This disclosure is directed to a system and kit for achieving a specified compression of a dry glaze gasket by a glazing unit installed within a window receptor.
In commercial construction, glass is a versatile design element. It can serve decorative and functional purposes, and glass exterior facades are one of the most popular elements in modern mid- and high-rise design. Builders have numerous options for integrating glass into exterior walls, but two of the most common are curtain walls and window walls.
A window wall is achieved by placing glazing between a building's concrete slabs, using the slabs as structural support. Window walls have a break between the glass, with slab covers used to conceal the concrete. Window walls are often used in residential applications as they allow for more customizable sections such as windows and balcony doors. They are most commonly installed from the inside of a building, which is a safer, more efficient and more cost effective. Units are anchored at the head and sill and sealed in place using caulking.
Aside from advantages such as customizability, ease of installation and cost savings, window walls also require less engineering and safety considerations as the exterior wall is broken up by each floors' concrete slab, providing built-in fire stopping. Also, because the separation of each window wall unit creates a sealed space there is less noise transfer and energy loss. Further, if a unit becomes damaged and needs repair that specific unit can be removed and replaced without affecting the adjoining units.
With the advent of high performance reflective glasses, sealants, gaskets and other materials used in the glazing channel are exposed to considerable temperature extremes and high exposure to ultraviolet light. Temperatures of monolithic reflective glass in spandrel or non-vision areas have been measured at 190° F. This imposes considerable expansion and high temperature resistance requirements on all materials that encounter the glass. Depending on the type of glass, significant amounts of ultraviolet light can be reflected from the glass into the glazing material.
If the materials used in the glazing channel are affected by ultraviolet light, these materials most likely will degrade producing costly repairs on the project. Chosen glass materials must meet the architect's specifications for performance, which usually are: (1) Glass thickness and type (annealed, heat treated) to meet specified and wind load requirements, (2) Thermal efficiency requirements for both summer and winter conditions, (3) Aesthetic requirements, (4) Glass type to resist the potential of breakage due to thermal stress conditions, and (5) Building codes.
The glazing system should provide for minimum face clearances, edge clearances, and nominal bite. A nominal bite (the amount of overlap between the stop and the panel or lite) on the glass will provide adequate glass retention without excessive glass coverage. Adequate edge and face clearances will properly cushion the glass, thermally and mechanically isolate the glass framing members, and prevent glass to metal contact. Excessive glass coverage can increase thermal stresses at the glass edge. The glazing system must also have the capability of transferring wind and impact loads to the surrounding structure while cushioning the glass. It must accommodate thermal expansion and contraction of the frame and glazing materials.
Temperature differentials are caused by various adjoining material, shading patterns and shading devices. The receptor and glazing system must also prevent water penetration, prevent or minimize air infiltration or exfiltration, and create thermal barriers to prevent heat loss through the frame and condensation on the frame. At the same time, the system must also present an appearance consistent with design goals and retain its appearance and function over the anticipated life span of the building, given the maintenance program planned. The glazing system must also match any special performance required of the rest of the glazing components. Considerations that may influence the choice of glazing systems include the initial and replacement costs, and the workmanship available, since wet systems require better workmanship.
The installation of glass and the utilization of compression gaskets is referred to as dry glazing. Dry glazing systems utilize extruded gaskets as the glazing seals. This system is also referred to as compression gasket glazing because the system relies on compression of the glazing gasket to seal against air infiltration and water penetration. The gaskets are extruded to a specific shape to suit the application, often mating to an aluminum extrusion profile. Silicone, neoprene and ethylene propylene diene monomer (EPDM) are commonly used materials.
Dry glazing systems have become increasingly popular because they minimize on-site glazing requirements where craftsmanship, weather, and labor costs can adversely affect wet glazing methods. Nonetheless, even dry gasket systems typically require some strategic application when installed in the building condition.
Dry glazing is often used in a capture system wherein a heel bead is in the interior protected from UV exposure and provides a more reliable seal. The weather seal in these systems is produced by the compression of a dry gasket between a pressure plate and the glass surface. Failure to achieve adequate, uniform pressure on the gasket may result in air and water infiltration. Gaskets are generally designed to provide a uniform contact pressure of four to six pounds per inch to make the seal watertight and pressures of over ten pounds per inch should be avoided.
The system disclosed herein is for maintaining the specified compression of a glazing leg gasket extending around the entire exterior perimeter of a receptor. A receptor is defined as additional framing components that encase, or surround, one or more window and/or door components. These are typically found in a glazed assembly. Receptor frames are used to effectively contain and drain water that infiltrates the enclosed window/door assembly and the joints between the window and the receptor frame itself.
Because a window unit is fabricated to exacting tolerances, the nesting qualities of the receptor framing can be used to take up the variations in rough window openings. While window units are generally fabricated and glazed on the factory floor under controlled conditions, receptor frames are typically assembled in the field. The quality of the construction can be affected by bad weather, extreme temperatures, dust, debris, other work in progress nearby, workmanship and supervision issues as well as various other challenges.
Designers continue to specify receptor frames to benefit from their inherent features, including water management and accommodation of building structural deflection. Window installers often continue to exhibit a preference for receptor frames, given their ability to facilitate the window installation process—in particular, accommodation of construction tolerances.
The system as disclosed herein operates upon a glazing frame with an installed glazing unit. The system requires at least one sill anchor block disposed atop the receptor sill for engagement with the glazing frame. In addition, at least one head retention clip engages with the upper horizontal interior receptor frame and the upper interior horizontal glazing frame. The at least one head retention clip is adjusted to achieve the designed compression of the gasket.
It is an object of the system disclosed herein to provide a means to adjustably compress the glazing leg gasket installed within the receptor frame.
It is a further object of the kit disclosed herein to provide a highly cost-effective and readily obscurable from view means for achieving the desired uniform compression of the glazing leg gasket.
It is a further object of the kit disclosed herein to achieve an adequate and uniform pressure on the glazing gasket that will inhibit air and water infiltration.
It is a further object of the kit disclosed herein to provide a uniform contact pressure of four to six pounds per inch upon the glazing gasket to achieve a watertight seal.
These embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become clear to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any preferred embodiment disclosed.
Various objects, features, aspects and advantages of the disclosed subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawings in which like numerals represent like components. The contents of this summary section are provided only as a simplified introduction to the disclosure, and are not intended to be used to limit the scope of the appended claims.
The following description is of various exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the present disclosure in any way. Rather, the following description is intended to provide a convenient illustration for implementing various embodiments including the best mode. As will become apparent, various changes may be made in the function and arrangement of the elements described in these embodiments without departing from the scope of the appended claims.
The application of appropriate compressive forces by a glazing frame 42 upon the perimeter gasket 44 is critical to maintaining a tight seal to prevent intrusion of air and moisture at the interface 40 of the glazing frame 42 and the receptor frame 26. The system 10 as disclosed herein provides hardware components to achieve the designed compression of the perimeter gasket 44 by the glazing frame 42 installed within the receptor frame 26.
To provide overall context for the kit and system 10 disclosed herein,
As seen in
The thermal breaks 62, 64 are preferably configured to facilitate engagement with the horizontal exterior receptor dies 48, 50 on a first end surface 66, 68 and the horizontal interior receptor dies 58, 60 on the opposite end surface 70, 72. A wide range of end surface engagement configurations are contemplated by this disclosure. As noted above, the receptor frame sections 28, 30, 32, 34 to include the two oppositely disposed horizontal and two oppositely disposed vertical sections that include both the exterior and interior receptor sections are secured to the wall penetration surfaces by fasteners thereby rigidly securing the receptor frame 26 to the wall penetration surfaces.
The glazing unit 12, as previously noted and as seen in
As seen in
As seen in
The counteracting force applied by the upper interior frame die 94 pushes against the plate 102 when the adjustable fastener 102 is engaged against the flange 96 and the force is transferred to the wall 112 of the main body member 106. The wall 112 then transfers the load to the short horizontal flange 122. Since the short horizontal flange 122 and the entire horizontal interior receptor die 58 is preferably fabricated from an inflexible material the flange does not flex or compress when the adjustable fastener 120 is advanced into the threaded opening 118. Moreover, since the horizontal interior receptor die 58, as well as the entire receptor frame 26, are fastened to the surfaces 18, 20, 22, 24 surrounding the building penetration 14, a horizontal force applied to the inflexible flange 122 causes the plate 102 of the adjustable fastener 120 to translate the flange 96 of the upper interior frame die 94.
The force that is passed through the various components of the glazing frame 42 beginning at the adjustment of the adjustable fastener 120 is transferred to the perimeter gasket 44. As the adjustable fastener 120 is moved forward into the main body member 106 the force transferred to the perimeter gasket 44 increases and the compression of the gasket increases. The compression reaches an optimal level when intrusion of moisture and air is reduced to the greatest extent practicable.
Once the adjustable fastener 120 of the head retention clip 104 is properly adjusted and access to the fastener 120 is no longer needed, the retention clip 104 is preferably obscured from view by the casual observer. To obscure the view of an observer, the retention clip 104 is covered with a receptor glazing bead 134. The upper receptor glazing bead preferably employs engagement means that are well known in the art. For example, engagement legs 136, 138 extending downwardly from the upper interior receptor 58 engage with mating leg structures 140, 142 internal to the glazing bead 134.
In addition, a horizontally extending member 144 of the glazing bead 134 terminates in a channel 146 that is configured for retaining a glazing bead gasket 148 in position. The glazing bead gasket 148 contacts the interior facing surface 100 of the flange 96 and seals the interior space 150 of the glazing bead against infiltration of air and water while also obscuring the view of the retention clip 104. The glazing bead 134 can readily be removed and reattached due to the releasable engagement configuration of the legs 136, 138 and the mating leg structures 140, 142.
To further enhance the aesthetic appeal of the interior facing features of the upper portions of the window, a second horizontally running glazing bead 152 is utilized. The second glazing bead 152 is detachably secured to the upper interior frame die 94. Projecting downwardly from the frame die 94 are engagement legs 154, 156 that engage with mating leg structures 158, 160. Extending perpendicular to the mating leg structures 158, 160 is the glazing bead horizontal cover plate 162. The second horizontally spanning glazing bead 152 also provides supplemental compressive forces against the second gasket 90.
The cover plate 162 terminates at a channel 164 that retains a T-leg 166 of the sealing gasket 168 in position along the entire length of the window surface 170 sealing the interior space 172 of the glazing bead 152 against moisture and air intrusion. Because of the detachable configuration of the engagement legs 154, 156 and the mating leg structures 158, 160 the glazing bead 152 can quickly be removed and replaced if damaged. The adjustment of the plate 102 of the head retention clip 104 also serves to regulate the pressure applied to the sealing gasket 168 and therefore aids in maintaining an appropriate level of compression of the sealing gasket 168.
Moving now to the lower area of the glazing and receptor frames 26, 42 the lower horizontal frame die 84 is positioned immediately beneath the glazing unit 12. Positioned beneath the lower horizontal frame die 84 of the glazing frame 42 is the sill anchor block 176 which can be seen in
The upper area of the anchor block 176 includes a locking segment 180 that extends between two downwardly extending engagement members 182, 184 of the horizontal frame die 84. When installed, the locking segment 180 extends upwardly between and is either closely spaced from, or slightly interferes with, the two engagement members 182, 184. The first engagement member 182 on the exterior side of the window and the second engagement member 184 on the interior side of the window. At the base 186 of the locking segment 180 extend two horizontal arms 188, 190. The first horizontal arm 188 extends toward the exterior facing side of the window and is disposed immediately below the first downwardly extending engagement member 182 and forms a shelf upon which the engagement member 182 rests. The second horizontal arm 190 resides immediately below the engagement member 184 on the interior side of the window and supports the engagement member 184.
Extending downwardly from the main body 192 of the sill anchor block 176 are first and second leg members 194, 196. The first leg member 194 is canted outwardly toward the exterior facing side of the window at an angle of between about 30 to 55 degrees with a distal end 198. The distal end 198 of the first leg member 194 is positioned against a first engagement member 200 extending upwardly from the lower horizontal exterior receptor die 50. The second leg member 196 is also canted outwardly toward the interior side of the window preferably at an angle of between about 30 to 55 degrees and terminates at a distal end 202. The distal end 202 of the second leg member 196 is positioned against a second engagement member 204 that extends upwardly from the lower horizontal exterior receptor die 50.
With the first and second leg members 194, 196 firmly anchored between the engagement members 200, 204 of the horizontal exterior receptor die 50 and the lower horizontal exterior receptor die 50 firmly anchored with fasteners (not shown) to the wall penetration surface 20, even the slightest movement of the sill anchor block 176 toward either the interior, or exterior, of the building is greatly constrained. Since movement of the sill anchor block 176 is greatly constrained and the locking segment 180 extends between the two engagement members 182, 184 the lower horizontal frame die 84 of the glazing frame 42 is also greatly constrained against movement toward or away from the interior, or exterior, of the building penetration 14.
Constraint against movement of the glazing frame 42 is a critical attribute that the sill anchor block 176 brings to the dry install receptor system 10 disclosed herein. The sill anchor block 176 serves to maintain the position of the lower horizontal frame die 84 against the perimeter gasket 44. The sill anchor block 176 works in coordination with the head retention clip 104 to maintain a uniform compression of the entire circumference of the perimeter gasket 44. When the adjustable fastener 120 is rotated into the main body 106 of the retention clip 104 the fastener head 121 pushes against the downwardly extending plate 102 that drives the upwardly extending flange member 96 in the direction of the perimeter gasket 44.
Equally important, and as discussed above, the advancement of the downwardly extending plate 102 drives the upper interior frame die 94 into the thermal break 92 which in turn drives the upper horizontal frame die 82 toward the exterior of the window. As the upper horizontal frame die 82 advances toward the exterior of the window the perimeter gasket 44 is compressed against the distal end of the flange 86 of the upper horizontal frame die 82. The compression of the perimeter gasket 44 increases with the advance of the adjustable fastener 120 into the main body 106 of the head retention clip 104 and the advance of the downwardly extending plate 102 against the upwardly extending flange 96 of the upper interior frame die 94.
The ability to fine tune the adjustable fastener 120 permits the installer to compress the circumscribing perimeter gasket 44 to an extent that optimizes the sealing capacity of the gasket. A perimeter gasket 44 that is insufficiently compressed will result in a gasket that permits moisture and air to pass. Consequently, the chief benefit of the system 10 as disclosed herein is that the window installer can easily adjust the pressure that is applied to the perimeter gasket 44 at a convenient location interior to the building and have confidence that the pressure applied to the gasket will remain upon the gasket once the installation is complete.
Consistent with the configuration of the upper portion 48 of the window receptor frame 26 detailed above, adjacent the lower horizontal exterior receptor die 50 is the lower receptor frame thermal break 64. The thermal break 64 utilizes engagement and retention members 210, 212 on opposing sides 214, 216 to engage with the lower horizontal interior receptor frame 60 at an engagement surface 72 and the lower horizontal exterior receptor die 50. Both the lower horizontal interior and exterior receptor frames 50, 60 are secured preferably with threaded fasteners (not shown) to the lower surface 20 of the building penetration 14.
Extending toward the interior of the building and detachably secured by the engagement and retention members 220 of the lower horizontal frame die 84 is a thermal break 222. The thermal break 222, as previously detailed, is preferably fabricated from material that exhibits low thermal conductivity thereby retarding the transfer of heat into, or out of, the building. The interior facing side 224 of the thermal break 222 also includes engagement and retention members 226 for engagement with the lower interior frame 228. A horizontal segment 230 of the lower horizontal interior receptor frame 60 resides below the lower interior frame die 228 and a vertical gap 232 between the two is preferably sealed initially with a backer rod 234 and any remaining portion of the gap 232 is filled with a flexible sealant 236.
To obscure the flexible sealant 236 from view by a casual observer, a lower horizontal receptor frame glazing bead 238 is preferably installed. The glazing bead 238 is retained in position with engagement members 240, 242 that engage with the engagement members 244, 246 of the lower horizontal interior receptor frame 60. The upper horizontal shelf 250 of the glazing bead 238 terminates in a longitudinally extending channel 252 that retains a gasket 254 that presses against a vertical wall 256 of the lower interior frame 228 upon installation of the glazing bead 238. This gasket seals against intrusion of moisture and air in proximity to the receptor 60.
The final component is the interior upper glazing bead 260 that includes engagement members 262, 264 that extend downwardly for interaction with engagement members 266, 268 that extend upwardly from the lower interior frame member 228. The upper horizontal surface 270 of the glazing bead 260 at a distal end terminates at a channel 272 that retains a longitudinally extending gasket 274. Once the glazing bead 260 is installed into position, the gasket is positioned against a insulating glass unit (IGU) 78. The role of the gasket 274 is to reduce, or preferably eliminate, intrusion of moisture and air into the interior space 276 of the glazing bead.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometries, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings. Moreover, the order of the components detailed in the system may be modified without limiting the scope of the disclosure.