This application generally relates to the field of improved dry matrices for embedding viable E. coli, method of making same and use thereof.
Bacterial spores are dormant life forms which can exist in a desiccated and dehydrated state indefinitely. For humans, bacterial spores are available either as over-the-counter prophylactics for mild gastrointestinal disorders, such as diarrhea, or as health foods or nutritional supplements. In the agricultural industry, bacterial spores are also receiving increasing attention as potential alternatives to antibiotics as growth promoters (Hong et al., FEMS Microbiology Reviews, 2005, 29: 813-835). Escherichia coli (E. coli) are, however non-spore-forming, and as such, are less resistant to desiccation and/or dehydration conditions than spore-forming bacteria. In many applications, it is nevertheless necessary to preserve and store E. coli bacteria in a form that affords sufficient viability and/or sufficient bacterial bioactivity for a given purpose.
In this regard, various practical preservation and storage conditions for bacteria have been previously suggested.
Freeze-drying (also named lyophilisation) is often used for preservation and storage of bacteria because of the low temperature exposure during drying (Rhodes, Exploitation of microorganisms ed. Jones, D G, 1993, p. 411-439, London: Chapman & Hall). However, it has the undesirable characteristics of significantly reducing viability as well as being time and energy-intensive. Protective agents have been proposed, but the protection afforded by a given additive during freeze-drying varies with the species of micro-organism (Font de Valdez et al., Cryobiology, 1983, 20: 560-566).
Air drying such as with desiccation has also been used for preservation and storage of bacteria. While vacuum drying is a similar process as freeze-drying, it takes place at 0°-40° C. for 30 min to a few hours. The advantages of this process are that the product is not frozen, so the energy consumption and the related economic impact are reduced. In the product point of view, the freezing damage is avoided. However, desiccation at low or ambient temperature is slow, requires extra precautions to avoid contamination, and often yields unsatisfactory viability (Lievense et al., Adv Biochem Eng Biotechnol., 1994, 51:71-89).
Encapsulating bacteria in hydrocolloid-forming polysaccharide matrix, such as Calcium-alginate (Ca-alginate) beads, has also been used for preservation and storage of bacteria in a broad and increasing range of different applications (Islam et al., J. Microbiol. Biotechnol., 2010, 20:1367-1377). To maintain the bacteria in a metabolically and physiologically competent state and thus obtain the desired benefit, it has been suggested to add to such matrices a suitable preservative formulation. Preservative formulations typically contain active ingredients in a suitable carrier and additives that aid in the stabilization and protection of the microbial cells during storage, transport and at the target zone.
Mannitol has been described as an effective preservative formulation component for Ca-alginate encapsulated bacteria during freeze-drying as it affords high bacterial viability up to 10 weeks under room temperature and water activity (aw) of less than 0.2 (Efiuvwevwere et al., Appl. Microbiol. Biotechnol., 1999, 51:100-104). A synergistic mixture of trehalose and a sugar alcohol has also been described as an effective preservative formulation component for air-dried Ca-alginate encapsulated bacteria, where trehalose is used instead of sucrose for its significantly higher glass transition temperature, i.e., 110° C. vs. only 65° C., respectively (U.S. Pat. No. 8,097,245). A synergistic mixture of carboxylic acid salts and hydrolyzed proteins has also been described as an effective preservative formulation component for freeze-dried Ca-alginate encapsulated bacteria (U.S. 2013/0,296,165). In both cases, the synergistic mixture affords an enhanced glassy structure without the need for foaming or boiling under vacuum to facilitate effective drying.
The development of novel formulations is, however, a challenging task and not all formulation are effective for a given bacteria (Youg et al., Biotechnol Bioeng., 2006 Sep. 5; 95(1):76-83).
In light of the above, there is a need to provide improved preservation and storage conditions for E. coli bacteria.
The present disclosure relates broadly to a viable Escherichia coli (E. coli) embedded in a matrix, wherein said matrix has a water activity (aw) of ≤0.3, and wherein said matrix comprises a first polysaccharide which is a hydrocolloid-forming polysaccharide, a second polysaccharide which is different from the first polysaccharide, and a disaccharide which includes sucrose, trehalose, or a combination thereof.
The present disclosure also relates broadly to a composition for forming a matrix, said composition comprising a first polysaccharide which is a hydrocolloid-forming polysaccharide, a second polysaccharide which is different from the first polysaccharide, and a disaccharide which includes sucrose, trehalose, or a combination thereof, and an Escherichia coli (E. coli).
The present disclosure also relates broadly to a method for providing a particulate comprising viable Escherichia coli (E. coli).
The present disclosure also relates broadly to a matrix comprising viable Escherichia coli (E. coli), wherein said matrix has a water activity (aw) of ≤0.3, and wherein said matrix comprises a first polysaccharide which is a hydrocolloid-forming polysaccharide, a second polysaccharide which is different from the first polysaccharide, and a disaccharide which includes sucrose, trehalose, or a combination thereof.
All features of embodiments which are described in this disclosure and are not mutually exclusive can be combined with one another. Elements of one embodiment can be utilized in the other embodiments without further mention. Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying Figures.
A detailed description of specific embodiments is provided herein below with reference to the accompanying drawings in which:
In the drawings, embodiments are illustrated by way of example. It is to be expressly understood that the description and drawings are only for the purpose of illustrating certain embodiments and are an aid for understanding. The scope of the claims should not be limited by the embodiments set forth in the present disclosure, but should be given the broadest interpretation consistent with the description as a whole.
Specific examples will now be described to illustrate the manner in which the principles of the present disclosure may be put into practice.
The herein described E. coli bacteria are viable bacteria, in other words, while the bacteria embedded in a dry matrix can be considered as being in a non-active state, these bacteria can be restored to an active state upon exposing the matrix to moisture.
The herein described E. coli bacteria comprise any recombinant or wild E. coli strain, or any mixtures thereof. In one embodiment, the E. coli is a non-pathogenic strain. In one embodiment, the non-pathogenic E. coli strain is the strain deposited at the International Depository Authority of Canada (IDAC) on Jan. 21, 2005 under accession number IDAC 210105-01, or the strain deposited at the International Depositary Authority of Canada (IDAC) on Jun. 20, 2013 and attributed accession number 200613-01, or a combination thereof.
The herein described matrix comprises a hydrocolloid-forming polysaccharide. Several polysaccharides are suitable for use as described herein, alone or in any combination thereof.
High amylose starch is a polysaccharide capable of forming firm gel after hydrating the starch granules in boiling water, dispersing the granules with the aid of high shear mixer and then cooling the solution to about 0-10° C. The firmness and strength of the gel depend on the concentration of the starch in the solution, with a maximal workable concentration of up to 10% w/v. The sliced starch gel matrix is also capable of retaining the live bacteria in the preservation mixture, and since it is mostly non-digestible by intestinal or gastric juices, the bacteria are protected from gastric destruction while within the starch matrix. The controlled release mechanism is provided by the fact that high amylose starch is readily digestible by the gut microflora at which time the delivered live bacteria are then released in their intact form.
Pectin is another suitable polysaccharide that performs very similar to high amylose starch. Pectin has an additional advantage since the strength of the pectin gel matrix can be further increased by the addition of divalent cations such as Ca2+ that forms bridges between carboxyl groups of the sugar polymers.
Alginate is another suitable polysaccharide that can form a firm gel matrix by cross-linking with divalent cations. The alginate can be hardened into a firm gel matrix by internally cross-linking the alginate polysaccharides with a dication, e.g. Ca2+, for example by extruding the alginate in the form of thin threads, strings, or substantially spherical beads into a Ca2+ bath. The alginate hardens upon interaction with Ca2+. An alternative method of preparation of the matrix is to spray atomize the mixture into a bath containing Ca2+.
In one embodiment, the hydrocolloid-forming polysaccharide is present in the matrix in percent by weight of total dry matter at a value of from 0.1% to 20%. In one embodiment, the hydrocolloid-forming polysaccharide is present in the matrix in percent by weight of total dry matter at a value of from 0.1% to 19%, or from 0.1% to 18%, or from 0.1% to 17%, or from 0.1% to 16%, or from 0.1% to 15%, or from 0.1% to 14%, or from 0.1% to 13%, or from 0.1% to 12%, or from 1% to 12%, including any value therein.
The herein described matrix further comprises a disaccharide and a polysaccharide. The present disclosure discloses several concentrations and proportions suitable for inclusion in the matrix. In one embodiment, a suitable ratio of disaccharide/polysaccharide in wt. %/wt. % is of less than 10 or more preferably of less than 5. In one embodiment, the ratio of disaccharide/polysaccharide in wt. %/wt. % is of about 1.
In one embodiment, the disaccharide is present in the matrix in percent by weight of total dry matter at a value of from 0.1% to 90%, or from 0.1% to 75%, or from 0.1% to 50%, or from 0.1% to 35%, or from 0.1% to 20%, or from 0.1% to 15%, or from 0.1% to 10%, including any value therein.
In one non-limiting embodiment, the disaccharide includes sucrose.
In a further non-limiting embodiment, the disaccharide includes trehalose.
In one non-limiting embodiment, the polysaccharide includes maltodextrine.
In a further non-limiting embodiment, the polysaccharide includes dextran.
In a further non-limiting embodiment, the dextran has a molecular weight between 20 and 70 kDa.
In one embodiment, the matrix further includes a salt of L-glutamic acid. In one non-limiting embodiment, the salt is a sodium salt of L-glutamic acid.
The herein described matrix has a water activity (“aw”) which is of 0.04≤aW≤0.3, for example 0.04≤aw≤2.5, 0.04≤aw≤2.0, 0.04≤aw≤1.5, and the like. “Water activity” or “aw” in the context of the present disclosure, refers to the availability of water and represents the energy status of the water in a system. Water activity may be measured according to materials and procedures known in the art, for example, using an Aqualab Water Activity Meter 4TE (Decagon Devices, Inc., U.S.A.).
There is also provided a composition for forming a matrix, the composition comprising a first hydrocolloid-forming polysaccharide, a second polysaccharide which is different from the first polysaccharide, and a disaccharide which includes sucrose, trehalose, or a combination thereof and an Escherichia coli (E. coli).
There is also provided a method for providing a particulate comprising viable Escherichia coli (E. coli), the method comprising providing particles comprising a first hydrocolloid-forming polysaccharide, a second polysaccharide which is different from the first polysaccharide, and a disaccharide which includes sucrose, trehalose, or a combination thereof and E. coli and drying said particles to water water activity (aw)≤0.3.
In one non-limiting embodiment, the viable E. coli sustains an aw fold reduction in the particles of at least 0.4, or at least 0.5, or at least 0.6, or at least 0.7.
In each of the following examples, three preservation solutions were tested along with preservation solution S1. The tests were performed in triplicates and one standard deviation was calculated according to the following formula:
with n: number of samples and {tilde over (x)}: mean of sample population.
In each of the following examples, bacterial viability was assessed by measuring the number of colony-forming units (CFU) according to protocols known in the art.
The preservation solutions used in the following examples are shown in Table 1.
1 x means absent
2 N/A means not applicable
a. E. coli Culture
With reference to
b. Matrix Preparation
Bacto™ peptone (1.5 g, BD, Mississauga, Canada) was mixed with 1.5 L of heated water to obtain a mixture. Alginate (30 g Grindsted®, DuPont™ Danisco®, Mississauga, Canada) was slowly added to the mixture while mixing with a magnetic bar at 360 rpm. Complete solubilisation of alginate was obtained in about 3 h to obtain a 2% alginate (m/v) solution. The solution including the magnetic bar was then autoclaved under standard conditions. Variations and refinements to the matrix preparation protocol herein described are possible and will become apparent to persons skilled in the art in light of the present teachings.
c. Embedding E. coli in Matrix
The following was added, in order and while mixing with the magnetic bar, to the autoclaved matrix solution to obtain a slurry: 1 L of TSB of non-animal origin and, with reference to
d. Drying and Testing of Embedded E. coli
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 1 is set forth in Tables 2 and 3. These results demonstrate that the elements of preservation solution S4 provided a significant effect to the viability of the E. coli embedded in the dried matrix and its resistance to the drying process 700.
e. Incorporating Dried Embedded E. coli into a Feed (“Pelleting”)
Protocol for incorporating dried matrix into a feed, for example in the form of a feed additive are known in the art. An illustrative example of doing such can be done, e.g., by incorporating 500 g to 1000 g of dried matrix beads into a ton of feed. If desired, the feed can also include inactivated yeast product in suitable amounts. For instance, the dried matrix beads comprising the embedded E. coli are mixed in a homogenization tank with all other ingredients. Preferably, the mixture is continuously mixed during the pelleting process. The mixed material is then pumped towards an extruder. Steam is then applied on the mixed material that is about to enter the extruder (i.e., hence, the temperature of the mixture increases at this stage). Suitable pressure is then applied on the mixture during its passage inside the extruder (pressure and temperature increase, point where highest temperature reached, around 75° C.). The formed pellets are then expelled out of the extruder into a cooling tank (rapid temperature drops to 30-40° C. followed by another cool down, to reach ambient temperature). Pelleted feed including the feed additive (matrix comprising embedded E. coli) can then be stored, for example in bags/containers. Variations and refinements to the pelleting protocol herein described are possible and will become apparent to persons skilled in the art in light of the present teachings.
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 2 is set forth in Tables 4 and 5. These results demonstrate that the elements of preservation solution S7 provided a significant protective effect to the viability of the E. coli embedded in the dried matrix and its resistance to the drying process 700.
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 3 is set forth in Tables 6 and 7.
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 4 is set forth in Tables 8 and 9.
4 × 1011 ± 2.9 × 1010
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 5 is set forth in Tables 10 and 11.
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 6 is set forth in Tables 12 and 13.
For each preservation solution the drying and testing was performed at least in triplicates. With reference to
In each case, and with reference to
In each case, and with reference to
CFU loss=log10(550)−log10(750)
In each case, an average viability loss and normalized average viability loss relative to the results obtained with preservation solution S1 was calculated.
The results are shown in
A compilation of the results of Example 7 is set forth in Tables 14 and 15.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in a preservation solution S1, a preservation solution S2, a preservation solution S3 and a preservation solution S4 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 8 are shown in Table 16 where all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in a preservation solution S1, a preservation solution S5, a preservation solution S6 and a preservation solution S7 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 9 are shown in Table 17 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in either a preservation solution S1, a preservation solution S0, a preservation solution S8 and a preservation solution S9 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 10 are shown in Table 18 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in either a preservation solution S1, a preservation solution S10, a preservation solution S11 and a preservation solution S12 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 11 are shown in Table 19 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in either a preservation solution S1, a preservation solution S13, a preservation solution S14 and a preservation solution S15 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 12 are shown in Table 20 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in either a preservation solution S1, a preservation solution S16, a preservation solution S17 and a preservation solution S18 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results of Example 13 are shown in Table 21 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
For each preservation solution the drying and testing was performed at least in triplicates. Beads prepared as in Example 1 were placed in either a preservation solution S1 and a preservation solution S19 with gentle stirring for about 20 minutes. The beads were then placed on a tray dryer in an air dryer at room temperature for about 24 h to obtain semi-dry beads. The semi-dry beads were then placed in a desiccator for about 64 h, in which dry and filtered air was blown. Dry beads having a water activity aw of ≤0.3 were obtained.
In each case, the strain viability was tested over a period of four (4) weeks under storage conditions at 4° C. by measuring the CFU/g of the dried beads. The tests were performed at least in triplicates and one standard deviation was calculated.
The results are shown in Table 22 and all the preservation solutions tested afforded feed additive strain stability during 4 weeks when stored at 4° C.
In brief, the present inventor has surprisingly and unexpectedly observed that a matrix comprising embedded viable E. coli as described herein was capable of preserving viability of sufficient bacteria CFU over a given period of time, e.g. 4 weeks, for a commercial use thereof. For example, the matrix was successfully incorporated into a pelleted animal feed such that the animal feed could be stored/transported/handled and eventually administered to an animal while retaining sufficient viable CFU/g of animal feed to provide the beneficial effect normally associated with the bacteria.
Note that titles or subtitles may be used throughout the present disclosure for convenience of a reader, but in no way these should limit the scope of the invention. Moreover, certain theories may be proposed and disclosed herein; however, in no way they, whether they are right or wrong, should limit the scope of the invention so long as the invention is practiced according to the present disclosure without regard for any particular theory or scheme of action.
All references cited throughout the specification are hereby incorporated by reference in their entirety for all purposes.
It will be understood by those of skill in the art that throughout the present specification, the term “a” used before a term encompasses embodiments containing one or more to what the term refers. It will also be understood by those of skill in the art that throughout the present specification, the term “comprising”, which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In the case of conflict, the present document, including definitions will control.
As used in the present disclosure, the terms “around”, “about” or “approximately” shall generally mean within the error margin generally accepted in the art. Hence, numerical quantities given herein generally include such error margin such that the terms “around”, “about” or “approximately” can be inferred if not expressly stated.
Although the present disclosure has described in considerable detail certain embodiments, variations and refinements are possible and will become apparent to persons skilled in the art in light of the present teachings.
The present application is a continuation of U.S. patent application Ser. No. 16/717,411, filed Dec. 17, 2019, which is a continuation of U.S. patent application Ser. No. 15/550,453, filed Aug. 11, 2017, which is a National Phase of International Application No. PCT/CA2016/050129, filed Feb. 11, 2016, which claims the benefit of U.S. Provisional Application No. 62/114,829, filed on Feb. 11, 2015 by Eric Nadeau. The contents of the above-referenced documents are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62114829 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16717411 | Dec 2019 | US |
Child | 16850919 | US | |
Parent | 15550453 | Aug 2017 | US |
Child | 16717411 | US |