None.
The dry ice delivery method of the current invention gives one an effective alternative when using dry ice as a temperature lowering means in a portable cooler or other cooling compartment and it eliminates problems associated with the use of gel packs or wet ice as the cooling vehicle when trying to maintain a consistently low temperature in a cooling compartment. By arranging various insulating and breathable materials, each separately or in conjunction with the other, and the dry ice or cooler contents, one can effectively regulate the temperature of a cooling compartment by controlling the rate at which dry ice sublimates. Due to the wide range of temperature regulation that can be achieved when using dry ice, one has greater flexibility when preserving the contents stored in a portable cooler or other cooling compartment; from above freezing (greater then 32° F.), down to sub-zero temperatures, and other temperatures in between. Further, an anti-freeze bag made out of breathable material can assist in regulating the temperature of a cooling compartment in several ways. For example, different liquids freeze at varying temperatures and when a cooling compartment is kept just below 32° F., water tends to freeze first. Water bottles can be encapsulated in the anti-freeze bag allowing them to remain liquid, while other drinks that are also in the cooler's storage area, remain in the liquid state as well. Preferred embodiments of this invention also include a vented module that houses dry ice while it is encapsulated in insulating and breathable materials, or a combination of materials, allowing for the temperature of a cooling compartment to be regulated within a temperature range targeted for the cooler's contents while also allowing individuals to safely touch the dry ice module without getting injured. Dry ice is made of CO2 (carbon dioxide gas) the sublimation of which is the cooling vehicle in this present invention. Further, because of its molecular make-up CO2 is heavier than atmospheric air and it falls to the lowest point possible. Therefore, the dry ice module of the present invention should be placed somewhere near the top of a cooler or other cooling compartment in which it is used so the CO2 gas will fall downward and spread throughout the cooling compartment. When the insulating and breathable materials that make-up the dry ice module are assembled in a manner to achieve a desirable temperature, the build up of pressure from the CO2 gas accumulated within the cooling compartment is typically inconsequential, even when the lid is not opened for an extended period of time.
Portable devices are commonly used for cooling food, beverages, medications, and other items in and around the home, as well as away from home. In addition, commercial applications of portable coolers include, but not limited to, the shipment of perishable items, the transport of temperature sensitive medicines, samples to laboratories and the transport of donor organs to medical facilities. Many coolers used for such purposes are non-electric and configured to use wet ice as the primary means of temperature regulation. However, to store items longer than a day and ensure adequate temperature regulation for the cooler's contents, one must repeatedly drain from the cooler a large majority of the surplus water created from the melted ice and add a fresh supply of wet ice. This process is time consuming, messy, does not provide a uniform temperature for the cooler contents over an extended period of time, has the potential to soak and ruin inadequately protected items in the cooler that are adversely affected by water, and requires a renewable source of wet ice. Although wet ice is widely available in gas stations, motels, convenience stores, restaurants, and similar commercial establishments, when temperatures surrounding the cooler are significantly elevated, the refilling of such coolers with fresh supplies of wet ice may be needed more than once a day to maintain the temperature of their contents below a desired level for option consumption and/or spoilage prevention. In the alternative, gel packs and other refreezable pre-packaged products are available for use in coolers instead of wet ice, or in combination therewith. However, to be reused, they have the disadvantage of requiring refreezing in an independent cooling chamber, such as a household freezer, which is not typically available during travel away from home. The amount of cooling time provided depends upon their size and they are rigid which takes up cooler space that otherwise could be devoted to stored items requiring cooling. Further, although the gel packs and other refreezable pre-packaged products are commonly available and eliminate the messiness associated with wet ice, they are not typically large enough to provide temperature regulation for periods longer than are possible with wet ice. It would therefore be useful to have a method of temperature regulation for portable coolers and other portable and non-portable cooling compartments that can maintain lowered temperatures for the contents in the cooling compartments during extended periods of time without refurbishment, maintain a temperature range to protect the contents within a cooling compartment from spoilage, and provide temperature regulation without the mess associated with wet ice and other liquid media, while also providing the ability to cool or freeze contents at a level far below conventional cooling means.
It is the primary objective of the present invention to provide a system of temperature regulation for portable coolers and other portable and non-portable cooling compartments that can maintain lowered temperatures for the contents therein during extended periods of time without the mess associated with wet ice and other liquid media. It is also an objective of the present invention is to provide a system of temperature regulation for cooling compartments that can be used to maintain the temperatures of contents that are frozen or at temperatures just above freezing. A further objective of the present invention to provide a system of temperature regulation for cooling compartments that maintains a narrow range of temperature during the entire time of its use to protect the contents therein from spoilage. It is also an objective of the present invention is to provide a system of temperature regulation for cooling compartments that is user friendly, environmentally friendly, and requires little monitoring or refurbishment during use. It is a further objective of the present invention to provide a system of temperature regulation for cooling compartments that is made from durable materials and intended for repeated long term use. A further objective of the present invention to provide a system of temperature regulation for cooling compartments that can be employed with reusable and disposable coolers and containers. It is also an objective of the present invention is to provide a system of temperature regulation for cooling compartments that can be permanently built into new cooling compartments or easily retrofit to existing cooling compartments.
The current invention provides a system of temperature regulation for portable coolers and other portable and non-portable cooling compartments that allows them to be used for prolonging the useful life of perishable items such as but not limited to food, donor organs, and/or medical supplies stored therein by achieving and maintaining a pre-selected and narrowly targeted temperature range. In the alternative, the present invention can be used to maintain the temperatures of different beverages each at its individual optimal drinking temperature, even though such optimal temperatures are not the same. It comprises at least one dry ice module containing a quantity of dry ice, with vents incorporated into the dry ice module and venting means between the dry ice module and the cooling compartment or compartments where items needing temperature regulation are stored. When multiple cooling compartments are available in the same cooler, each can be maintained at independent temperatures, if needed. With the proper combination of rigid or flexible insulation and single or multiple layers of breathable materials, the sublimation of dry ice is slow and the temperature within the cooling compartments with which it is used is maintained in a narrow range. In the alternative, a neighboring cooling compartment can be used for a similar purpose as long as it is also insulated to prevent injury to any skin inadvertently touching its outside surface. The outside surface of the dry ice module, and cooling compartments used in the present invention will always be safe for a user to touch. It is also contemplated for the present invention to be configured to maintain the frozen state of frozen contents placed within the cooling compartments, as well as maintain contents above freezing, as needed. Use of an anti-freeze bag made from breathable material is one contemplated means of preventing the freezing of selected items and/or maintaining them within a targeted temperature range in a cooling compartment chilled to point where other items in the same cooling compartment are maintained in a frozen state or are otherwise maintained below 32° F. for optimum flavor or other purpose even though they do not attain a frozen state at such temperature. Therefore, bags made from breathable material can have different uses in the present invention when different contents are placed inside. When items such as but not limited to food, beverages, medicines, and other storage items are placed inside an anti-freeze bag, it can be used inside another cooling compartment. However, when a soft-sided cooler bag is used for item storage, it would not be made from breathable material. Although it is primarily intended for the present invention to be portable, size is not a limiting factor. Also, any form of dry ice can be used with the present invention, such as but not limited to block, pellets, cryo and/or any new form of dry ice that may be needed for a particular application. It is contemplated for the present invention to be configured for retro-fit to existing coolers, and also be configured for incorporation into new coolers. Also, venting of the sublimated gas into a cooling compartment occurs through vents incorporated into the dry ice module. As another option, the venting means incorporated in the dry ice module can be placed in association with a cooling compartment lid. One contemplated application in motorized vehicles, including boats and airplanes, involves the use of a designated recess in the trunk or a rear storage area, where the present invention is permanently mounted for the temporary storage of food, beverages, and other items, as needed. In the alternative, the present invention may be removably mounted in the designated recess.
The description herein provides preferred embodiments and should not be construed as limiting the scope of the present invention device. For example, variations in the size, configuration, and location of dry ice module, the size and material construction of any liners or dry ice module used; the type of dry ice used; and the number of dry ice modules and cooling compartments or storage areas used; other than those shown and described herein may be incorporated into the present invention.
Thus the scope of the present invention should be determined by the appended claims and their legal equivalents, rather than being limited to the examples given.
1. Dry Ice Module (made of insulating and breathable materials, each separately or in conjunction with the other, that houses the dry ice)
2. Insulating Material
3. Breathable Insulating Material
4. Non-Woven Breathable Material, Insulating or Not
5. Vent Holes
6. Detachable Dry Ice Module Lid
7. Dry Ice
8. Male Coupling
9. Female Portal
10. Cooling Compartment
11. One-Piece Cooling Compartment Lid
12. Cooling Compartment Lid Top
13. Cooling Compartment Lid Bottom
14. Anti-Freeze Bag
15. Cooling Compartment Stowage Area
The first preferred embodiment shown in