Dry-stack masonry wall supported on hollow piles

Information

  • Patent Grant
  • 11530534
  • Patent Number
    11,530,534
  • Date Filed
    Thursday, July 22, 2021
    3 years ago
  • Date Issued
    Tuesday, December 20, 2022
    2 years ago
Abstract
A dry-stack masonry wall supported on hollow piles includes a wall having a plurality of stacked rows of masonry blocks that form a hollow interior grid of horizontal and vertical channels. The wall is supported on piles having hollow interiors, each of which is in communication with one of the vertical channels of the wall. Hardened grout filling the grid of the wall and the interiors of the piles monolithically binds the blocks into a wall which is bonded to and supported by the piles.
Description
BACKGROUND
Technical Field

The present invention relates generally to retaining walls and is more particularly related to walls constructed by dry-stacking masonry blocks on foundation piles.


Description of Related Art

Prior art wall systems are constructed on drilled piers with a connecting reinforced grade beam, requiring excavation for the grade beam and drilling for the piers. This creates excess soil, complicates construction processes, requires additional inspections, and results in additional labor and equipment costs, all of which increases project time.


SUMMARY OF THE INVENTION

In one embodiment of the invention, a dry-stack masonry block comprises two spaced-apart face shells connected by one or more interior connectors to form one or more vertical channels. The connectors extend from the bottom of the connected face shells to a height less than that of the face shells to form a horizontal channel on the top part of the block.


A wall is constructed by stacking horizontal rows of the blocks with every other row inverted so that the horizontal channels of the blocks in each such inverted row meet with the horizontal channels of the upright blocks of the row below it. The horizontal and vertical channels of the stacked rows of masonry blocks intersect to form a hollow interior grid which can be filled with grout. Since the halves of each masonry block are horizontally symmetrical, the blocks of each row can be horizontally offset from the blocks of the row immediately below it in a running bond configuration and still form the hollow grid mentioned above.


The dry-stack masonry block of the invention can be cast using less material than prior art blocks, resulting in a lighter, more affordable block, and the stacked configuration allows for ore robust bar reinforcement and overall wall strength and eliminates the need for grade beam footings. The masonry block also enables construction of a mortar-less masonry wall, eliminating the need for transporting, mixing and troweling mortar.


In another embodiment of the invention, a wall constructed from masonry blocks as discussed above is supported on hollow piles. The hollow interiors of the piles communicate with the vertical channels of the grid of horizontal and vertical channels in the wall Grout can be poured into the grid and the interiors of the piles which when hardened creates a monolithic wall supported on the piles. The use of hollow barrel piles in combination with the masonry blocks described above eliminates or significantly reduces excess soil, simplifies construction, reduces inspections, labor and equipment costs, and allows a strong wall to be constructed more quickly.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a dry-stack masonry block according to the invention.



FIG. 1B is a sectional perspective view thereof, taken along line 1B of FIG. 2.



FIG. 2 is a top plan view thereof.



FIG. 3 is a bottom plan view thereof.



FIG. 4 is a side elevational view thereof taken along line 4-4 of FIG. 2.



FIG. 5 is a side elevational view of two stacked blocks in accordance with the invention,



FIG. 6 is a side elevational view similar to FIG. 5 showing structural steel disposed in the channels formed by the blocks.



FIG. 7 is a front elevational sectional view of a partially constructed wall including three horizontal roves of stacked blocks according to the invention.



FIG. 8 is a front elevational view of a partially constructed wall showing vertical and horizontal reinforcement bars disposed in the grid of channels formed by the interlacing vertical cores and horizontal channels of the stacked blocks, and showing hollow piles supporting the wall according to the invention.



FIG. 9 is a top plan view of masonry blocks in a wall supported on piles according to the invention.



FIG. 10 is a side elevational view of a monolithic retaining wall constructed with masonry blocks and supported on piles according to the invention.



FIG. 11 is a front elevational view similar to FIG. 8 of a partially constructed wall according to another embodiment of the invention.



FIG. 12 is a top plan view thereof, similar to FIG. 9.



FIG. 13 is a side elevational view thereof, similar to FIG. 10.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT

The Masonry Block



FIGS. 1 to 4 show a dry-stack masonry block 100 according to the invention. Block 100 is made of two face shells 102 and 103 connected by two interior connectors 104 and 105 to form a double open-ended bond beam masonry block having a vertical center channel 106 and vertical end channels 107.



FIG. 1A is a perspective view of block 100, and FIG. 1B is a sectional perspective view of the block 100 that more clearly shows interior connectors 104 and 105. FIGS. 2 and 3 show top plan and bottom plan views of block 100 respectively.


Face shell 102 has a top edge 113, a bottom edge 115 and side edges 108 and 110. Face shell 103 has a top edge 114, a bottom edge 116 and side edges 109 and 111.


Interior connectors 104 and 105 have a height Hw that extends from the bottom of face sheds 102 and 103 to less than the full height Hs of face shells 102 and 103. As described in detail below with respect to FIGS. 8 and 9, the shortened height Hw of interior connectors 102 and 103 forms a horizontal channel 119 in the top of block 100.


The measurements and proportions of block 100 can vary depending on the particular requirements of a building project. In one embodiment, face shells 102 and 103 are of identical shape and proportion with the height Hs of the face shells (i.e., the length of side edges 108, 109, 110 and 111) being approximately 8 inches, the length of the face shells (i.e., the length of top and bottom edges 113, 114, 115 and 116) being approximately 18 inches, and the width of the face shells being approximately 2 inches. In the same embodiment, interior webs 104 and 105 are also of identical shape and proportion, with the height Hw of the webs being approximately 5.5 inches, the length of the webs being approximately 3 inches and the width of the interior webs (i.e., the spacing between the interconnected face shells) being approximately 5 inches, giving block 100 approximate overall dimensions of 8 inches by 9 inches by 18 inches (typical dimensions used in the construction industry). It should be understood, however, that this is just one exemplary set of dimensions for block 100.


Block 100 can be made of cast concrete (e.g., Portland cement and aggregate, such as sand or fine gravel), or can be made of a lower density building material such as fly ash or bottom ash (as in a cinder block) or foam concrete (e.g., autoclaved aerated concrete). The block 100 can also be formed of any other alternative building materials and/or can be formulated with special aggregates to produce desired coloring or texture.


Method of Constructing a Wall Using the Masonry Block



FIGS. 5 to 9 illustrate a method of dry-stacking a plurality of masonry blocks according to the invention in order to construct a Wythe 300 that can form all or a portion of a wall, such as, for example, a retaining wall, a sound wall, a veneer, or the wall of a building structure.


In the illustrated stacking method, horizontal rows of blocks 100 are stacked one on top of another with the vertical orientation of the blocks alternating between each stacked row (i.e. in a running bond configuration). The blocks can also suitably be arranged in a stacked bond configuration.



FIG. 5 shows a side elevational view of a wall section formed from top and bottom rows of masonry blocks. Bottom block 100E is shown with an upright vertical orientation with top block 100A in an inverted position on top of bottom block 1003, such that the top edges 1133 and 1143 of bottom block 100B align with the top edges 114A and 113A of top block 100A respectively, Three rows of blocks shown in FIG. 7 follow the stacking configuration shown in FIG. 5 to form part of a wall. As seen, the bottom row of blocks 100B and the top row of blocks 100A are also staggered horizontally to create extended vertical channels 120, emphasized by the bold broken lines, formed from the vertical center channels 106 and the vertical end channels 107 at the open ends of the blocks 100, and extended horizontal channels 121, emphasized by the bold broken lines, formed from the horizontal channels of the blocks 100. As shown in FIGS. 8 and 9, one or more vertical reinforcement bars 201 are inserted through each vertical channel and one or more horizontal reinforcement bars 202 are inserted through each horizontal channel 121. The vertical and horizontal reinforcement bars can be interlocked at points 203 and 204, as seen in FIGS. 6 and 8, to form a mesh. As seen in FIG. 10, once the wall has been dry-stacked to a desired height, the horizontal and vertical channels are filled with grout 302 which, when hardened, embeds the reinforcement bars 201 in a footing 304 and secures the blocks in place to form a monolithic wall.


The masonry blocks, when stacked as discussed above, result in a sturdy wall structure that is robustly reinforced by the vertical and horizontal web of bars. Advantageously, the needs for grade beam footings and for transporting, mixing and troweling mortar are eliminated.


Wall Supported on Hollow Piles


In another embodiment of the invention, seen in FIGS. 11-13, a monolithic wall is constructed of masonry blocks 100, as discussed above, but supported on hollow piles 400 instead of a poured foundation. In the illustrated embodiment, the piles 400 are rotary barrel piles having a hollow interior 402 and a helical flight 404 for rotating the pile into the soil. It will be understood that other types of piles having a hollow interior suitable for accepting grout may be employed for supporting a masonry wall according to the invention.


With reference to FIGS. 11 and 12, it is seen that each pile 400 is disposed beneath and in open communication with one of the extended vertical channels 120 of the wall. It will be understood that the number of vertical channels 120 that are directly supported by a pile 400 is a matter of design choice depending on building site conditions. Vertical reinforcing steel 201 may be installed in vertical channels 120 that are not directly supported by a pile 400. Vertical reinforcing steel 408 extends continuously through vertical channels 120 and into piles 400 that support them. In some embodiments and in accordance with the invention, multiple bars of reinforcing steel may be deployed in the channels of the wall and the interiors of the piles as may be suited to the requirements of the job site.


In some embodiments of the invention, the piles have an outer dimension of 8½″ and an inner dimension of 8″. However, piles having different dimensions may be selected for use according to the invention as are found suitable for site conditions.


With further reference to FIG. 13, a wall according to the illustrated embodiment is constructed by preparing a surface for the wall and then installing piles 400 in the soil at a suitable spacing. The wall 410 is then constructed as discussed above so that one of the extended vertical channels 120 is disposed in communication with the hollow interior 402 of each pile 400. Horizontal 202 and vertical 201, 408 reinforcing steel is installed in the horizontal and vertical channels 121, 120, following which grout is poured into the channels 121, 120 of the wall and in the hollow interiors 402 of the piles 400 to create a monolithic wall.


A wall comprised of masonry blocks supported on hollow piles is firmly anchored in the soil, has excellent strength, and eliminates the need for a poured foundation and for mixing and troweling mortar, thereby reducing labor, equipment and transportation costs.


There have thus been described and illustrated certain embodiments of a dry-stack masonry wall supported on barrel piles according to the invention. Although the present invention has been described and illustrated in detail, it should be clearly understood that the disclosure is illustrative only and is not to be taken as limiting, the spirit and scope of the invention being limited only by the terms of the appended claims and their legal equivalents.

Claims
  • 1. A dry-stack masonry wall supported on hollow piles comprising: a masonry wall having a height, the wall comprising a plurality of rows of masonry blocks, at least one row of said plurality of rows stacked atop another row thereof, each masonry block having a horizontal channel and at least one vertical channel,the horizontal channels of the masonry blocks in each row of said plurality of rows in mutual communication, thereby forming a continuous horizontal channel extending along the length of the row,the vertical channels of the masonry blocks in each row of said plurality of rows in communication with the vertical channels of the masonry blocks in the other rows thereof to form one or more vertical channels extending along the height of the wall,the horizontal and vertical channels intersecting to form a hollow grid within the wall,a plurality of rotary piles for substantially vertical placement in soil for supporting the wall, each rotary pile having a top, a bottom, and a hollow interior extending from the top to the bottom thereof, the tops of the plurality of piles engaged with the wall, the hollow interior of each of the plurality of piles in communication with one of the vertical channels of the wall,grout disposed in the grid of the wall and in the hollow interiors of the piles to monolithically bond the wall and the plurality of piles together.
  • 2. The dry-stack masonry wall supported on hollow piles of claim 1 further comprising: each masonry block having:two spaced-apart face shells, anda connector having a substantially horizontal top surface and substantially vertical left and right surfaces, the connector joining the face sheds, the top surface of the connector and the face shells forming said horizontal channel, and each of the left and right surfaces and the face shells forming one of said at least one vertical channels.
  • 3. The dry-stack masonry wall supported on hollow piles of claim 2 further comprising: the face shells of each masonry block having a connector edge and a free edge vertically opposite the connector edge,the connector of each masonry block having a bottom surface that is coplanar with the connector edge of the face shells, andsaid plurality of rows of masonry block including:a first row of a plurality of masonry blocks disposed in an upright orientation, anda second row of the masonry blocks disposed on top of the first row in an inverted orientation,such that the horizontal channels of the masonry blocks of the first and second rows of masonry blocks are in open communication.
  • 4. The dry-stack masonry wall supported on hollow piles of claim 1 further comprising: said rotary piles comprising barrel piles.
  • 5. The dry-stack masonry wall supported on hollow piles of claim 1 further comprising: the blocks comprising at least one of the group consisting of cast concrete, foam concrete, fly ash, bottom ash, sand or gravel.
  • 6. A method of budding a dry-stack masonry wall supported on hollow piles, the method comprising: installing a plurality of rotary piles in soil for supporting a plurality of rows of masonry blocks, said plurality of rows of masonry blocks including a first row and a second row, each pile of the plurality of piles having a hollow interior,laying the first row of masonry blocks on top of the plurality of rotary piles,laying a second row of masonry blocks atop the first row, each of the masonry blocks in said first and second rows having a horizontal channel and at least one vertical channel {intersecting the horizontal channel},disposing the masonry blocks so that the horizontal channels of the masonry blocks in each said row are in common communication,positioning the masonry blocks so that at least one of the vertical channels of each block in each of said first and second rows is in communication with one of the vertical channels of a block in the other of said rows, such that the horizontal and vertical channels of the blocks of the first and second rows meet to form a hollow grid,disposing the masonry blocks in said first and second rows so that at least one of the vertical channels thereof is in communication with the hollow interior of one of the plurality of piles,filling the hollow grid of the masonry blocks and the hollow interiors of the plurality of piles with grout to bond the blocks of the first and second rows of masonry blocks and the plurality of piles together to form a wall supported on said piles.
  • 7. The method of budding a dry-stack masonry wall supported on hollow piles of claim 6 further comprising: disposing the first row of masonry blocks in an upright orientation, each masonry block of said first and second rows having:two spaced-apart face shells, the face shells having a connector edge and a free edge opposite the connector edge, anda connector having a bottom surface, a substantially horizontal top surface and substantially vertical left and right surfaces, the connector joining the face shells, the top surface of the connector and the face shells forming said horizontal channel, and each of the left and right surfaces and the face shells forming one of said at least one vertical channels, anddisposing the second row of masonry blocks in an inverted orientation so that the horizontal channels of the masonry blocks of said first and second rows are in open communication.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior application Ser. No. 16/516,159, filed Jul. 18, 2019, which claims the benefit of U.S. Provisional Application No. 62/700,765 filed Jul. 19, 2018, and which is a continuation-in-pad of U.S. Design Pat. application No. 29/640,572, filed Mar. 15, 2018, the entire contents of all of which are incorporated herein by reference.

US Referenced Citations (99)
Number Name Date Kind
816631 Widmer Apr 1906 A
839822 Dunnington Jan 1907 A
1109020 Skiff et al. Sep 1914 A
1283246 Maloney et al. Oct 1918 A
1336773 William Apr 1920 A
1388031 Ryton Aug 1921 A
1791368 Mullett Feb 1931 A
1849268 Theodore Mar 1932 A
1883477 Bash Oct 1932 A
2191217 Liebowitz Feb 1940 A
2380692 Foster Jul 1945 A
2530940 Dahlin Nov 1950 A
2684589 Perreton Jul 1954 A
2772560 Neptune Dec 1956 A
3295274 Fulton Jan 1967 A
3318058 Sullivan May 1967 A
3645055 Roza Feb 1972 A
3662436 Roza May 1972 A
3710523 Taylor Jan 1973 A
3742661 Tye Jul 1973 A
3750609 Chelminski Aug 1973 A
3753354 Bauer Aug 1973 A
3754401 Lipow Aug 1973 A
3757528 Finsterwalder et al. Sep 1973 A
3763610 Ballew Oct 1973 A
3778944 Easley Dec 1973 A
3793786 Jahnke Feb 1974 A
3802476 Hoadley Apr 1974 A
3803782 Ballew Apr 1974 A
3803783 Ballew Apr 1974 A
3828562 Petres Aug 1974 A
3830315 Love Aug 1974 A
3832860 Jahnke Sep 1974 A
3832861 Jahnke et al. Sep 1974 A
3841032 Grannis Oct 1974 A
3855745 Patterson et al. Dec 1974 A
3855804 Herbst et al. Dec 1974 A
3861097 Patterson et al. Jan 1975 A
3871142 Abbott Mar 1975 A
3896890 Gale Jul 1975 A
3903626 Ford Sep 1975 A
3906689 Nakayama Sep 1975 A
3942368 Hoyt Mar 1976 A
3961671 Adams et al. Jun 1976 A
3971177 Endo Jul 1976 A
4014144 Gale Mar 1977 A
4037373 Echtler Jul 1977 A
4044513 Deike Aug 1977 A
4127000 Montgomery, Jr. et al. Nov 1978 A
4142336 Gebhart Mar 1979 A
4178726 Watson Dec 1979 A
4189879 Patterson Feb 1980 A
4251963 Patterson Feb 1981 A
4287098 Farnworth et al. Sep 1981 A
4290245 Pardue, Jr. et al. Sep 1981 A
4316350 Watson Feb 1982 A
4334392 Dziedzic Jun 1982 A
4400114 Pickett et al. Aug 1983 A
4406100 Keesee et al. Sep 1983 A
4459787 Wilcox Jul 1984 A
4467575 Dziedzic Aug 1984 A
4512132 Keesee et al. Apr 1985 A
4598511 Severs et al. Jul 1986 A
4633627 Tucker Jan 1987 A
4634319 May Jan 1987 A
4708530 Faber Nov 1987 A
4742656 Farmer May 1988 A
4778142 Roba Oct 1988 A
4800700 May Jan 1989 A
4854782 May Aug 1989 A
4952096 McCartney Aug 1990 A
4979341 Norman et al. Dec 1990 A
4996806 Platz Mar 1991 A
4998849 Summers Mar 1991 A
5066168 Holdeman Nov 1991 A
5113626 Seider et al. May 1992 A
5120163 Holdeman et al. Jun 1992 A
5139368 Hamilton et al. Aug 1992 A
5145286 Summers Sep 1992 A
5171107 Hamilton et al. Dec 1992 A
5175966 Remke et al. Jan 1993 A
5203127 Olthoff et al. Apr 1993 A
5224310 Edwards et al. Jul 1993 A
5295766 Tiikkainen Mar 1994 A
5408788 Hamilton et al. Apr 1995 A
5482407 Raaf Jan 1996 A
5575122 Hamilton et al. Nov 1996 A
5575593 Raaf Nov 1996 A
5608994 Carter Mar 1997 A
5622015 Collins Apr 1997 A
5913791 Baldwin Jun 1999 A
8549811 Dyson Oct 2013 B2
8820024 Abdullah Sep 2014 B1
10415241 Simonson et al. Sep 2019 B2
10472822 Castro Nov 2019 B1
20070151191 August Jul 2007 A1
20140059962 O'Connor Mar 2014 A1
20160024784 Farrell et al. Jan 2016 A1
20170335533 Chow Nov 2017 A1
Foreign Referenced Citations (3)
Number Date Country
880930 Jun 1953 DE
2486984 Jan 1982 FR
2512090 Mar 1983 FR
Related Publications (1)
Number Date Country
20210348385 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62700765 Jul 2018 US
Continuations (1)
Number Date Country
Parent 16516159 Jul 2019 US
Child 17383235 US
Continuation in Parts (1)
Number Date Country
Parent 29640572 Mar 2018 US
Child 16516159 US