The present invention relates generally to drug delivery devices and more particularly to dose-regulated dry powder inhalers.
Delivery of drugs as inhaled aerosols is well known. Indeed, asthma and other respiratory ailments have long been treated with inhaled aerosols. Presently, there is also an interest in expanding this administration concept to locally acting agents such as antimicrobials, protease inhibitors, and nucleic acids/oligios as well as systemic agents such as peptides like leuprolide and proteins such as insulin. For example, inhaler based delivery of antimicrobial agents such as antitubercular compounds, proteins such as insulin for diabetes therapy or other insulin-resistant related disorders, peptides such as leuprolide acetate for treatment of prostate cancer and endometriosis and nucleic acids or ogligonucleotides for cystic fibrosis gene therapy. See e.g. Wolff et al., Generation of Aerosolized Drugs, J. Aerosol: Med. pp. 89-106 (1994).
Generally described, there are three types of inhaler devices used to administer and deliver drug therapies via aerosol-based inhalation. The most common type used (typically associated with asthma treatments) is the pressurized metered dose inhaler (pMDI). This type of inhaler uses an ozone-depleting CFC propellant such as freon, which is banned for most commercial applications, but which presently has medical exemption. Alternatives to the pMDI devices are an important area of aerosol delivery research primarily because the number of non-CFC propellants is limited and reformulation is difficult.
Inhalant drug aerosols can also be generated by the use of nebulizers. Until recently, use of these nebulizer-type devices was typically limited to clinical sites and the home due primarily to their power requirements. In operation, nebulizers deliver droplets in a size range that enables the drug to reach the periphery of the lung through the air passage of a patient. However, because the droplets are very small (such as on the order of less than about 2.0 μm), a relatively long treatment time is usually required to deliver a clinically significant dose.
A third type of inhaler is a dry powder inhaler (DPI), which represents a promising alternative to PMDI devices for delivering drug aerosols. Typically, the DPIs are configures to deliver a powdered drug or drug mixture which includes an excipient and/or other ingredients. Conventionally, many DPIs have operated passively, relying on the inspiratory effort of the patient to dispense the drug provided by the powder. Unfortunately, this passive operation can lead to poor dosing uniformity since inspiratory capabilities can vary from patient to patient (and sometimes even use to use by the same patient, particularly if the patient is undergoing an asthmatic attack or respiratory-type ailment which tends to close the airway).
Generally described, known single and multiple dose dry powder DPI devices use either individual pre-measured doses, such as capsules containing the drug, which can be inserted into the device prior to dispensing. Alternatively, DPI devices can operate based on bulk powder reservoirs which are configured to administer successive quantities of the drug to the patient via a dispensing chamber which dispenses the proper dose. See generally Prime et al., Review of Dry Powder Inhalers, 26 Adv. Drug Delivery Rev., pp. 51-58 (1997); and Hickey et al., A new millennium for inhaler technology, 21 Pharm. Tech., n. 6, pp. 116-125 (1997).
In operation, particularly of DPI devices, it is desired that a uniform dispersion amount and desired physical form (such as a particulate size) of the dry powder be dispersed into a patient's airway and directed to the desired deposit site. If the patient is unable to provide sufficient respiratory effort, the extent of drug penetration, especially to the lower portion of the airway, may be impeded. This may result in premature deposit of the powder in the patient's mouth or throat.
Further, a number of obstacles can desirably affect the performance of the DPI. For example, the small size of the inhalable particles in the dry powder drug mixture can subject them to forces of agglomeration and/or cohesion (i.e., certain types of dry powders are susceptible to agglomeration, which is typically caused by particles of the drug adhering together), which disadvantageously results in poor flow and non-uniform dispersion. In addition, as noted above, many dry powder formulations employ larger excipient particles to promote flow properties of the drug. However, separation of the drug from the excipient as well as the presence of agglomeration can require additional inspiratory effort, which again, can impact the stable dispersion of the powder within the airstream of the patient such that it reaches its preferred deposit/destination site and reduces the amount of the drug which is prematurely deposited elsewhere.
Further, many dry powder inhalers can retain a significant amount of the drug within the device, which can be especially problematic over time. Typically, this problem requires that the device be cleansed to assure that it is in proper working order. In addition, the hygroscopic nature of many of these dry powder drugs may also require that the device be cleansed (and dried) at periodic intervals.
Some inhalation devices have attempted to resolve problems attendant with conventional passive inhalers. For example, U.S. Pat. No. 5,655,523 proposes a dry powder inhalation device which has a deagglormeration/aerosolization plunger rod or biased hammer and solenoid and U.S. Pat. No. 3,948,264 proposes the use of a battery-powered solenoid buzzer to vibrate the capsule to effectuate the release of the powder contained therein. These devices propose to facilitate the release of the dry powder by the use of energy input independent of patient respiratory effort. However, there remains a need to provide improved, easy to use, cost effective, and reliable dry powder inhalers.
It is therefore an object of the present invention to provide an improved dry powder inhaler which can disperse more uniform doses.
It is another object of the present invention to provide a DPI system to actively facilitate the dispersion and release of dry powder drug formulations during inhalation which can increase the quantity of fine particle fraction particles dispersed or emitted from the device over convention DPI systems.
It is another object of the present invention to provide an economic, disposable blister package configuration with active dispersion elements and multiple dry powder doses positioned thereon to reduce the cleaning difficulty and frequency of the inhaler.
It is an additional object of the present invention to provide an integrated control system for an inhaler that can adjust the operation of the inhaler based on actively detected or predetermined parameters.
It is yet another object of the present invention to provide control systems which are configured to analyze predetermined conditions and/or parameters which can dynamically adjust the operation of the inhaler during use.
It is a further object of the present invention to provide logic-based control systems to determine and adjust the operation of devices and/or apparatus that employ and/or dispense dry powder substances.
These and other objects of the present invention are provided by methods, systems, and computer program products for administering and dispensing dry powder based drug formulations via inhalers. Preferably, a multi-layer active drug package is configured to vibrate or oscillate in response to the application of an excitation voltage thereto. The multi-layer drug package is preferably a drug blister package configured to protect the drug from humidity prior to active dispersion of the dose. The multi-layer drug blister package employs a thin layer of piezoelectric polymer material such as polyvinylidene fluoride (“PVDF”) film with electrical traces configured thereon to apply the electrical excitation voltage differential thereacross at the desired region of the package and oscillate the drug package about the drug blister region to actively assist and disperse the dry powder dose into the air stream of a user during the inspiratory use. In addition, the inhaler can use a fuzzy logic based control system and one or more sensors to provide active control/feedback and dynamic adjustments to the dispersion control system based on sensed real-time conditions (such as user air flow rate, temperature, humidity and the like) and/or predetermined conditions and parameters corresponding to the drug being delivered or the systemic target of same.
As will be appreciated by those of skill in the art, the present invention may be provided as one or combinations of devices, methods, systems, or computer program products.
A first aspect of the present invention is directed to a multi-dose dry powder blister package. The package includes a platform body comprising a piezoelectric material layer with opposing first and second major surfaces. The first major surface of the piezoelectric material layer includes a first plurality of spatially separated metal traces disposed thereon. The first plurality of metal traces are configured to include a transmission line and an active pad region. The second major surface of the piezoelectric material includes a second plurality of spatially separated metal traces disposed thereon. The second plurality of metal traces are configured to include a transmission line and an active pad region. Each of the second plurality of traces are positioned such that it is aligned with a corresponding one of the first plurality of separated metal traces to define a corresponding pair of opposing metal traces with an individually operable electrical excitation path therebetween. The package also includes a plurality of depressed wells formed in the platform body. The wells are configured to hold a predetermined quantity of dry powder pharmaceutical drug therein. Each of the depressed wells is positioned on the platform body to substantially overlie a respective active pad region of one pair of corresponding first and second metal traces.
In a preferred embodiment, in operation, in response to application of an excitation voltage differential to a selected one of the individually operable electrical paths, the piezoelectric material layer deforms at the active pad region to thereby actively disperse the dry powder pharmaceutical drug from the depressed well. The package can include one or more of a sealed releasable polymer cap positioned to overlie the plurality of depressed wells and a non-reactive barrier positioned in each of the depressed wells to define a dry powder drug contact surface therein.
In a preferred embodiment, the multi-dose dry powder blister package is configured to be received in a dry powder inhaler. The dry powder inhaler comprises a housing and a control system positioned therein, wherein during operation, the housing is configured to be in fluid communication with a user and define a flow exit path therefrom. The control system comprises a controller configured to engage with a selected one of the individually operable electrical paths. The control system also includes a battery having a first voltage output operably associated with the controller and a transformer for increasing the first voltage to a desired excitation voltage operably associated with the controller and the selected individually operable electrical path. The control system also includes an airflow sensor positioned in the flow exit path, and is preferably positioned upstream of the depressed well in the flow exit path (the well is intermediate the sensor and the use). This positioning can reduce the deposition of drug particles on the sensor. In operation, the controller is configured to adjust the excitation voltage corresponding to predetermined parameters associated with the dispersion of the dry powder drug.
In a preferred embodiment, the controller is programmed with a fuzzy logic system representing at least one of flow characteristics of the dry powder drug and the inspiratory capability of the user such that the excitation voltage transmitted to the selected electrical path is responsive to the results of the fuzzy logic system.
Similar to the first aspect of the invention described above, another aspect of the invention is directed to a disposable multi-dose dry powder package, with at least one integrated active element formed thereon. The dry powder package comprises a piezoelectric polymer firm having a substantially planar profile and an upper and lower surface. A first metal trace pattern is positioned onto the upper surface. The first metal trace pattern has a plurality of first pad regions and a plurality of first linear transmission lines. Each first pad region is connected to a respective one of the first linear transmission lines. A second metal trace pattern is positioned onto the lower surface. The second metal trace pattern has a plurality of second pad regions and a plurality of second linear transmission lines. Each second pad region is connected to a respective one second linear transmission line. The first and second metal trace patterns are aligned across the piezoelectric polymer material layer. The package also includes a plurality of individual quantities of dry powder drug positioned to substantially overlie each of the first pad regions on said upper surface. A sealant layer is positioned to overlay each of the unitized quantities of the dry powder drug to secure it in the disposable dry powder package.
In one embodiment, the piezoelectric polymer film is a thin film PVDF, and a backing material layer can be positioned to overlie a substantial portion of the lower surface of the PVDF.
Another aspect of the present invention is a method of dispersing an inhalable quantity of a dry powder pharmaceutical drug into a patient's airstream. The method includes the steps of positioning and holding a dry powder inhaler such that tit is in fluid communication with a user and ready to direct a quantity of dry powder pharmaceutical drug into the air stream of a user during inhalation, wherein the package holds at least one unitized quantity of dry powder pharmaceutical drug in a receptacle portion of thereon, the receptacle portion including a piezoelectric polymer material layer. The method also includes the steps of repeatedly applying a voltage differential across the piezoelectric polymer film in the region of the receptacle to deform the receptacle and expelling the dry powder drug held in the receptacle portion of the package such that it is dispersed into the air stream of a user during the user's inspiratory inhalation cycle.
Preferably, the deforming step is carried out by flexing the piezoelectric material in the region of the receptacle portion. The applying step can be carried out by providing a voltage of about 100-200 volts peak to peak across the piezoelectric layer. The voltage can be applied at various frequencies such as at a relatively low frequency of between about 3-60 Hz and/or a higher frequency of between about 25 kHZ to about 2 MHz.
The method can also include the step of measuring the inspiratory air flow rate of a user and controlling the voltage applied during said applying step responsive to the user's inspiratory flow rate obtained from said measuring step. The method can also include the step of forming the exit flow channel to provide or increase the turbulence of the airflow, particularly proximate the well.
The user's air flow rate can be established proximate to active dispensing of the dry powder drug (near the start of the inhalation cycle), it can be established based on an average air flow rate measured during prior uses, or on air flow rates obtained dynamically through the inhalation cycle.
The method can also include the step of defining a fuzzy logic function representing at least one predetermined condition. The at least one condition is associated with at least one of the configurations of the dry powder inhaler, the inspiratory ability of a user, flowability of the formulation of the dry powder pharmaceutical drug being administered, and respirable particle fraction data associated with the dry powder formulation. The method can also include the steps of determining the degree of membership for the at least one condition to the defined fuzzy logic function and adjusting the excitation voltage applied during the applying step based on the defining and determining steps.
Preferably, the fuzzy logic function controls the voltage output delivered during the applying step. The method can also include the steps of programming the dry powder inhaler with a computer readable program code which identifies a range of operational excitation output pulses having associated frequencies, amplitudes, and signal patterns associated therewith, and programming the dry powder inhaler with computer readable code which defines operational excitation output pulses suitable for predetermined types of dry powder drug formulations. The predefined ranges can speed up the selection or analysis process of the controller by limiting the range of operation of the device by narrowing the excitation pulses selectable based on the identified dry powder drug being dispensed and/or for particular types of systemic delivery targets.
An additional aspect of the present invention, similar to the method described above, is directed to a method of facilitating the dispersion of a dose of a dry powder drug into an inhalation delivery path. The method includes the steps of positioning a quantity of dry powder drug in a package having a piezoelectric polymer material layer, the piezoelectric polymer material layer having a plurality of receptacle regions configured and sized to hold the dry powder drug (in unitized quantities) proximate thereto, the piezoelectric polymer material layer configured with a plurality of selectively excitable regions corresponding to the plurality of receptacle regions. The method also includes the step of selectively applying an excitation signal to at least one of the selectively excitable regions to rapidly flex the piezoelectric polymer material layer thereat to deform at least one receptacle region to thereby facilitate the dispersal of the dry powder drug into the inhalation delivery path.
Yet another aspect of the present invention is directed to a method of controlling a dry powder inhaler. The method comprises the steps of providing a dry powder inhaler having an active delivery system and an air flow sensor positioned in the exit flow path, measuring the air flow rate associated with the inspiratory efforts of a user using dry powder inhaler proximate to the desired administration of the dry powder drug, and adjusting the energy directed to the active delivery system responsive to the measuring step to thereby facilitate increased dose dispersion uniformly corresponding to the capabilities of a use.
An additional aspect of the present invention is a method of controlling the active delivery of a dry powder drug in an inhaler configured with an active energy assisted drug dispersion system. The method comprises the steps of establishing a priori a flowability characterization of a plurality of dry powder drug formulations. The airflow rate of a user using the dry powder inhaler is measured. A degree of membership of the flowability of the drug to be dispersed is determined utilizing a first fuzzy logic function. A degree of membership of the measured airflow rate of the user with a second fuzzy logic function is determined. The excitation signal directed to the active energy system of the inhaler is controlled based on the determined degrees of membership.
Another aspect of the present invention is directed to a method of fabricating a disposable multi-dose dry powder package which has at least one (and preferably a plurality of individually activatable elements) integrated active element formed thereon. The method comprises the steps of forming a package with at least one piezoelectric polymer film layer into a desired geometric shape with an upper and lower surface, dispensing a quantity of dry powder drug to substantially overlie a plurality of spatially separate selected upper surface regions of the piezoelectric polymer film layer, and sealing the dispensed dry powder drug to secure it against the dry powder package.
The method can also include the steps of forming a first metal trace pattern on the upper surface, the first metal trace pattern having a plurality of pad regions, and a plurality of linear transmission lines, a respective one connected to each of said pad regions; and forming a second metal trace pattern onto the lower surface, the second metal trace pattern having a plurality of pad regions, and a plurality of linear transmission lines, a respective one connected to each of said pad regions.
In addition, the method can include forming two piezoelectric polymer film layers, the layers separated by an intermediately positioned pliable core, all of which are concurrently deformable by the application of voltage thereacross.
The present invention can also employ a baffle or irregular shaped walls in the entrainment tube (exit flow channel) of the inhaler to facilitate turbulent air flow to increase the fraction of the powder emitted or dispersed from the device to the user.
Yet an additional aspect of the present invention is a computer program product for directing the operation of a dry powder inhaler to actively facilitate the dispersion of a dry powder drug into the exit flow path of the inhaler and into the inhalation flow path of the user. The computer program product comprises a computer readable storage medium having computer readable program code embodied in the medium, the computer-readable program code comprising computer readable program code which controls an excitation pulse transmitted to an active delivery mechanism in a dry powder drug inhaler configured with an active energy assisted drug dispersion system. The computer readable program code also comprises computer readable program code which defines a fuzzy logic analysis model to control the amount of energy delivered to the active energy system and computer readable code which determines the degree of membership of a dry powder drug to be administered to a first fuzzy logic function associated with the flowability of the dry powder drug. The computer readable program code also includes computer readable code which adjusts at least one of the type, frequency, or size of the excitation signal directed to the active energy system of the inhaler based, at least partially, on the determined degree of membership to the first fuzzy logic function.
In a preferred embodiment, the computer program product also includes computer readable program code which measures the airflow rate of a user's inspiratory efforts proximate to active dispersion of the dry powder drug into the exit flow path of the inhaler, and also includes computer readable program code which defines the fuzzy logic analysis model to adjust the excitation signal delivered to the active energy system includes computer readable code means for analyzing the user's measured airflow rate.
The computer program product can also include computer readable program code which considers one or more of the type of excipient used in the dry powder formulation, the cohesiveness of the dry powder drug, the geometry of the inhaler, and the systemic delivery target in determining the excitation pulse to be transmitted.
Advantageously, the present invention may provide more reliable and uniform inspiratory delivery of dry powder drug treatments with improved operational characteristics. The DPI, the PVDF blister package, and the fuzzy logic control system of the instant invention can provide one or more of the following advantages over conventional DPIs: reproducible dosing, emission of a high percentage of particles in a respirable size range, reduced opportunity for accidental multiple dosing, ease of operation, protection of the drug powder mixture from humidity, and reduced cleansing requirements.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. In the figures, components, layers, or regions may be exaggerated for clarity.
Generally described, the present invention is directed to dry powder inhalers with integrated, active energy, patient-assisted dispersal systems which are configured with control systems that provide adjustable energy output to the active dispersal element responsive to a user's inspiratory capabilities and/or the flowability of the dry powder drug being administered. The inhalers can be used for nasal and/or oral (mouth) respiratory delivery. Preferably, the inhalable dry powder dose is packaged in a multi-dose dry powder drug package which includes a piezoelectric polymer substrate (such as PVDF) that flexes to deform rapidly and provide mechanical oscillation in an individually selectable signal path on the package. The signal path directs the signal to the region of the drug receptacle or well to cause the well to oscillate in cooperation with a user's inspiratory effort, and, thus, actively direct the dry powder out of the well and up into the exit flow path. As a result, the powder is actively dispersed into the exit flow path of the inhaler during the user's inspiratory activity. The dry powder inhaler can also employ control systems with fuzzy logic models of the flowability of particular drug formulations (which may also be able to compensate or allow for the particular type of excipient or other additive used) and systems which can adjust for the real-time measured inspiratory effort's of the user.
Referring now to
Referring now to
Referring again to
As is also shown in
As is also shown in
As shown in
When assembled to the DPI 10 illustrated in
The control system 100, thus, preferably acts to electrically activate selected transmission lines 26us, 26bs and the control system 100 can send the excitation signal to selectively cause the mechanical oscillation at the associated well 40 region of the package 10. Because only the selected transmission lines are electrically connected to the energy source, the other non-selected drug wells 40 remain static (not electrically activated and electrically isolated from mechanical oscillation). As the next dose in the sealed well 40 is rotated into the inhalation chamber 11 (which defines the exit flow path 12 from the DPI 10), a puncturing means (not shown) positioned proximate the inhalation chamber 11 can remove the sealant to expose the dry powder drug 30 in the well 40 to allow the drug to be freely dispersed when the well 40 is oscillated as described above. The rotation is illustrated in
As noted above, the dry powder formulation mixture can be a single ingredient or a plurality of ingredients, whether active or inactive. The inactive ingredients can include additives added to enhance flowability or to facilitate delivery to the desired systemic target (such as additives to inhibit premature deposit in the respiratory system (such as the mouth) during inhalation). The dry powder drug formulations can include active particulate sizes which vary. The device may be particularly suitable for dry powder formulations having particulates which are in the range of about 0.5-50 μm, and preferably in the range from about 0.5 μm-20.0 μm, and more preferably in the range of about 0.5 μm-8.0 μm. The dry powder formulation can also include flow-enhancing ingredients, which typically include particulate sizes, which are larger than the active ingredient particulate sizes. Preferably, the flow-enhancing ingredients comprise excipients having particulate sizes on the order of about 50-100 μm. Preferred excipients include lactose and trehalose. Other types can also be employed such as sugars which are approved by the United States Food and Drug Administration (“FDA”) as cryoprotectants (e.g., mannitol) or as solubility enhancers (e.g., cyclodextrine) or other generally recognized as safe (“GRAS”) excipients.
The dry powder treatments can be used to treat asthma, influenza, and other respiratory ailments. As noted above, there is also an interest in expanding this administration concept to include the delivery of antimicrobial agents such as antitubercular compounds, proteins such as insulin for diabetes therapy or other insulin-resistance related disorders, nucleic acids or ogligonucleotides for cystic fibrosis gene therapy and peptides such as leuprolide acetate for treatment of prostate cancer and/or endometriosis. Typical dose amounts of the unitized dry powder mixture dispersed in the inhaler will vary depending on the patient size, the systemic target, and the particular drug. An exemplary dry powder dose amount for an average adult is about 20 mg and for an average adolescent pediatric subject is from about 5-10 mg.
Exemplary dry powder drugs include, but are not limited to, albuterol, fluficasone, beclamethasone, cromolyn, terbutaline, fenoterol, β-agonists, and glucocorticoids.
Advantageously, as the active elements are integral to/included as part of the disposable drug package 20, unlike many conventional active dispersion systems, cleansing of the active mechanism portion of the inhaler is no longer required.
Referring again to
In a preferred embodiment, the piezoelectric substrate layer 28 is a thin film PVDF. As used herein, the term “thin film” means that the piezoelectric substrate layer 28 is configured as a structurally flexible or pliable layer which is preferably sized to be about 10-200 μm thick.
The metal trace patterns 22u, 22b are preferably provided by applying a conductive pattern onto the outer faces of the piezoelectric substrate layer 28. For depositing or forming the metal trace patterns 22u, 22b, any metal depositing or layering techniques can be employed such as electron beam evaporation, thermal evaporation, painting, spraying, dipping, or sputtering a conductive material or metallic paint and the like or material over the selected surfaces of the piezoelectric substrate (preferably a PVDF layer as noted above). Of course, alternative metallic circuits, foils, surfaces, or techniques can also be employed, such as attaching a conductive mylar layer or flex circuit over the desired portion of the outer surface of the piezoelectric substrate layer 28. It is preferred that, if flex circuits are used, that they are configured or attached to the substrate layer 28 so as to be substantially transparent to the structure of the sensor array to minimize any potential dampening interference with the substrate layer 28. It is also noted that while particular conductive patterns are illustrated in the figures, the present invention is not limited thereto, as alternative conductive patterns may also be used.
Preferably, the upper and lower surface metal trace patterns 22u, 22b do not connect on the platform body 20b. For example, the conductive paint or ink (such as silver or gold) is applied onto the major surfaces of the platform body 20b such that it does not extend over the perimeter edge portions 28e of the piezoelectric substrate layer 28, thereby keeping the metal trace patterns on the top and bottom surfaces 22u, 22b separated with the piezoelectric substrate layer 28 therebetween. This configuration forms the electrical excitation path when connected to a control system 100 (
Referring again to
As also shown in
Preferably, the airflow measurement is performed dynamically, during or just prior to the active dispersing of the dry powder drug 30. In addition, the airflow measurements taken by the DPI 10 can be stored in memory in the controller 125 and downloaded for analysis by a physician at a later date. This air flow measurement data can now provide real use data and can allow adjustment as to the type of inhaler best suited for a particular user, the type of drug dispensed, or even the configuration of the drug package (such as the prescription of an increased number of wells for concurrent dispersal of the drug dose as discussed above). This data can also allow for more customized treatment and/or delivery according to the particular inspiratory abilities of the user. In addition, this data may allow a physician to monitor the severity of or changes in the airflow impairment for asthmatic or respiratory ailments.
In any event, when at least one real time or dynamic measurement is taken, the data is fed back to the controller 125, which is programmed with logic which can adjust the excitation signal 135 delivered to the drug well 40 to increase or decrease the amount or degree of oscillation at the well. Alternatively, the controller 125 can receive the air flow measurement and adjust the next active energy excitation pulse based on a running average.
In operation, the piezoelectric substrate 28 acts as an electromechanical transducer and, as such, an oscillator. Generally described, and as shown in
It is preferred that the input excitation voltage signal provide between about 50-300 volts peak to peak, and more preferably in the range of about 100-200 volts peak to peak voltage potential across the activated well 40 region (as shown in
In one embodiment, a low frequency excitation pulse can be used (i.e., a frequency between about 3-100 Hz, and more preferably between about 3-60 Hz). It is anticipated that this low frequency excitation signal will act to fluidize the dry powder into the exit flow stream. In another embodiment, particularly where flow additives are included in the drug formulation, it is preferred that higher frequencies be used (for example, about 10-100 kHz, and preferably about 25 kHZ-2 MHz). This higher frequency may break any cohesive or agglomeration tendencies the drug particulates may have as the drug is dispersed. For drug packages 20 concurrently dispensing drugs from more than one well 40 (such as shown in
Although the preferred embodiment of the dry powder package 10 is shown and described as employing a single piezoelectric substrate layer 28, other configurations may also be employed. For example, as schematically shown in
The core 128 can be a neoprene layer with a thin film of adhesive on each side. The piezoelectric substrate layers 28, 28′ can then easily be secured to a respective outer surface of the core 128 to sandwich the core 128 therebetween. Preferably, the core 128 is sized to be greater in thickness, and more preferably about an order of magnitude greater in thickness, than the substrate layers 28, 28′. For example, for a substrate layer 28, 28′ having a 60 micron width, the core 128 can have a depth or width thickness of about 600 microns.
As another alternative, as shown in
As shown in
In any event, as will be appreciated by those of skill in the art, in order to appreciably “enhance” the piezoelectric effect in the PVDF material, the material is typically exposed to an appropriate electrical poling potential across the thickness of the film for an extended period of time to piezoelectrically “activate” the film.
Preferably, for multiple piezoelectric substrate layer configurations as described above, the core 128 is formed by inserting a neoprene or pliable material core material into a die. The PVDF substrate material layers 28, 28′ are preferably introduced onto the core layer 128 such that the desired polarity of the substrate materials are in the proper orientation. For example, the first substrate layer 28 is layered onto the core 128 such that it has a first polarity and the outer layer 60 of the second substrate layer 28′ is positioned to contact the core 128 opposing the first outer layer 50 such that it has a second polarity, the second polarity being the reverse of the first polarity (such as shown in
As demonstrated by the foregoing, in operation, the present invention provides a method of dispersing an inhalable quantity of a dry powder pharmaceutical drug to a patient's airstream, comprising the steps of positioning and holding a DPI having at least one unitized quantity of dry powder pharmaceutical drug in a receptacle portion of a package, the receptacle portion configured with a bottom surface which is operably associated with a piezoelectric polymer; repeatedly applying a voltage differential across the piezoelectric polymer film in the region of the receptacle to deform the receptacle; and expelling the dry powder drug held in the receptacle such that it is dispersed into the airstream or respiratory path of a user during the user's inspiratory inhalation cycle.
Preferably, the deforming step is carried out by flexing the piezoelectric material in the region of the receptacle. Of course, as noted above, the method can also include the steps of measuring the inspiratory air flow rate of a user, and controlling the voltage applied during the applying step responsive to the user's inspiratory flow rate obtained from the measuring step and/or controlling the voltage applied based on a predetermined drug flow property of the drug being dispensed (the latter to be discussed further below).
Another aspect of the present invention is a method of forming a disposable dry powder drug package with active elements thereon. The method includes the steps of configuring a first unitary layer of PVDF film having first and second opposing major surfaces. Electrical traces are formed onto the first and second major surfaces of the PVDF film layer. A plurality of drug wells are formed in the PVDF film proximate the active pad regions. It should be noted that during fabrication of the package, particularly during sterilization procedures, care should be taken to reduce the piezoelectric material's exposure to temperatures above 120° C., particularly after the piezoelectric substrate layer has been activated.
Another aspect of the present invention is control systems for dry powder applications, and particularly for DPI's. As noted above, the fluidization and dispersion of the dry powder drug can be assisted by mechanically oscillating a piezoelectric polymer material incorporated in the drug package. Thus, the excitation path and oscillators are incorporated in the drug packaging (i.e., a disposable multi-dose drug package with active elements). The excitation signals directed to assist in the dispersion of the dry powder can be dependent on flowability characteristics of a particular drug formulation which can be established a priori as will be discussed further below.
The control system preferably employs a “fuzzy logic” analysis methodology which is programmed into the microcontroller. As shown in
Still referring to
In operation, the controller (programmed with the fuzzy logic analysis methodology) can then analyze the degree of membership associated with the flowability of the drug or the airflow rate of the user to the respective fuzzy logic function (the higher the value the larger the degree of membership to that function). The degree of membership or values of the flowability and/or airflow rate fuzzy logic functions are then related to a to a desired operating signal which is directed to the energy source/delivery system of the drug package to output and actively assist in the dispersion of the dry powder drug. Therefore, the excitation energy or signal output is dependent upon the measured air flow and drug flow characteristics.
The controlled output excitation signal can provide improved dispersions by facilitating fluidization and/or deagglomeration of the dry powder drug during inhalation. The preferred frequencies of the excitation signals are dependent on the powder physiochemical properties and particle size. Thus, the preferred operational excitation signal of the present invention can be selected to be responsive to a particular formulation. That is, the frequencies and subharmonics of the particular formulation can be established, such as described below, and this information can be included in the logic operation to determine the excitation signal to be directed to the piezoelectric polymer element.
The flowability characteristics for the associated “fuzzy logic” functions/parameters associated with the formulations of a plurality of different drugs can be established in a number of ways, such as by analysis of similar drugs having similar particulate sizes, densities, or excipient blends, as well as by actual analysis of the particular formulations. The flowability can be at least partially established by evaluating the powder formulation based on a vibrating spatula analysis. Of course, other analysis techniques can also be employed, such as conventional powder flow analysis via rotating drums. See Crowder et al., Signal Processing and Analysis Applied to Powder Behavior in a Rotating Drum, Part. Part. Syst. Charact. 16 (1999) 191-196 (describing Fourier power spectrum of the angle of repose time sequence and the avalanche size variability as a good way to measure a fundamental property of the bulk powder flow). This study also examined lactose excipient blends. This type of analysis can be used to provide flow rankings or input parameter characterizations of powder formulations for the fuzzy logic model.
It is more preferred that measurement of microflow properties of unit dose sized quantities of powders can be employed to rank the flowability of the DPI based control system and provide corresponding input parameters for the fuzzy logic system. See Crowder et al., An instrument for rapid powder flow measurement and temporal fractal analysis, 16 Part. Part. Syst. Charact., pp. 32-34 (1999). Using this analysis technique, the flow properties of pharmaceutical excipients were found to be generally fractal in nature. This suggests that small perturbations to the system in the form of subharmonics of the fundamental frequencies of oscillation, (which can be determined by the vibrating spatula technique), can be applied to the control system to drive the powder to a resonance frequency to thereby improve flow or dispersion. See Aranson et al., Controlled dynamics of interfaces in a vibrated granular layer, 82 Phys. Ref. Lett. 731-734 (1999).
Measurements of bulk flow and microflow can provide data can be used to establish representative logic and/or to increase the dosing uniformity in the inhaler according to the present invention. It is also preferred that respirable fraction data (typically obtained via a cascade impactor) analysis be included in the flowability and/or energy output fuzzy logic model. A suitable impactor is the Andersen 8-stage non-viable cascade impactor available from a company known as Graseby-Andersen located in Smyrna, Ga.
Preferably, at least one, and preferably both bulk flow and microflow data is considered in modeling the fuzzy logic control system of the present invention. For microflow analysis, a vibrating spatula technique is typically employed using a 60 Hz vibration frequency. See e.g., Crowder et al., A Semiconductor Strain Gauge Instrument for Rapid Powder Flow Rate Measurement, 16 Particle and Particle Sys. Charac. pp. 32-34 (1999). As noted in this reference, vibration amplitude was adjustable by a thumbwheel. The adjustment in this analysis was not calibrated, thus amplitudes were not recorded. The resulting fractal dimensions were 1.143+/−0.024 for non-spray dried lactose and 1.001+/−0.001 for the spray dried lactose, and 1.002+/−0.0004 for sieved spray dried lactose. Representative powder bulk flow data and experimental description is discussed in, Crowder et al., Signal Processing and Analysis Applied to Powder Behavior in a Rotating Drum, 16 Part. Part. Syst. Charact., pp. 191-196(1999).
It should be also noted that powder flow can also be influenced by ambient conditions, particularly relative humidity. Thus, the control system model may be defined to average the operational conditions across typical conditions. It is anticipated that such an average or a range of typical relative humidities should be sufficient for dispersion purposes, unless the formulation is an especially hygroscopic powder. Of course, adjustments can be programmed for problematic drugs or climates.
Although not required, the control system of the instant invention preferably uses fuzzy logic because the number of variables influencing powder dispersal is very large. Monitoring even a fraction of these variable can be cost-prohibitive as control algorithms derived from system equations relating to the dry powder inhaler and the powder itself can be mathematically difficult and complex. The ability of a control system to accept partial truths or generalities is important where empirically observed effects from a small number of monitored variables are used to provide the basis for dry powder deliveries according to one aspect of the instant invention.
Fuzzy logic is known as a way to express complex relationships. Dr. Lotfi Zadeh of the University of California at Berkeley introduced fuzzy logic in the 1960's. See Zadeh, Loffi, Fuzzy Sets, Information and Control, 8:338-353, 1965. Fuzzy logic is a methodology which generalizes absolute relationships to a continuous form. Unlike conventional classical set theory, where as et of ordered pairs can be defined and membership in the set is absolute, and a computer reads as Boolean truths (“0” or “1”), fuzzy logic represents the results as membership in a function as a substantially continuous series of discrete values of numbers between 0-1 representing degrees of membership or “degrees of truth”. Typically, fuzzy logic membership functions do not have simple shapes. Many are “triangles pointing up” and can even be more complex. For example, one author describes a membership function (Tall) for a range of heights which also depends on (a) age, and (c) weight. Thus, whether an individual is tall would depend not only on height, but on the age and weight of the individual. See What is fuzzy logic: www.cs.cmu.edu/Groups/Al/html/faqs/ai/fuzzy/part1/faq-doc-2.html. Therefore, data can be aggregated based on a number of partial truths which can then be combined to define a higher truth when certain thresholds are met or exceeded. So, for fuzzy logic models or systems, the degrees of membership in a defined function or can be established which includes a conventional truth table (0 and 1 where 0 is for non-membership and 1 is for complete membership), and values in between to represent intermediate or degrees of membership to the defined function.
Fuzzy logic control systems have been shown to be effective in controlling complex systems. See U.S. Pat. No. 4,319,155, the contents of which are hereby incorporated by references as if recited in full herein.
Referring now to
As shown in
If the powder is cohesive and the flow rate is low, increase the energy input. Preferably, the fuzzy logic control system preferably takes into account (by the fuzzy logic functions used) one or more of the following: the specific drug formulation (such as particulate size, tendency to cohesiveness, etc.), the type of excipient, the geometry of the inhaler, and the inpiratory ability of the user. The fuzzy logic models can bundle multiple parameters together in a manner which is computationally less intensive and less complex over conventional powder flow control systems.
Turning now to
It should be noted that a fuzzy logic model can be defined which can provide information to the physician to assist in the selection of the powder drug and the type of inhaler. For example, for a user with a systemic target A, with an average inspiratory flow rate B, with drug allergies C, using other medications D having potential to reduce the efficacy of a drug, and having other identified risk factors (age, heart disease, diabetes, etc.), the fuzzy logic model can provide the physician with an output which lists suitable inhaler types (geometries), and/or drugs, and/or drug formulations (such as based on ease of flowability, effectiveness).
The control system in the DPI can be preset to operate with a particular drug formulation, or can be programmed to receive a coded (for security) input from a pharmacist or physician based on a UPC or other code associated with the drug to be dispensed. Of course, the DPI may also be configured to electronically read the flowability code based on a computer program readable code means (bar code or memory chip) on the package itself.
It should also be noted that control systems according to the present invention can also be used in dry powder production systems and apparatus. That is, where dry powder substances are dispersed in a manufacturing process, the control system of the instant invention can provide better process controls by the monitoring, feedback, analysis, and adjustment of the operational inputs to the process to provide more reliable and repeatable processes. Typically, the process inputs will be the type of dry powder being employed and its flowability characterization, temperature, humidity, flow rate, etc. Thus, the control systems of the instant invention may be used to facilitate improved conveyor speeds, aperture sizes, feed times, nozzle sizes, and the blending, milling, transport, or capsule filling of pharmaceutical products. In addition, it is anticipated that the concept of using signals specific to powder (and which may be specific to the particular PVDF design) may also be used to convey powder in industrial processes.
The control systems of the instant invention can be used with other active energy dispersion systems such as those described above, including DPI devices with mechanical oscillators and other vibration based systems.
It will be understood that each block of the block diagrams (or block in the flowchart illustrations), and combinations of blocks in the flowchart illustrations (or blocks in block diagram figures), can be implemented by computer program instructions. These computer program instructions may be loaded onto a computer or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks. The computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks and/or block diagrams.
Accordingly, blocks of the block diagrams or in a flowchart illustration support combinations of means for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagram or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
An experimental embodiment of a DPI employing a piezoelectric excitation element for vibrating the powder during dispersion employs a design wherein the polymer membrane vibratory element has an associated capacitance “C” of about 1800 pf. The capacitance value corresponds to the size i.e., area (and thus shape) of the blister or vibratory element. The transformer used to step up the 5Vp-p input voltage is presently exhibiting an inductance of about 23 mH on the secondary side. The transformer is used to step up the voltage to a 150Vp-p excitation voltage to the blister. Thus together, the transformer and piezoelectric element define an amplifier which can be described as having a resonant frequency expressed by the equation:
f=1/(2π(LC)1/2)
where “L” is the inductance of the transformer and C is the capacitance of the polymer membrane vibratory element. This yields a calculated resonant frequency for the experimental embodiment of about 25 kHz. The resonant frequency determined experimentally was 24 kHz. At this frequency, the output measured at about 7 mm from the front of the speaker was 72.4 db. Powder was placed on the active element and the movement of the powder was observed. The maximal displacement of the powder as determined by observation occurred at about 31 kHz. Thus, the 31 kHz frequency was chosen for experimental evaluations.
In order to obtain higher resonant frequencies, the transformer and/or the piezoelectric polymer element can be reconfigured. The capacitance of the polymer is about 250 picofarads/cm2. Preferred piezoelectric elements can be configured to exhibit capacitances of from about 1000-2000 picofarads, and more preferably about 1500 picofarads. Stated differently, the size of the blister is preferably such that it has an area which is from about 4-8 cm2, and more preferably about 6 cm2. This means for a circular blister, at least an approximately 1 to 1.5 centimeter radius blister can be employed.
A new active element has been constructed with a smaller area to reduce the capacitance of the circuit and thereby allow for use of higher frequency signals.
Advantageously, recent results comparing the fine particle fraction (FPF) of particles emitted from the device when a signal was input to the active element against that with no signal indicates that a much larger percentage of FPF is obtained with the piezoelectric active element. The FPF can be considered to be that part of the aerosol which, in use, would be substantially delivered to the lungs. The experimental determination of the FPF was conducted using an 8 stage Andersen non-viable cascade impactor. For a 31 kHz signal amplitude modulated at 60 Hz, the FPF emitted was 0.11=/−0.0002 (n=4). With no signal, the FPF was 0.05=/−0.0003 (n=4). Thus comparatively speaking, about twice the amount of FPF was generated with the PVDF element. Using a one tailed test, it was determined that the FPF was increased by the use of a signal with p<0.05. It is anticipated that a baffle located in the airstream can cause a larger fraction of the powder to be emitted from the device.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included herein.
This application is a divisional patent application which claims the benefit of the filing date of U.S. patent application Ser. No. 10/204,609, filed Aug. 22, 2002, which claims benefit to PCT International Patent Application Serial No. PCT/US01/02262, filed Jan. 24, 2001, which claims priority to U.S. Provisional Patent Application Ser. No. 60/188,543, filed Mar. 10, 2000, the disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60188543 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10204609 | Jan 2003 | US |
Child | 11294681 | Dec 2005 | US |