The disclosed inventive concept relates to cast metal parts having increased damping capacity. More particularly, the disclosed inventive concept relates to dry friction damped mechanical and structural metal components and methods of manufacturing same. Damping is capacity is increased by providing sheathed cables or ropes comprising plural individual wires that are either linear or twisted relative to one another and are embedded into the part during casting. The strength of the individual wires is preferably higher than that of the casting alloy.
Mechanical and structural components such as vehicle suspensions, engine blocks, turbine blades and discs, and support structures for motors, pumps, centrifugal machines and the like are commonly subjected to vibration. When this occurs, these components experience a periodic motion in alternately opposing directions from the position of equilibrium which induces loads that can lead to reduced component life.
In certain engineering systems, for example, those made from plastics, elastomers, or other polymerized materials that inherently have a relatively high damping capacity, the vibrational energy associated with their periodic motion is gradually converted to heat or sound as a result of the internal material damping. Thus the system response, that is, displacement amplitude in its components, gradually decreases, which extends safe and reliable usable operating life.
Conversely, in other engineering material systems having relatively low damping capacity (such as ductile cast iron, aluminum or other cast metals), the decay of vibration amplitude is very slow. As an undesirable consequence, such systems are at a higher risk of failure due to fatigue resulting from cyclic variations of the induced stress. An increase in the damping capacity of a metallic material is highly desired in order to reduce overall vibration and, ultimately, system failure.
There are two general groups of contacts that generate friction damping. The first group includes contact between nominally conforming surfaces that do not have a relative rigid-body motion between the surfaces. This is the case of bolted or riveted joints, braided wire ropes, and gas turbine blades. The second group includes contacting surfaces that also have a relative whole-body motion. This is the case of damper rings in gears (solid inserts in brake rotors and damper rings in a brake rotor) and so-called “beanbag” dampers consisting of granular materials (including a body with a filler and loose-mass damper system in brake rotors).
In the first case, relative motion, sometimes referred to as micromotion, may not reach slip conditions, and friction remains in the “static” range associated with tangential stiffness. In the second case, full slip can develop between the surfaces. In any type of contact, friction damping has a preferred range of contact force (contact pressure) within which it becomes most effective. Below such an optimum range, excess relative motion at the interface develops without significant energy dissipation. Above the optimum range, excess contact pressure limits the development of relative motion for friction to act as an effective damper.
Contact pressure between two surfaces depends on their contact geometry and elastic properties which are known to change with surface temperature and temperature gradients. The operating temperature range for metal parts is very wide (from −40° C. after overnight soaks outside in cold climate areas during winter time up to 500° C., e.g., during an operation near the open sources of heat or inside the engine block). Since unwanted metal part failure due to fatigue might occur during any temperature conditions, the change in friction damper effectiveness with the part temperature should be minimized.
Existing technology for friction dampers for metal parts cannot achieve this goal since current knowledge assumes a constant full slip condition between, for example, a rotor and insert surfaces or between insert and filler surfaces. In reality, the full slip condition between the part and insert surfaces or between insert and filler surfaces may change with a change in the part temperature due to unavoidable thermal distortion of the sliding interface resulting in a change in contact pressure from its desired optimal value. Since even a relatively small distortion of an interface between the solid bodies (i.e., continuous inserts) may result in a significant change in contact pressure between them, the deviation of contact pressure from its optimal value may be very large compromising friction damper effectiveness.
In view of the state of the art, it may be advantageous to provide cast mechanical and structural components with appropriate cast-in components that aid in damping. As in so many areas of manufacturing technology, there is always room for improvement related to friction damping relative to interacting mechanical and structural components.
The disclosed inventive concept provides a method and system for increasing damping capacity in cast metal parts by utilizing dry friction between individual wires of a rope wrapped in a thin metal layer. The wrapped rope is embedded into the part during the casting process. The individual wires allow inter-wire friction to occur during part vibration. Wrapping (or sheathing) the ropes in a thin layer of a suitable metal having a melting point equal to or greater than that of the casting alloy prevents molten metal from infiltrating individual wires during the casting process, thus allowing the desired inter-wire friction to be experienced during the part vibration. The strength of the individual wires is preferably higher than that of the casting alloy, thereby increasing the amount of friction damping that the inter-wire friction provides to the damped metal component.
There are two primary ways to distribute the ropes within a metal part during casting according to the disclosed inventive concept. The first way is to distribute the ropes uniformly across an entire part at select locations. Correspondingly, the damping capacity of the metal part increases uniformly as well. The second way of distributing the ropes in the metal part is to spatially distribute them following a specific pattern to increase the damping capacity only in the part regions that have the highest vibration amplitudes or stress during system vibration. Depending on the application, a combination of two ways for spatial distribution of the ropes is also possible.
The first way of producing a frictionally damped mechanical part according to the disclosed inventive concept incorporates continuous wrapped metal ropes formed into specific shapes which are strategically positioned within a part mold prior to the casting process. To ensure stability of the wrapped ropes within the mold during the casting process, the ropes are supported with tabs made of a suitable metal having a melting point equal to or greater than that of the casting alloy.
The second way of producing a frictionally damped mechanical part according to the disclosed inventive concept is directed to parts for which only specific regions may experience high levels of vibration during usage. In such cases, the sheathed metal ropes are first positioned within a purpose-built mold to produce a cast frictionally damped insert. The insert shape is itself defined by the geometry of the region that may experience the highest vibration levels. The wrapped ropes are positioned in such a way as to maximize friction damping within the insert. After the casting is complete, the frictionally damped insert is put inside the entire metal part mold where it is supported with tabs made of the same metal as was used in the casting process. Again, the tabs are preferably made from a suitable metal that has a melting point equal to or greater than that of the casting alloy.
The use of embedded ropes as friction dampers for metal parts by relying on the “static” inter-wire friction force to dampen the undesired metal part vibration helps to minimize the impact of the friction damper thermal distortions with the part temperature. Due to its flexible structure, the ropes can undergo relatively large elastic distortions without any noticeable change in contact pressure between the individual wires. Thus, disclosed inventive concept delivers stable damping properties for many metals over the wide range of operating temperatures. One or both versions of the proposed inventive concept may be applied to a broad variety of structures including, without limitation, vehicle suspensions, engine blocks, gas turbines, wind mills, jet engines, building vibrations, or virtually any engineering component exposed to vibration.
The above advantages and other advantages and features will be readily apparent from the following detailed description of the preferred embodiments when taken in connection with the accompanying drawings.
For a more complete understanding of this invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples of the invention wherein:
In the following figures, the same reference numerals will be used to refer to the same components. In the following description, various operating parameters and components are described for different constructed embodiments. These specific parameters and components are included as examples and are not meant to be limiting.
The accompanying figures and the associated description illustrate the construction and use of vibration-damping ropes according to the disclosed inventive concept. Particularly,
Referring to
Referring to
Referring to
The length and diameter of the vibration-damping rope shown in
The wires are preferably made of steel although other metals may be selected for this use. The wires within the vibration-damping rope may be made of the same metal or of different metals. The metal sheathing is preferably although not absolutely formed from the same material as the component in which it is cast.
The vibration-damping rope of the disclosed inventive concept has virtually unlimited applications and may be employed in any metal component regardless of shape and application. Because of the many conceivable variations of rope length and diameter, it may be adapted for a virtually unlimited number of uses without compromising its dampening effectiveness. Accordingly, so as not to limit the broad use of the invention as a vibration dampener according to the disclosed inventive concept, the vibration-damping rope of the disclosed inventive concept is illustrated in use in a hypothetical part in
With reference thereto, a hypothetical part 20 is illustrated in perspective view. The hypothetical part 20 may be virtually any part in which vibration dampening is desired, such as a support structure or cantilevered beam. The hypothetical part 20 is attached to a base 22 of any type. A plurality of continuous vibration-damping ropes 24 for friction damping is disposed within the hypothetical part 20. To assure that each continuous rope 24 is properly positioned in the final cast hypothetical part 20, each vibration-damping rope 24 is fitted with one or more insert locators, such as insert locators 26 and 26′. The insert locators 26 and 26′ are used to locate each of the rope relative to the mold (not shown) prior to the mold being filled with flowing metal.
As noted above, the vibration-damping ropes of the disclosed inventive concept have a virtually unlimited number of specific uses. Such uses include, but are not limited to, vehicle brake rotors, engine blocks and flywheels. Each of these applications is illustrated and discussed hereafter.
The use of vibration-damping ropes in a brake rotor is illustrated in
Embedded within the brake rotor insert 30 is at least one vibration-damping rope. Preferably though not absolutely, two vibration damping ropes are provided in a ring form, including an outer vibration-damping rope 36 and an inner vibration-damping rope 38.
Referring to
Once the brake rotor insert 30 is formed, it is positioned within a brake rotor mold (not shown) with the insert locators 34 extending between the two mold halves. The insert locators 34 assure that the brake rotor insert 30 will be properly positioned within the mold before and during the casting operation.
After the rotor casting 50 is formed, the portions of the insert locators 34 that extend beyond the periphery of the rotor disk 54 are removed as shown in
The use of vibration-damping ropes in an engine block is illustrated in
Two vibration-damping rope inserts, insert 60 and insert 60′, are shown as being positioned in an engine block 80 in
The position of the vibration-damping rope inserts 60 and 60′ within the engine block 80 is shown in
A portion of the engine block 80 having the vibration-damping rope inserts 60 and 60′ positioned therein is illustrated in
While
The rope 92 includes a plurality of wires 94 wrapped or otherwise encased in a metal sheathing 96. The rope 92′ includes a plurality of wires 94′ wrapped or otherwise encased in a metal sheathing 96′. And the rope 92″ includes a plurality of wires 94″ wrapped or otherwise encased in a metal sheathing 96″.
As an additional non-limiting use of the vibration-damping ropes of the disclosed inventive concept, the ropes are suggested for use in an engine flywheel. In a conventional flywheel of the type shown in
To overcome the vibration of the flywheel by damping, the vibration-damping rope system of the disclosed inventive concept may be employed as illustrated in
A base plate 118 that shares the central flywheel hub 116 is provided. To dampen vibration of the flywheel 110, one or more vibration-damping rope inserts may be cast therein. Particularly, and as shown in
The inner vibration-damping rope 122 includes a metal sheathing 126 that wraps around or otherwise encases a plurality of wires 128. The outer vibration-damping rope 124 includes a metal sheathing 130 that wraps around or otherwise encases a plurality of wires 132.
In addition to the inner vibration-damping rope 122 and the outer vibration-damping rope 124 formed in the base plate 118, one or more additional vibration-damping ropes may be provided in different locations of the flywheel 110. For example, the vibration-damping rope may be provided in the body 112 of the flywheel 110 in the form of an insert 134 that includes a vibration-damping rope 136 in the form of a ring. The vibration-damping rope 136 includes a metal sheathing 138 that wraps around or otherwise encases a plurality of wires 140. Additional vibration-damping ropes may be strategically provided in other locations in the ring including further inboard of the body 112 than the position of the insert 134.
One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3286799 | Shilton | Nov 1966 | A |
5004078 | Oono | Apr 1991 | A |
5184663 | Oono | Feb 1993 | A |
5310025 | Anderson | May 1994 | A |
5358080 | Donabedian | Oct 1994 | A |
5855257 | Wickert | Jan 1999 | A |
6112865 | Wickert | Sep 2000 | A |
6151898 | Hogan | Nov 2000 | A |
7644750 | Schroth et al. | Jan 2010 | B2 |
7975750 | Dessouki et al. | Jul 2011 | B2 |
8028739 | Walker | Oct 2011 | B2 |
8056233 | Carter | Nov 2011 | B2 |
8104162 | Golden et al. | Jan 2012 | B2 |
8118079 | Hanna et al. | Feb 2012 | B2 |
8245758 | Hanna et al. | Aug 2012 | B2 |
8511440 | Kappagantu | Aug 2013 | B2 |
9568062 | Walker | Feb 2017 | B2 |
9714684 | Badino | Jul 2017 | B2 |
9841072 | Karpenko | Dec 2017 | B2 |
20070235270 | Miskinis | Oct 2007 | A1 |
20130256143 | Schroth et al. | Oct 2013 | A1 |
20160097433 | Karpenko | Apr 2016 | A1 |
20160341269 | Karpenko | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
934096 | Aug 1963 | GB |
Number | Date | Country | |
---|---|---|---|
20180073588 A1 | Mar 2018 | US |