The present invention relates generally to a particle packaging system. More particularly, the present invention relates to fibrillization of binder to form a matrix for supporting one or more other particles.
Electro-chemical devices are used throughout modern society to provide energy. Inclusive of such devices are batteries, fuel cells, and capacitors. With each type of device are associated positive and negative characteristics. Based on these characteristics, decisions are made as to which device is more suitable for use in a particular application. Overall cost of an electro-chemical device is an important characteristic that can make or break a decision as to whether a particular type of electro-chemical device is used.
Double-layer capacitors, also referred to as ultracapacitors and super-capacitors, are electrochemical devices that are able to store more energy per unit weight and unit volume than capacitors made with traditional technology, for example, electrolytic capacitors.
Double-layer capacitors store electrostatic energy in a polarized electrode/electrolyte interface layer. Double-layer capacitors include two electrodes, which are separated from contact by a porous separator. The separator prevents an electronic (as opposed to an ionic) current from shorting the two electrodes. Both the electrodes and the porous separator are immersed in an electrolyte, which allows flow of the ionic current between the electrodes and through the separator. At the electrode/electrolyte interface, a first layer of solvent dipole and a second layer of charged species is formed (hence, the name “double-layer” capacitor).
Although, double-layer capacitors can theoretically be operated at voltages as high as 4.0 volts, and possibly higher, current double-layer capacitor manufacturing technologies limit nominal operating voltages of double-layer capacitors to about 2.5 to 2.7 volts. Higher operating voltages are possible, but at such voltages undesirable destructive breakdown begins to occur, which in part may be due to interactions with impurities and residues that can be introduced into, or attach themselves to, electrodes during manufacture. For example, undesirable destructive breakdown of double-layer capacitors is seen to appear at voltages between about 2.7 to 3.0 volts.
Known capacitor electrode fabrication techniques utilize processing additive based coating and/or extrusion processes. Both processes utilize binders, which typically comprise polymers or resins that provide cohesion between structures used to make the capacitor. Known double-layer capacitors utilize electrode film and adhesive/binder layer formulations that have in common the use of one or more added processing additive (also referred throughout as “additive”), variations of which are known to those skilled in the arts as solvents, lubricants, liquids, plasticizers, and the like. When such additives are utilized in the manufacture of a capacitor product, the operating lifetime, as well maximum operating voltage, of a final capacitor product may become reduced, typically because of undesirable chemical interactions that can occur between residues of the additive(s) and a subsequently used capacitor electrolyte.
In a coating process, an additive (typically organic, aqueous, or blends of aqueous and organic solvents) is used to dissolve binders within a resulting wet slurry. The wet slurry is coated onto a collector through a doctor blade or a slot die. The slurry is subsequently dried to remove the solvent. With prior art coating based processes, as layer thickness is increased above a certain thickness or decreased below a certain thickness, it becomes increasingly more difficult to achieve an even homogeneous layer, for example, wherein a uniform above 25 micron thick coating of an adhesive/binder layer is desired, or a coating of less than 5 microns is desired. The process of coating also entails high-cost and complicated processes. Furthermore, coating processes require large capital investments, as well as high quality control to achieve a desired thickness, uniformity, top to bottom registration, and the like.
In the prior art, a first wet slurry layer is coated onto a current collector to provide the current collector with adhesive/binder layer functionality. A second slurry layer, with properties that provide functionality of a conductive electrode layer, may be coated onto the first coated layer. In another example, an extruded layer can be applied to the first coated layer to provide conductive electrode layer functionality.
In the prior art process of forming an extruded conductive electrode layer, binder and carbon particles are blended together with one or more additive. The resulting material has dough-like properties that allow the material to be introduced into an extruder apparatus. The extruder apparatus fibrillates the binder and provides an extruded film, which is subsequently dried to remove most, but as discussed below, typically not all of the additive(s). When fibrillated, the binder acts to support the carbon particles as a matrix. The extruded film may be calendered many times to produce an electrode film of desired thickness and density.
Known methods for attaching additive/solvent based extruded electrode films and/or coated slurries to a current collector include the aforementioned pre-coating of a slurry of adhesive/binder. Pre-coated slurry layers of adhesive/binder are used in the capacitor prior arts to promote electrical and physical contact with current collectors, and the current collectors themselves provide a physical electrical contact point.
Impurities can be introduced or attach themselves during the aforementioned coating and/or extrusion processes, as well as during prior and subsequent steps. Just as with additives, the residues of impurities can reduce a capacitor's operating lifetime and maximum operating voltage. In order to reduce the amount of additive and impurity in a final capacitor product, one or more of the various prior art capacitor structures described above are processed through a dryer. In one embodiment, a range of dew point for the air is about −20 to −40° F., and a water content of less than about 20 ppm; other ranges are within the scope of the invention also. In the prior art, the need to provide adequate throughput requires that the drying time be limited to on the order of hours, or less. However, with such short drying times, sufficient removal of additive and impurity is difficult to achieve. Even with a long drying time (on the order of days) the amounts of remaining additive and impurity is still measurable, especially if the additives or impurities have a high heat of absorption. Long dwell times limit production throughput and increase production and process equipment costs. Residues of the additives and impurities remain in commercially available capacitor products and are measured and can be on the order of many parts-per-million.
Binder particles used in prior art additive based fibrillization steps include polymers. Polymers and similar ultra-high molecular weight substances capable of fibrillization are commonly referred to as “fibrillizable binders” or “fibril-forming binders.” Fibril-forming binders find use with other powder like materials. In one prior art process, fibrillizable binder and powder materials are mixed with solvent, lubricant, or the like. The resulting wet mixture can be handled in a manner that allows it to be subjected to high-shear forces to fibrillize the binder particles. Fibrillization of the binder particles produces fibrils that eventually allow formation of a matrix or lattice for supporting a resulting composition of matter. In the prior art, solvents, liquids, and processing aides are added so that subsequent shear forces applied to a resulting mixture are sufficient to fibrillize the particles. During prior art extrusion and/or coating and/or subsequent calendering stages, although fibrillization is known to occur, such processes also cause a large number of the fibrillized binder particles to re/coalesce and be formed into agglomerates. As seen in
In the prior art, the resulting additive based extruded product can be subsequently processed in a high-pressure compactor, dried to remove the additive, shaped into a needed form, and otherwise processed to obtain an end-product for a needed application. For purposes of handling, processing, and durability, desirable properties of the end product typically depend on the consistency and homogeneity of the composition of matter from which the product is made, with good consistency and homogeneity being important requirements. Such desirable properties depend on the degree of fibrillization of the polymer. Tensile strength commonly depends on both the degree of fibrillization of the fibrillizable binder, and the consistency of the fibril lattice formed by the binder within the material. When used as an electrode film, internal resistance of an end product is also important. Internal resistance may depend on bulk resistivity—volume resistivity on large scale—of the material from which the electrode film is fabricated. Bulk resistivity of the material is a function of the material's homogeneity; the better the dispersal of the conductive carbon particles or other conductive filler within the material, the lower the resistivity of the material. When electrode films are used in capacitors, such as double-layer capacitors, capacitance per unit volume is yet another important characteristic. In double layer capacitors, capacitance increases with the specific surface area of the electrode film used to make a capacitor electrode. Specific surface area is defined as the ratio of (1) the surface area of electrode film exposed to an electrolytic solution when the electrode material is immersed in the solution, and (2) the volume of the electrode film. An electrode film's specific surface area and capacitance per unit volume are believed to improve with improvement in consistency and homogeneity.
A need thus exists for new methods of producing low cost and reliable products with one or more of the following qualities: improved consistency and homogeneity of distribution of binder and particles on microscopic and macroscopic scales; improved tensile strength of products produced from the materials; decreased resistivity; and increased specific surface area. Yet another need exists for cost effective products fabricated from materials with these qualities. A further need is to provide structures and products without or with minimal processing additives, liquids, solvents, and/or added impurities.
The present invention provides a high yield method for making durable, highly reliable, and inexpensive structures. The present invention eliminates or substantially reduces use of water, additives, and solvents, and eliminates or substantially reduces impurities, and associated drying steps and apparatus. The invention utilizes a dry fibrillization technique, where a matrix formed thereby is used to support or hold one or more types of particles for use in further processing steps.
In one embodiment, a solvent free method used for manufacture of a product includes steps of: providing particles; providing binder; and forming the particles and binder into a product that is free of intentionally added solvents and additives. In one embodiment, a solvent free method used for manufacture of a product includes steps of: providing particles; providing binder; and forming the particles and binder into a product without intentional use of solvents and additives.
In one embodiment, a process for manufacturing an electrode for use in an electrochemical device product may comprise the steps of supplying dry carbon particles; supplying dry binder; dry mixing the dry carbon particles and dry binder; and dry fibrillizing the dry binder to create a structure within which to support the dry carbon particles as a dry material. The step of dry fibrillizing may comprise application of pressure. The pressure may be applied by a calender roll. The step of dry fibrillizing may comprise application of shear to the particles. The shear may be applied by a pressurized gas. The gas may comprise oxygen. The pressure may be greater than or equal to about 10 PSI. The process may comprise a step of compacting the dry material. The step of compacting may be performed by at least one pass through a compacting apparatus. The compacting apparatus may be a roll-mill. After a pass though the compacting apparatus the dry material may comprise a self supporting dry film. The self supporting dry film may be formed as a continuous sheet. The dry material may be manufactured without the substantial use of any processing additives. The processing additives not used may include: hydrocarbons, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, and Isopars™. The process may comprise a step of calendering the dry material onto a substrate. The substrate may comprise a collector. The collector may comprise an aluminum foil. The dry material may be calendered directly onto the substrate without use of an intermediate layer. The dry material may be calendered onto a treated substrate. The dry binder may comprise a fluoropolymer. The dry material may consist of only the dry carbon particles and the dry binder. The dry material may comprise between about 50% to 99% activated carbon. The dry material may comprise between about 0% to 30% conductive carbon. The dry material may comprise between about 1% to 50% fluoropolymer particles. The matrix may comprise a compression density that is greater than about 0.3 gm/cm3.
In one embodiment, a method of manufacturing an electrode comprises the steps of: mixing dry carbon and dry binder particles; and forming a self-supporting film from the mixed dry particles without the substantial use of any processing additives. The processing additives not used may include: hydrocarbons, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, and Isopars™. After the step of mixing, the dry particles may comprise a compression density of greater than about 0.3 gm/cm3.
In one embodiment, an electro-chemical device product may comprise a self-supporting film consisting of a dry mix of dry carbon and dry binder particles. The dry mix may comprise a compression density that is about 0.3 gm/cm.sup.3. The dry mix may be dry fibrillized. The dry mix may comprise substantially no processing additives. The processing additives may be selected from a group consisting of: hydrocarbons, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, and Isopars™. The dry mix may be dry fibrillized by application of a pressure. The dry mix may be dry fibrillized by application of a shear force.
In one embodiment, an electro-chemical device product may comprise one or more self supporting dry film, the film including binder and dry carbon particles, wherein at least some of the binder is dry fibrillized in dry form. The self supporting dry film may be a compacted film. The self supporting dry film may comprise a width as small as 10 mm. The self supporting dry film may be coupled to a substrate. The mix may comprise between about 50% to 99% activated carbon. The mix may comprise between about 0% to 30% conductive carbon. The mix may comprise between about 1% to 50% fluoropolymer particles. The self supporting film may comprise no processing additives. The processing additives may be selected from a group consisting of hydrocarbons, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, and Isopars™. The substrate may comprise a collector. The collector may comprise aluminum. The product may comprise a collector, wherein the dry film is positioned directly against a surface of the collector. The dry mix may be dry fibrillized by application of pressure. The collector may comprise two sides, wherein one self-supporting dry film is calendered directly against one side of the collector, and wherein a second self-supporting dry film is calendered directly against a second side of the collector. The binder may comprise a thermoplastic, thermoset, or radiation set material. The collector may be formed to comprise a roll. The roll may be disposed within a sealed aluminum housing. The housing may be disposed an electrolyte, and wherein the product comprises a double-layer capacitor.
In one embodiment, an electro-chemical product consists primarily a dry mix of dry binder and dry conductive particles formed into a continuous self supporting electrode film without the substantial use of any processing additives. The processing additives not used include: hydrocarbons, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, and Isopars™. The product may be a capacitor. The product may be a battery. The product may be a fuel-cell. The conductive particles may comprise a metal.
In one embodiment, an electro-chemical device may comprise a film comprising a dry mix of dry binder and dry carbon particles, the film coupled to a collector, the collector shaped into a roll, the roll impregnated with an electrolyte and disposed within a sealed aluminum housing. The film may comprise substantially no processing additive. The film may consist of the dry carbon particles and the dry binder. The film may be a long compacted self supporting dry film. The film may comprise a compression density of about 0.3 gm/cm3 or more. The film may be substantially free of agglomerates of dry binder.
In one embodiment, an electrochemical device may comprise a dry process based electrode means for providing conductive electrode functionality in an electro-chemical device. In one embodiment, a solventless method for manufacture of an electro-chemical device electrode may comprise the steps of providing dry carbon particles; providing dry binder particles; and forming the dry carbon and dry binder particles into an electro-chemical device electrode without the use of any solvent. The step of forming may comprise intermixing the dry carbon and dry binder particles to form an electrochemical device electrode without the use of any solvent. In one embodiment, an operating voltage of devices described herein is limited by the electro-chemical-potential window of the devices.
Other embodiments, benefits, and advantages will thus become apparent upon a further reading of the following Description, Figures, and Claims.
a is a block diagram illustrating a method for making an energy storage device electrode.
b is a high-level front view of a jet mill assembly used to fibrillize binder within a dry carbon particle mixture.
c is a high-level side view of a jet mill assembly shown in
d is a high-level top view of the jet mill assembly shown in
e is a high-level front view of a compressor and a compressed air storage tank used to supply compressed air to a jet mill assembly.
f is a high-level top view of the compressor and the compressed air storage tank shown in
g is a high-level front view of the jet mill assembly of
h is a high-level top view of the combination of
i, 1j, and 1k illustrate effects of variations in feed rate, grind pressure, and feed pressure on tensile strength in length, tensile strength in width, and dry resistivity of electrode materials.
m illustrates effects of variations in feed rate, grind pressure, and feed pressure on internal resistance.
n illustrates effects of variations in feed rate, grind pressure, and feed pressure on capacitance.
p illustrates effect of variation in feed pressure on internal resistance of electrodes, and on the capacitance of double layer capacitors using such electrodes.
a shows an apparatus for forming a structure of an electrode.
b shows a degree of intermixing of dry particles.
c shows a gradient of particles within a dry film.
d shows a distribution of the sizes of dry binder and conductive carbon particles.
e-f, show carbon particles as encapsulated by dissolved binder of the prior art and dry carbon particles as attached to dry binder of the present invention.
g shows a system for forming a structure for use in an energy storage device.
a is a side representation of one embodiment of a structure of an energy storage device electrode.
b is a top representation of one embodiment of an electrode.
a shows capacitance vs. number of full charge/discharge charge cycles.
b shows resistance vs. number of full charge/discharge charge cycles.
c shows effects of electrolyte on specimens of electrodes.
Reference will now be made in detail to embodiments of the invention that are illustrated in the accompanying drawings. Wherever possible, same or similar reference numerals are used to refer to same or similar steps and/or elements used therein.
The present invention provides a high yield method for making durable, highly reliable, and inexpensive structures. The present invention eliminates or substantially reduces use of water, additives, and solvents, and eliminates or substantially reduces impurities, and associated drying steps and apparatus. The invention utilizes a dry fibrillization technique, where a matrix formed thereby is used to support a selected variety of particles. In one embodiment, the dry fibrillization technique is used to fibrillize binder. In one embodiment, the binder comprises fibrillizable fluoropolymer. In one embodiment, the fibrillizable fluoropolymer comprises PTFE or Teflon particles. In one embodiment, the matrix of dry fibrillized binder is used to support carbon particles. The present invention provides distinct advantages to the solvent, water, and/or additive-based method of forming prior art structures and products.
Although embodiments of the present invention herein describe in detail best modes for producing inexpensive and reliable dry particle based electro-chemical devices, device electrodes, and structures, as well as methods for making the same, it is understood that the techniques and methods described herein find use in a wide variety of other applications and products. Those skilled in the art would be to identify and effectuate such applications products without undue experimentation.
In one embodiment, electrochemical and energy storage devices and methods associated with the present invention do not use the one or more prior art processing aides or additives associated with coating and extrusion based processes (hereafter referred throughout as “processing additive” and “additive”), including: added solvents, liquids, lubricants, plasticizers, and the like. As well, one or more associated additive removal steps, post coating treatments such as curing or cross-linking, drying step(s) and apparatus associated therewith, and the like, can be eliminated. Because additives need not be used during manufacture, a final electrode product need not subject to chemical interactions that may occur between the aforementioned prior art residues of such additives and a subsequently used electrolyte. Because binders that are dissolvable by additives need not be used with present invention, a wider class of or selection of binders may be used than in the prior art. Such binders can be selected to be completely or substantially insoluble and nonswellable in typically used electrolytes, an advantage, which when combined with a lack of additive based impurities or residues such electrolytes can react to, allows that a much more reliable and durable electrochemical device may be provided. A high throughput method for making more durable and more reliable electrochemical devices is thus provided.
Referring now to
Device 5 incorporates in its design a prior art processing additive-based electrode available from W. L Gore & Associates, Inc. 401 Airport Rd., Elkton, Md. 21922, 410-392-444, under the EXCELLERATOR™ brand of electrode. The EXCELLERATOR™ brand of electrode was configured in a jellyroll configuration within an aluminum housing to comprise a double-layer capacitor. Device 6 was also configured as a similar Farad double-layer capacitor in a similar form factor housing, but using instead a dry electrode film 33 (as referenced in
The dry electrode film 33 was adhered to a collector by an adhesive coating sold under the trade name Electrodag.RTM. EB-012 by Acheson Colloids Company, 1600 Washington Ave., Port Huron, Mich. 48060, Telephone 1-810-984-5581. Dry film 33 was manufactured utilizing no processing additives in a manner described further herein.
Those skilled in the art will identify that high capacitance (for example, 1000 Farads and above) capacitor products that are sold commercially are derated to reflect an initial drop (on the order of 10% or so) in capacitance that may occur during the first 5000 or so capacitor charge discharge cycles, in other words, a rated 2600 Farad capacitor sold commercially may initially be a 2900 Farad or higher rated capacitor. After the first 5000 cycles or so, those skilled in the art will identify that under normal expected use, (normal temperature, average cycle discharge duty cycle, etc), a capacitors rated capacitance may decrease at a predictable reduced rate, which may be used to predict a capacitors useful life. The higher the initial capacitor value needed to achieve a rated capacitor value, the more capacitor material is needed, and thus, the higher the cost of the capacitor.
In the
Referring now to
Referring now to
Accordingly, in one embodiment, when charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 120,000 cycles a device 6 experiences less than a 30 percent drop in capacitance. In one embodiment, when charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 70,000 cycles a device 6 experiences less than a 30 percent drop in capacitance. In one embodiment, when charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 70,000 cycles a device 6 experiences less than a 5 percent drop in capacitance. In one embodiment, a device 6 is capable of being charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 1,000,000 cycles with less than a 30% drop in capacitance. In one embodiment, a device 6 is capable of being charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 1,500,000 cycles with less than a 30% drop in capacitance. In one embodiment, when charged at 100 amps to 2.5 volts and then discharged to 1.25 volts over 70,000 cycles a device 6 experiences an increase in resistance of less than 100 percent. In one embodiment, a method of using a device 6 comprises the steps of: (a) charging the device from 1.25 volts to 2.5 volts at 100 amps; (b) discharging the device to 1.25 volts; and (c) measuring less than a 30% drop in an initial capacitance of the device after repeating step (a) and step (b) 70,000 times. In one embodiment, a method of using a device 6 comprises the steps of: (a) charging the device from 1.25 volts to 2.5 volts at 100 amps; (b) discharging the device to 1.25 volts; and (c) measuring less than a 5% drop in an initial capacitance of the device after repeating step (a) and step (b) 70,000 times.
In the embodiments that follow, it will be understood that reference to no-use and non-use of additive(s) in the manufacture of an energy storage device according to the present invention takes into account that electrolyte may be used during a final electrode electrolyte immersion/impregnation step. An electrode electrolyte immersion/impregnation step is typically utilized prior to providing a final finished capacitor electrode in a sealed housing. Furthermore, even though additives, such as solvents, liquids, and the like, need not be used in the manufacture of embodiments disclosed herein, during manufacture, a certain amount of additive, impurity, or moisture, may be absorbed or attach itself from a surrounding environment inadvertently. Those skilled in the art will understand that the dry particles used with embodiments and processes disclosed herein may also, prior to their being provided by particle manufacturers as dry particles, have themselves been pre-processed with additives and, thus, comprise one or more pre-process residue. For these reasons, despite the non-use of additives, one or more of the embodiments and processes disclosed herein may require a drying step (which, however, if performed with embodiments of the present invention can be much shorter than the drying steps of the prior art) prior to a final electrolyte impregnation step so as to remove/reduce such aforementioned pre-process residues and impurities. It is identified that even after one or more drying step, trace amounts of the aforementioned pre-process residues and impurities may be present in the prior art, as well as embodiments described herein.
In general, because both the prior art and embodiments of the present invention obtain base particles and materials from similar manufacturers, and because they both may be exposed to similar pre-process environments, measurable amounts of prior art pre-process residues and impurities may be similar in magnitude to those of embodiments of the present invention, although variations may occur due to differences in pre-processes, environmental effects, etc. In the prior art, the magnitude of such pre-process residues and impurities is smaller than that of the residues and impurities that remain and that can be measured after processing additives are used. This measurable amount of processing additive based residues and impurities can be used as an indicator that processing additives have been used in a prior art energy storage device product. The lack of such measurable amounts of processing additive can as well be used to distinguish the non-use of processing additives in embodiments of the present invention.
Table 1 indicates the results of a chemical analysis of a prior art electrode film and an embodiment of a dry electrode film made in accordance with principles disclosed further herein. The chemical analysis was conducted by Chemir Analytical Services, 2672 Metro Blvd., Md. Heights, Mo. 63043, Phone 314-291-6620. Two samples were analyzed with a first sample (Chemir 533572) comprised of finely ground powder obtained from a prior art additive based electrode film sold under the EXCELLERATOR™ brand of electrode film by W. L Gore & Associates, Inc. 401 Airport Rd., Elkton, Md. 21922, 410-392-444, which in one embodiment is referenced under part number 102304. A second sample (Chemir 533571) comprised a thin black sheet of material cut into ⅛ to 1 inch sided irregularly shaped pieces obtained from a dry film 33 (as discussed in
One or more prior art additives, impurities, and residues that exist in, or are utilized by, and that may be present in lower quantities in embodiments of the present invention than the prior art, include: hydrocarbon solvents, high boiling point solvents, antifoaming agents, surfactants, dispersion aids, water, pyrrolidone mineral spirits, ketones, naphtha, acetates, alcohols, glycols, toluene, xylene, Isopars™, plasticizers, and the like.
Referring now to
In step 18, particles of activated carbon, conductive carbon, and binder provided during respective steps 12, 14, and 16 are dry blended together to form a dry mixture. In one embodiment, dry particles 12, 14, and 16 are blended for 1 to 10 minutes in a V-blender equipped with a high intensity mixing bar until a uniform dry mixture is formed. Those skilled in the art will identify that blending time can vary based on batch size, materials, particle size, densities, as well as other properties, and yet remain within the scope of the present invention. With reference to blending step 18, in one embodiment, particle size reduction and classification can be carried out as part of the blending step 18, or prior to the blending step 18. Size reduction and classification may improve consistency and repeatability of the resulting blended mixture and, consequently, of the quality of the electrode films and electrodes fabricated from the dry blended mixture.
Referring to
As further seen from
Referring to now to
It is identified that the compressed air provided under pressure by compressor 205 is preferably as dry as possible. Thus, in one embodiment, an appropriately placed in-line filter and/or dryer may be added. Other ranges are also possible and should not limit the invention. Although discussed as being effectuated by pressurized air, it is understood that other sufficiently dry gases are envisioned as being used to fibrillize binder particles utilized in embodiments of the present invention, for example, oxygen, nitrogen, helium, and the like.
In the jet-mill 130, the carbon-binder mixture is inspired by venturi and transferred by the compressed feed air into a grinding chamber, where the fibrillization of the mixture takes place. In one embodiment, the grinding chamber is lined with a ceramic such that abrasion of the internal walls of the jet-mill is minimized and so as to maintain purity of the resulting jet-milled carbon-binder mixture. The grinding chamber, which has a generally cylindrical shape, includes one or more nozzles placed circumferentially. The nozzles discharge the compressed grind air that is supplied by the grind air hose 125. The compressed air jets injected by the nozzles accelerate the carbon-binder particles and cause predominantly particle-to-particle collisions, although some particle-wall collisions also take place. The collisions dissipate the energy of the compressed air relatively quickly, fibrillizing the dry binder 16 within the mixture by causing size reduction of the aggregates and agglomerates of originally introduced dry particles and so as to adhere and embed carbon particle 12 and 14 within a resulting lattice of particles formed by the fibrillized binder. The colliding particles 12, 14, and 16 spiral towards the center of the grinding chamber and exit the chamber through the output connection 145.
Referring now to
It has been identified that a dry compounded material, which is provided by dry fibrillization step 20, retains its homogeneous particle like properties for a limited period of time. In one embodiment, because of forces, for example, gravitational forces exerted on the dry particles 12, 14, and 16, the compounded material begins to settle such that spaces and voids that exist between the dry particles 12, 14, 16 after step 20 gradually become reduced in volume. In one embodiment, after a relatively short period of time, for example 10 minutes or so, the dry particles 12, 14, 16 compact together and begin to form clumps or chunks such that the homogeneous properties of the compounded material may be diminished and/or such that downstream processes that require free flowing compounded materials are made more difficult or impossible to achieve. Accordingly, in one embodiment, it is identified that a dry compounded material as provided by step 20 should be utilized before its homogeneous properties are no longer sufficiently present and/or that steps are taken to keep the compounded material sufficiently aerated to avoid clumping.
It should be noted that the specific processing components described so far may vary as long as the intent of the embodiments described herein is achieved. For example, techniques and machinery that are envisioned for potential use to provide high shear and/or pressure forces to effectuate a dry fibrillization step 20 include jet-milling, pin milling, impact pulverization, roll milling, and hammer milling, and other techniques and apparatus. Further in example, a wide selection of dust collectors can be used in alternative embodiments, ranging from simple free-hanging socks to complicated housing designs with cartridge filters or pulse-cleaned bags. Similarly, other feeders can be easily substituted in the assembly 100, including conventional volumetric feeders, loss-weight volumetric feeders, and vibratory feeders. The size, make, and other parameters of the jet-mill 130 and the compressed air supply apparatus (the compressor 205 and the compressed air storage tank 210) may also vary and maintain benefits and advantages of the present invention.
The present inventors have performed a number of experiments to investigate the effects of three factors in the operation of jet-mill assembly 100 on qualities of the dry compounded material provided by dry fibrillization step 20, and on compacted/calendered electrode films fabricated therefrom. The three factors are these: (1) feed air pressure, (2) grind air pressure, and (3) feed rate. The observed qualities included tensile strength in width (i.e., in the direction transverse to the direction of movement of a dry electrode film in a high-pressure calender during a compacting process); tensile strength in length (i.e., in the direction of the dry film movement); resistivity of the jet-mill processed mixture provided by dry fibrillization step 20; internal resistance of electrodes made from the dry electrode film in a double layer capacitor application; and specific capacitance achieved in a double layer capacitor application. Resistance and specific capacitance values were obtained for both charge (up) and discharge (down) capacitor cycles.
The design of experiments (“DOE”) included a three-factorial, eight experiment investigation performed with dry electrode films dried for 3 hours under vacuum conditions at 160 degrees Celsius. Five or six samples were produced in each of the experiments, and values measured on the samples of each experiment were averaged to obtain a more reliable result. The three-factorial experiments included the following points for the three factors:
1. Feed rate was set to indications of 250 and 800 units on the feeder dial used. Recall that the feeder rate has a linear dependence on the dial settings, and that a full-scale setting of 999 corresponds to a rate of production of about 12 kg per hour (and therefore a substantially similar material consumption rate). Thus, settings of 250 units corresponded to a feed rate of about 3 kg per hour, while settings of 800 units corresponded to a feed rate of about 9.6 kg per hour. In accordance with the standard vernacular used in the theory of design of experiments, in the accompanying tables and graphs the former setting is designated as a “0” point, and the latter setting is designated as a “1” point.
2. The grind air pressure was set alternatively to 85 psi and 110 psi, corresponding, respectively, to “0” and “1” points in the accompanying tables and graphs.
3. The feed air pressure (also known as inject air pressure) was set to 60 and 70 psi, corresponding, respectively, to “0” and “1” points.
Turning first to tensile strength measurements, strips of standard width were prepared from each sample, and the tensile strength measurement of each sample was normalized to a one-mil thickness. The results for tensile strength measurements in length and in width appear in Tables 2 and 3 below.
Table 4 below presents resistivity measurements of a jet mill-dry blend of particles provided by dry fibrillization step 20. Note that the resistivity measurements were taken before the mixture was processed into a dry electrode film.
Referring now to
In Table 5 below we present data for final capacitances measured in double-layer capacitors utilizing dry electrode films made from dry fibrillized particles as described herein by each of the 8 experiments, averaged over the sample size of each experiment. Note that Cup refers to the capacitances measured when charging double-layer capacitors, while Cdown values were measured when discharging the capacitors. As in the case of tensile strength data, the capacitances were normalized to the thickness of the electrode film. In this case, however, the thicknesses have changed, because the dry film has undergone compression in a high-pressure nip during the process of bonding the film to a current collector. It is noted in obtaining the particular results of Table 5, the dry electrode film was bonded to a current collector by an intermediate layer of adhesive. Normalization was carried out to the standard thickness of 0.150 millimeters.
In Table 6 we present data for resistances measured in each of the 8 experiments, averaged over the sample size of each experiment. Similarly to the previous table, R.sub.up designates resistance values measured when charging double-layer capacitors, while R.sub.down refers to resistance values measured when discharging the capacitors.
To help visualize the above data and identify the data trends, we present
Once again, increasing the inject pressure benefits both electrode resistance Rdown (lowering it), and the normalized capacitance Cup (increasing it). Moreover, the effect of the inject pressure is greater than the effects of the other two factors. In fact, the effect of the inject pressure on the normalized capacitance overwhelms the effects of the feed rate and the grind pressure factors, at least for the factor ranges investigated.
Additional data has been obtained relating Cup and Rdown to further increases in the inject pressure. Here, the feed rate and the grind pressure were kept constant at 250 units and 110 psi, respectively, while the inject pressure during production was set to 70 psi, 85 psi, and 100 psi. Bar graphs in
Although dry blending 18 and dry fibrillization step 20 have been discussed herein as two separate steps that utilize multiple apparatus, it is envisioned that steps 18 and 20 could be conducted in one step wherein one apparatus receives dry particles 12, 14, and/or 16 as separate streams to mix the particles and thereafter fibrillize the particles. Accordingly, it is understood that the embodiments herein should not be limited by steps 18 and 20, but by the claims that follow. Furthermore, the preceding paragraphs describe in considerable detail inventive methods for dry fibrillizing carbon and binder mixtures to fabricate dry films, however, neither the specific embodiments of the invention as a whole, nor those of its individual features should limit the general principles described herein, which should be limited only by the claims that follow.
It is identified that in order to form a self-supporting dry film that has adequate physical as well as electrical properties for use in an energy storage device, sufficiently high force and/or energy needs be applied to a dry particle mixture. In one embodiment, such force is applied by shear forces. In another embodiment such force is applied by pressure. In one embodiment, such force is applied by a combination of shear and pressure. In one embodiment, pressure is applied by a gas. In one embodiment, pressure is applied by a compaction step. As described above, such or similar energy and/or force may be applied during a dry fibrillization step 20, and as well, as described below, during one or more electrode formation step. In contrast to the additive-based prior art fibrillization steps, the present invention provides such forces without using solvents, processing aides, and/or additives. In one embodiment, after application of a sufficiently high shear and/or pressure force to a dry mix of dry particles, particles with sufficiently small size that may have been provided or formed within a dry mix of such particles may become attracted by their surface free energies to provide a supporting matrix within which other particles may become supported. It is believed that under sufficient shear force and or pressure, particles within the dry particle mixture described herein may be caused to approach one another to separation distances at which generally attractive forces (more specifically London-van der Waals forces), resulting from surface free energies inherent to the particles, attractively interact with sufficient force to hold the particles together thereby allowing formation of a continuous, self-supporting film.
Because solvents, liquids, additives, and the like, are not used, sufficiently high attraction may be maintained between dry particles for their use in a self supporting dry process based electrode film as described further herein. Thus, with the present invention, no solvents, liquids, additives or the like are used before, during, or after application of the shear and/or pressure forces that are disclosed herein. Numerous other benefits derive from non-use of prior art additives including: reduction of process steps and processing apparatus, increase in throughput and performance, the elimination or substantial reduction of residue and impurities that can derive from the use of additives and additive-based process steps, as well as other benefits that are discussed or that can be understood by those skilled in the art from the description of the embodiments that follows.
Referring back to
As has been stated, a deficiency in the additive-based prior art is that residues of additive, impurities, and the like remain, even after one or more long drying step(s). The existence of such residues is undesirable for long-term reliability when a subsequent electrolyte impregnation step is performed to activate an electrochemical device electrode. For example, when an acetonitrile-based electrolyte is used, chemical and/or electrochemical interactions between the acetonitrile and residues and impurities can cause undesired destructive chemical processes in, and/or a swelling of, an electro-chemical device electrode. Other electrolytes of interest include carbonate-based electrolytes (ethylene carbonate, propylene carbonate, dimethylcarbonate), alkaline (KOH, NaOH), or acidic (H2SO4) water solutions. It is identified when processing additives are substantially reduced or eliminated from the manufacture of electrochemical device structures, as with one or more of the embodiments disclosed herein, the prior art undesired destructive chemical and/or electrochemical processes and swelling caused by the interactions of residues and impurities with electrolyte are substantially reduced or eliminated.
In one embodiment, dry carbon particles 21 and dry binder particles 23 are used in a ratio of about 40%-60% binder to about 40%-60% conductive carbon by weight. In step 19, dry carbon particles 21 and dry binder material 23 are dry blended in a V-blender for about 5 minutes. In one embodiment, the conductive carbon particles 21 comprise a mean diameter of about 10 microns. In one embodiment, the binder particles 23 comprise a mean diameter of about 10 microns or less. Other particle sizes are also within the scope of the invention, and should be limited only by the scope of the claims. In one embodiment, (further disclosed by
Referring now to
Referring now to
Particular dry particle formulations can affect characteristics of dry films formed by roll-mill 32, for example, thickness of films formed by a roll-mill can range between about 10 um to 2 mm and widths may range from on the order of meters to as small as 10 mm. In one embodiment, the width of a film formed by roll-mill 32 is about 30 mm. The ability to provide a self supporting film in one pass eliminates numerous folding steps and multiple compacting/calendering steps that in prior art embodiments are used to strengthen films to give them the tensile strength needed for subsequent handling and processing. Self supporting characteristics after one pass through a roll mill may also be effectuated by further fibrillization that occurs during electrode formation steps that are described further herein. Because a dry film can be sufficiently self supporting after one pass through roll-mill 32, it can easily and quickly be formed into one long integral continuous sheet, which can be rolled for subsequent use in a commercial scale manufacture process. A dry film can be formed as a self-supporting sheet that is limited in length only by the capacity of the rewinding equipment. In one embodiment, the dry film is between 0.1 and 5000 meters long. Compared to some prior art additive based films which are described as non-self supporting and/or small finite area films, the dry self-supporting films described herein are more economically suited for large scale commercial manufacture.
Referring now to
Referring now to
In one embodiment, the process described by
The resulting dry film 34 can be separated from the roll-mill 32 using a doctor blade, or the edge of a thin strip of plastic or other separation material, including metal or paper. Once the leading edge of the dry film 34 is removed from the nip, the weight of the self-supporting dry film and film tension can act to separate the remaining exiting dry film 34 from the roll-mill 32. The self-supporting dry film 34 can be fed through a tension control system 36 into a calender 38. The calender 38 may further compact and densify the dry film 34. Additional calendering steps can be used to further reduce the dry film's thickness and to increase tensile strength. In one embodiment, dry film 34 comprises a calendered density of 0.3 gm/cm3 or more.
Referring now to
In contrast to the prior art, particles from containers 19 and 20 are become intermixed within dry film 34 such that each can be identified to exist within a thickness “T” of the dry film with a particular concentration gradient. One concentration gradient associated with particles from container 19 is at a maximum at the right side of the intermixed dry film 34 and decreases when measured towards the left side of the intermixed dry film 34, and a second concentration gradient associated with particles from container 20 is at a maximum at the left side of the intermixed dry film 34 and decreases when measured towards the right side of the intermixed dry film 34. The opposing gradients of particles provided by container 19 and 20 overlap such that functionality provided by separate layers of the prior art may be provided by one dry film 34 of the present invention. In one embodiment, a gradient associated with particles from container 20 provides functionality similar to that of a separate prior art additive based electrode film layer, and the gradient associated with particles from container 19 provides functionality similar to that of a separate prior art additive based adhesive/binder layer. The present invention enables that equal distributions of all particle sizes can be smoothly intermixed (i.e. form a smooth gradient) within the intermixed dry film 34. It is understood that with appropriate adjustments to blade 35, the gradient of dry particles 19 within the dry film 34 can be made to penetrate across the entire thickness of the dry film, or to penetrate to only within a certain thickness of the dry film. In one embodiment, the penetration of the gradient of dry particles 19 is about 5 to 15 microns. In part, due to the gradient of dry particles 19 that can be created within dry film 34 by the aforementioned intermixing, it is identified that a lesser amount of dry particles need be utilized to provide a surface of the dry film with a particular adhesive property, than if dry particles 19 and dry particles 20 were pre-mixed throughout the dry film.
In the prior art, subsequent application of electrolyte to an additive based two-layer adhesive/binder and electrode film combination may cause the binder, additive residues, and impurities within the layers to dissolve and, thus, the two-layers to eventually degrade and/or delaminate. In contrast, because the binder particles of the present invention are distributed evenly within the dry film according to their gradient, and/or because no additives are used, and/or because the binder particles may be selected to be substantially impervious, insoluble, and/or inert to a wide class of additives and/or electrolyte, such destructive delamination and degradation can be substantially reduced or eliminated.
The present invention provides one intermixed dry film 34 such that the smooth transitions of the overlapping gradients of intermixed particles provided by containers 19 and 20 allow that minimized interfacial resistance is created. Because the dry binder particles 23 are not subject to and/or do not dissolve during intermixing, they do not completely encapsulate particles 12, 14, and 21. Rather, as shown in
The intermixed dry film 34 also exhibits dissimilar and asymmetric surface properties at opposing surfaces, which contrasts to the prior art, wherein similar surface properties exist at opposing sides of each of the separate adhesive/binder and electrode layers. The asymmetric surface properties of dry film 34 may be used to facilitate improved bonding and electrical contact to a subsequently used current collector (
Referring now to
g can also be used to describe a scatter coating embodiment. In one embodiment, a first source 20 may provide dry fibrillized particles in accordance with principles described above, which are subsequently formed into a dry film 33. In one embodiment, the dry fibrillized particles from first source 20 may comprise a mixed combination of dry particles 12, 14, 16, but it is understood that in other embodiments other particles may be used. In one embodiment, film 33 comprises a compression density that is greater than or equal to 0.3 gm/cm.sup.3. It is understood that depending on dry particle characteristics, a compression density of a film may comprise other values. Compression density may be measured by placing a known weight with a known surface area onto a sample of dry fibrillized powder and thereafter calculating the compression density from a change in the volume encompassed by the dry particles. It has been identified that with a compression density of about 0.45 gm/cm.sup.3, a free flowing mixture of dry fibrillized particles from first source 20 may be compacted to provide a dry film 33 that is self-supporting after one pass through a compacting apparatus, for example roll-mill 32. The self-supporting continuous dry film 33 can be stored and rolled for later use as an energy device electrode film, or may be used in combination with dry particles provided by second source 19.
Referring to
In one embodiment, one or more particles are provided by second source 19. In one embodiment, particles from second source 19 comprise a dry mix of conductive carbon 21 and binder 23 particles. In one embodiment, the binder 23 particles comprise same or similar thermoplastic binder particles to those described above. The particles from the second source 19 are fed or deposited onto the dry film 33 as the film is passed under the second source. Accordingly, in one embodiment, the second source 19 is positioned over a portion of the moving dry film 33 that is at some point horizontal, such that once deposited on the film, the particles from the second source remain more or less undisturbed until they are further calendered and/or heated. In one embodiment, the particles from the second source 19 are deposited by a scatter coating apparatus similar to that used in textile and non-woven fabric industries. The particles from the second source 19 are deposited onto the dry film 33 in a manner that preferably effectuates even distribution across the dry film. In one embodiment, 10 to 20 grams of particles from first source 19 are deposited per one square meter of dry film 33. After deposition of the particles from second source 19, the combination of particles and dry film 33 may be compacted and/or calendered against the film such that a resulting dry film 34 comprises dry particles which are adhered to, and/or embedded and intermixed within the dry film 33. In one embodiment one or more of heater 42, 46 and/or heated roll is used to heat the dry film 34 so as to soften the film and/or particles sufficiently to provide adequate adhesion between the particles adhered to and/or embedded within the film. An embedded/intermixed dry film 34 may be subsequently attached to a collector or wound onto a storage roll 48 for subsequent use. In one embodiment, wherein one or more of the particles used to form film 34 provide adhesive functionality, the use of a subsequent prior art collector adhesive layer thus does not necessarily need to be used or included in an electrode product.
Alternative means, methods, steps, and setups to those disclosed herein are also within the scope of the present invention and should be limited only by the appended claims and their equivalents. For example, in one embodiment, instead of the self supporting continuous dry film 33 described herein, a commercially available prior art additive-based electrode film could be provided for subsequent calendering together with dry particles provided by the container or source 19 of
Referring to
In one embodiment, a current collector 50 and two dry film(s) 34 are fed from storage rolls 48 into a heated roll-mill 52 such that the current collector 50 is positioned between two self-supporting dry films 34. In one embodiment, the current collector 50 may be pre-heated by a heater 79. The temperature of the heated roll-mill 52 may be used to heat and soften the dry binder 23 within the two intermixed dry films 34 such that good adhesion of the dry films to the collector 50 is effectuated. In one embodiment, a roll-mill 52 temperature of at the nip of the roll is between 100° C. and 300° C. In one embodiment, the nip pressure is selected between 50 pounds per linear inch (PLI) and 1000 PLI. Each intermixed dry film 34 becomes calendered and bonded to a side of the current collector 50. The two dry intermixed films 34 are fed into the hot roll nip 52 from storage roll(s) 48 in a manner that positions the peak of the gradients formed by the dry particles from container 19 directly against the current collector 50 (i.e. right side of a dry film 34 illustrated in
Other means, methods, and setups for bonding of films to a current collector 50 can be used to form electrochemical device electrodes, which should be limited only by the claims. For example, in one embodiment (not shown), a film comprised of a combination of a prior art additive-based electrode layer and embedded dry particles from a container 19 could be bonded to a current collector 50.
Referring now to
Referring now to
Referring now to
Referring to
It is identified that dry particles 12, 14, 16, 21, and/or 23 may be reused/recycled after being processed by a particular dry process step 19, 20, 22, 24, 26, 28, and/or 29. For example, in one embodiment, after dry process step 18 or 20, if it is determined that a defect in dry particles 12, 14, 16, and/or a structure formed therefrom is present, the resulting material may be collected in a dry process step 25 for reuse or recycling. In one embodiment, dry particles 12, 14, and 16 may be returned and reprocessed without addition of any other dry particles, or may be returned and added to fresh new additional particles 12, 14, and/or 16. Dry particles provided for recycling by step 25 may be reblended by dry blend step 18, and further processed according to one or more embodiments described herein. In one embodiment, a dry film 33 comprised of dry particles 12, 14, and 16 as described above in
If after bonding dry film 34 to a collector, a defect in the resulting electrode is found, it is envisioned that the combination of dry film and bonded collector could also be sliced chopped, or otherwise reduced in size so as to be easily blended. Because the collector may comprise a conductor, in one embodiment, it is envisioned that the collector portion of the recycled electrode could provide similar functionality to that provided by the dry conductive particles. It is envisioned that the recycled/reused dry film 34 and collector mixture could be used in combination with additional new dry particles 12, 14, 16, 21, and/or 23.
In one embodiment, a certain percentage of dry reused/recycled dry material provided by step 25 can be mixed with a certain percentage of fresh dry particles 12, 14, 16, 21, and/or 23. In one embodiment a mix of fresh particles 12, 14, 16, 21, and/or 23; and dry reused/recycled material resulting from step 25 comprises a 50/50 mix. Other mixtures of new and old dry structures are also within the scope of the invention. In one embodiment, over all particle percentages by weight, after recycle/reuse steps described herein, may comprise percentages previously described herein, or other percentages as needed. In contrast to embodiments of intermixed film 34 discussed above, those skilled in the art will identify that a dry film 34 comprising one or more recycled structures may (depending on what particular point a recycle/use step was performed) comprise a dry film with less, or even no, particle distribution gradients (i.e. an evenly intermixed dry film).
Electro-chemical embodiments that fall within the scope of the present invention are thus understood to include a broad spectrum of technologies, for example, capacitor, battery, and fuel cell technologies. For a particular application, it is understood that different particles and different combinations of particles may be used and that the determination of such use would be within the scope of those skilled in the art. In a lithium polymer ion secondary battery application, it is identified that an anode electrode may be formed of particles that assist in the electrochemical intercalation (charging) and de-intercalation (discharging) of lithium ions. Such electrodes are typically bonded to a suitable metallic or electrically conductive current carrying substrate. Correspondingly, a cathode of a lithium polymer ion battery may be comprised of particles that assist in the electrochemical de-lithiation (charging) and lithiation (discharging) of lithium-metal oxide active material. Such cathodes can be typically bonded to a suitable metallic or electrically conductive current carrying substrate.
Referring to
Referring to
Variations in the dry processes described herein can also be adapted to manufacture of primary lithium batteries. In lithium primary batteries an anode typically comprises a lithium metal foil, while a cathode comprises a particulate material, such as a metal oxide. The cathode is capable of incorporating lithium ions into the metal oxide matrix during discharge. Manganese dioxide is a metal oxide readily used as an active cathode particulate material, which can be mixed with a conductive carbon to improve electrical resistance of the cathode film. In various embodiments, primary battery particulate blends may comprise from 50 to 96% manganese dioxide, 0 to 10% conductive particulate, such as graphite, and 1 to 30% fibrillizable binder. Other particular dry particle mixtures are within the scope of the invention, for example, a mixture of 10 to 99% conductive particulate is envisioned in one embodiment.
In addition to primary and secondary batteries, it is identified that variations of principles described herein may be modified to so as to allow fabrication of electrodes used to support electrochemical reduction and oxidation reactions as typically found in fuel cell applications. Particulate materials commonly found in fuel cell electrodes include mixtures of conductive carbons, graphite, and carbons impregnated with catalyst such as noble metals. Other formulations for use in formation of dry electrode films include 0.1 to 30% catalyst impregnated carbon, 0 to 80% conductive carbon, and 1 to 50% fibrillizable polymer. In addition to single film electrodes, multiple films of particulate materials can be stacked together to provide specific electrochemical or physical properties. For example, using variations in dry fibrillization and/or dry film formation described previously, a particulate containing catalyst-impregnated carbon can be formed and be stacked with a film containing no catalyst, but with a high concentration of the fibrillizable binder. Formation of such as stack would allow operation of the electrode with the catalyst while the binder rich layer would reduce the transport of water through the electrode.
Referring to
Thus, the particular systems and methods shown and described herein in detail are capable of attaining the above described objects and advantages of the invention. However, the descriptions and drawings presented herein represent some, but not all, embodiments that have been practiced or that are broadly contemplated. For example, it is contemplated that fibrillization of binder could be used to enmesh types of particles other than those disclosed herein, including particles not normally used in electro-chemical applications. As well, products, structures, and methods that are disclosed may comprise configurations, variations, and dimensions other than those disclosed. In other embodiments, it is identified that in addition to products formed from films, sheets, cylinders, blocks, strings, and other structures are within the scope of structures that may be formed using principles disclosed herein. In one embodiment, an electro-chemical device made according to principles described herein may comprise two different electrode films that differ in composition and/or dimension (i.e. asymmetric electrodes). Housing designs may comprise coin-cell type, clamshell type, prismatic, cylindrical type geometries, as well as others as are known to those skilled in the art. For a particular type of housing, it is understood that appropriate geometrical changes to the embodiments described herein may be needed; but that such changes would be within the scope of those skilled in the art. In a non-energy storage medical embodiment, it is contemplated that dry fibrillization could be used to create matrix of a fibrillized fluoropolymer, and heparin and/or collagen mix, which could subsequently be formed or compacted into a sheet that could be applied to injuries. The present invention should be therefore limited only by the appended claims.
The present application is a continuation of and claims priority from U.S. patent application Ser. No. 11/251,388 filed Oct. 14, 2005, now abandoned, which is a Continuation-In-Part of and claims priority from commonly assigned co-pending U.S. patent application Ser. No. 11/116,882, filed Apr. 27, 2005; which is a Continuation-In-Part of U.S. patent application Ser. No. 10/817,701, filed Apr. 2, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 11251388 | Oct 2005 | US |
Child | 12816826 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11116882 | Apr 2005 | US |
Child | 11251388 | US | |
Parent | 10817701 | Apr 2004 | US |
Child | 11116882 | US |