 12 and pivot out of the frame window and clear of fluid flow path. The member is ejected into the frame window with the member initially coaxially aligned with the central sprinkler axis and then skewed with respect to the central longitudinal sprinkler axis upon the member contacting the internal contact surface. Moreover, the preferred structural and dynamic relationship between the ejectable member and the housing 12 define a spatial and temporal coordination between the axial translation of the ejectable member and its pivot out of the fluid flow path by axially guiding the ejectable member and inhibiting or otherwise preventing its angular rotation about the central longitudinal axis X-X.
In preferred embodiments of the sprinkler assembly 10, the fluid deflection member 30 is located at a fixed distance from the outlet opening 24. To locate the deflector, the sprinkler housing 12 preferably includes a pair of frame arms 27a, 27b that are diametrically opposed about the outlet opening 24 and extend axially away therefrom. The frame arms 27a, 27b can converge toward the central longitudinal axis X-X and form a coaxially aligned fluid deflection boss, for example as seen in U.S. Pat. No. 8,636,075, which the fluid deflection member 30 can be affixed. In such an embodiment, the deflection member 30 can include or define a central portion that, together with the deflection boss, presents an abutment to the fluid discharge from the outlet opening 24 to redirect and spread the discharged fluid from its center to fan the fluid radially outwardly to provide for an effective horizontal fluid distribution.
In alternate preferred embodiments of the sprinkler assembly 10, as shown in
In the preferred embodiments of the sprinkler housing 12, the pair of frame arms 27a, 27b terminate at and more preferably form an annular boss 28. The annular boss 28 extends between the frame arms 27a, 27b and is preferably centered about the sprinkler axis X-X. The fluid deflection member 30 is preferably affixed to the annular frame boss 28 to locate the fluid deflection member 30 at the preferred fixed distance from the outlet opening 24. With specific reference to
As seen in
The tabs 32a, 32b and their edges each define a preferably polygon-shaped geometry with features that can be similar to one another. For example, each of the preferred tabs 32a, 32b, can have parallel lateral edges that extend perpendicularly between the leading and trailing edges. The spacing between the lateral edges define the width of the tabs 32a, 32b with the length of the lateral edges defining the length of the tabs 32a, 32b. The widths of the tabs 32a, 32b may similarly or variably range between 0.300 inch to 3.000 inches and lengths of the tabs 32a, 32b can similarly or variably range between 0.200 to 1.300 inches. More preferably, the tabs 32a, 32b are geometrically configured differently. In the preferred embodiment of the fluid deflection member 30 of
In a preferred fluid deflection member 30, the leading edge 34b of the second tab 32b preferably defines a width smaller than the leading edge 34a of the first tab 32a with a central linear edge portion and two lateral linear edge portions disposed about the central portion. The leading edge 34b of the second tab 32b is preferably configured such that the central linear edge portion is closer to the leading edge 34a of the first tab 32a than the two lateral linear edge portions of the second leading edge 34b. The second tab 32b also preferably includes a central closed formed slot 42 extending in a direction perpendicular to the leading edge. Moreover, in another preferred aspect, the trailing edge 36b of the second tab 32b includes a pair of open-ended slots 44 disposed about the central linear edge portion at the leading edge 34b and the central slot 42. The open-ended slots 44 initiate from the trailing edge 36b toward the leading edge 34b of the second tab 32b.
The tabs 32a, 32b can be affixed to or integrally formed with the preferred annular boss 28. More preferably, the tabs 32a, 32b are formed with and extend from an annular base 46 which is preferably affixed internally to the annular boss 28 of the housing 12. Accordingly, the annular base 46 of the fluid deflection member 30 is dimensioned to be centered within the annular boss 28 and moreover is preferably dimensioned to define and maintain the unencumbered fluid flow path of the sprinkler assembly 10. With reference to
The housing 12 and the fluid control assembly 100 define and maintain the preferred unencumbered fluid flow path of the preferred assembly 10 by keeping operational components clear of the fluid flow path upon sprinkler operation. Referring again to FIGS. lA and 1B, a preferred embodiment of the fluid control assembly 100 includes a seal subassembly 102 and a fluid flow tube 104 which forms a discharge orifice end 106 opposite the seal subassembly 102. Abutting the discharge orifice end 106 is a support subassembly 110 which forms the preferred ejectable member of the fluid control assembly 100. Generally, the ejectable support subassembly 110 includes a post member 112 with a projection member 114 affixed to the post member 112 that extends radially outward from the post member 112. Within the housing 12 is an internal contact surface or shelf 26 formed proximate the outlet opening 24. Adjacent the contact shelf 26, the internal surface of the housing 12 preferably includes a formed axially extending channel 62 proximate the outlet opening 24 contiguous with the internal shelf 26. The projection member 114 is received within the channel 62 to axially and rotationally guide the support subassembly 110 and the rest of the fluid control assembly 100 toward the internal contact shelf 26 upon thermal actuation of the sprinkler assembly. The post member 112 is ejected out of the outlet opening 24 to bring the projection member 114 in contact with the internal shelf 26 so as to impart a rotation on the support subassembly 110 and pivot the support subassembly 110 out of the fluid flow path from the outlet opening 24 to the fluid deflection member 30.
Shown in
In the preferred embodiments shown, the recessed channel region 62 is defined by a depth DP measured in the radial direction preferably from the central axis X-X, a width WD1 measured perpendicular to the radial direction between a pair of channel sidewalls 64 and its axial length LD which is preferably 3.5 to 4 times greater than the width WD1. The width WD1 is sufficiently broad to permit axial translation of the projection member 114 within the channel 62 to contact the internal contact surface 26 and sufficiently narrow to limit or otherwise inhibit and more preferably prevent rotation of the support subassembly 110 about the sprinkler axis X-X and the relative rotation between the support subassembly 110 and the outer housing 12. The channel 62 is preferably located so as to be centered between the frame arms 27a, 27b to locate the pivot for the support subassembly 110 that is centered between the frame arms 27a, 27b. The width WD1 of the channel 62 is greater than a width WD2 of the projection member 114 and preferably 10-30% greater than the width of the projection member 114 and more preferably 10-15% greater than the width WD2 of the projection member 114. In a preferred embodiment in which the channel width WD1 is preferably no more than 1.25 times the width WD2 of the projection member 114 and more preferably 1.2 to 1.15 times the width WD2 of the projection member 114. The depth DP of the channel 62 preferably increases in the axial direction toward the internal shelf 26. In another preferred aspect, the preferred channel 62 defines one or more dimensional relationships with other features of the externally threaded body 50, for example, the channel width and length define preferred respective ratios with the diameter DIA of the outlet opening 24. For example, a preferred outlet diameter-to-channel width ratio (DIA:WD1) preferably ranges from 3.5:1 to 4:1 and is preferably 3.75:1. A preferred channel length-to-outlet diameter ratio (LD:DIA) preferably ranges from 1:1 to 1.1:1. In a preferred embodiment, the outlet diameter DIA is 0.75 inch.
Shown in
In the support subassembly 110, the projection member 114 preferably extends radially from the post member 112 and more preferably from the neck portion 124. As shown, the projection member 114 is preferably a separate component disposed and secured about the head and neck portions 122, 124 of the post member 112. The preferred projection member 114 includes an arcuate portion 116a that at least partially circumscribes and more preferably completely circumscribes the neck portion 124 of the post member 112 and a rectilinear portion 116b extending radially from the arcuate portion. The support subassembly 110 preferably includes a pip cap 130 centered within the cylindrical body 120 to support the thermally responsive trigger 39 in the unactuated state of the sprinkler assembly. The support subassembly 110 is seated against the thermally responsive trigger 39 to locate the fluid flow assembly 100 within the housing 12 such that the projection member 114 is within the channel 62 and axially spaced from the internal contact surface 26. In the unactuated state of the assembly, the seal subassembly 102 forms a fluid-tight sealed engagement with the internal sealing surface 22. Together, the post member 112 and the pip cap 130 preferably substantially fill the outlet opening 24 substantially concealing the internal conduit 18 of the housing 12. In the actuated state of the sprinkler assembly 10 upon thermal actuation of the trigger 39 and ejection of the support subassembly 110, the remainder of the fluid control assembly 100 is axially translated in which the seal subassembly 102 is spaced from the sealing surface 22.
In the unactuated state of the sprinkler assembly 10, the thermally responsive trigger 39 is seated preferably at a fixed distance from the outlet opening 24 as shown in
In the preferred embodiment of the sprinkler assembly 10 shown in
In a preferred horizontal installation and upon sprinkler thermal actuation in which the trigger 39 ruptures, the preferred support subassembly 110 is ejected horizontally parallel to the floor and the seal subassembly 102 and fluid flow tube 104 translate horizontally toward the outlet opening 24. When the projection member 114 contacts the internal contact surface 26, the support assembly 110 pivots between the frame arms 27a, 27b about an axis parallel to Z-Z axis and clear of any sprinkler structure to avoid any lodgment of the support subassembly 110. With the support subassembly 110 ejected clear of the sprinkler assembly 10, the inlet opening 20 and the discharge orifice are fully open and the fluid flow path are clear for flow of firefighting fluid therethrough to impact the fluid deflection member 30.
The remaining components of the preferred fluid control assembly 100, including the seal assembly 102 and the fluid flow tube 104 can each be configured and assembled using multiple components. For example, as shown in
In the actuated and open state of the sprinkler assembly 10, the translation of the fluid control assembly 100 locates the discharge orifice 106 within the body 50 at the fluid discharge end 10b of the housing 12 proximate the outlet opening 24. Fluid flowing through the inlet opening 20 flows at a preferred operating pressure, through the fluid flow tube 104, out the discharge orifice 106 and the outlet opening 24 to define the fluid discharge column that is acted upon by the axially spaced fluid deflection member 30. The discharge orifice is preferably configured and dimensioned to define the desired discharge characteristics of the sprinkler. Accordingly, the discharge orifice 106 can be quantified by a preferred nominal K-factor. The discharge or flow characteristics from the sprinkler body is defined by the internal geometry of the sprinkler including its internal passageway, inlet and outlet (the orifice). As is known in the art, the K-factor of a sprinkler is defined as K=Q/P1/2, where Q represents the flow rate (in gallons/min GPM) of water from the outlet of the internal passage through the sprinkler body and P represents the pressure (in pounds per square inch (psi.)) of water or firefighting fluid fed into the inlet end of the internal passageway though the sprinkler body. Generally, the discharge characteristics of the sprinkler body define a preferred nominal K-factor in a range of 4 [GPM/(psi)1/2] to 50 [GPM/(psi)1/2]. Preferred embodiments of the sprinkler body define a nominal K-factor which preferably ranges from a nominal 4.0 [GPM/(psi)1/2] to 14.0 [GPM/(psi)1/2]. More preferably, the sprinkler body defines a K-factor of any one of 4.0 [GPM/(psi)1/2]; 4.2 [GPM/(psi)1/2] or 4.4 [GPM/(psi)1/2]. Alternatively, the sprinkler body can define K-factors smaller or larger than the preferred range depending upon the application.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
The application claims the benefit of U.S. Provisional Patent Application No. 63/003,580, filed Apr. 1, 2020, which is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/024879 | 3/30/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63003580 | Apr 2020 | US |