BRIEF DESCRIPTION OF THE DRAWINGS
The aforementioned objects and advantages of the present invention, as well as additional objects and advantages thereof, will be more fully understood herein after as a result of a detailed description of a preferred embodiment when taken in conjunction with the following drawings in which:
FIG. 1 is a view of a fully assembled snorkel having the improved dry top of the present invention;
FIG. 2 is an enlarged view of the dry top of the snorkel of FIG. 1;
FIG. 3 is an exploded view with the splashguard mask shown in phantom to enable a clearer view of the diaphragm and float member of the preferred embodiment;
FIG. 4 is a side view of the diaphragm, yoke and float member;
FIG. 4A is a view of the diaphragm and yoke taken along 4A of FIG. 4;
FIG. 4B is a view of the float member taken along 4B of the FIG. 4;
FIG. 5 is an enlarged view of the yoke and float member interface shown while the float member is subjected primarily to buoyancy forces;
FIG. 6 is an enlarged view similar to that of FIG. 5, but shown while the float member is subjected primarily to gravity;
FIG. 7 is a side partially cross-sectioned view of the improved dry top shown oriented straight up;
FIG. 8 is a view similar to that of FIG. 7, but showing the improved dry top shown tilted about 15° from vertical;
FIG. 9 is a view similar to that of FIG. 7, but showing the improved dry top tilted about 45° from vertical; and
FIG. 10 is a plan view of the splashguard mask interior showing the connected diaphragm, yoke and float member.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Referring to the accompanying drawings, it will be seen that the preferred embodiment of a snorkel 10 in accordance with the principal features of the present invention, comprises a main tube 12, a flexible portion 14, a mouthpiece section 16 and a dry top 20. Mouthpiece section 16 provides a mouthpiece 18 to enable a snorkeler to breath through snorkel 10 as long as the dry top 20 is above the water surface. A dive mask hook 24 allows the snorkel 10 to be secured to a dive or swim mask strap (not shown) as is typical for snorkels. The dry top 20 provides a splashguard 22 which, as will be seen hereinafter, serves the dual functions of resisting entry of splashed water into the top opening of the snorkel and providing a protective connection to critical components of the dry top 20.
As seen best in FIGS. 2 and 3, the dry top 20 including splashguard 22 comprises a diaphragm 30, a yoke 38 and a float member 32, all of which are interconnected at a fulcrum 37. Diaphragm 30, held by yoke 38, is designed to rotate with fulcrum 37 to open and close airflow opening 28 at the end of top tube 26. Fulcrum 37 is controlled by the position of float member 32 depending upon whether the float member is above or below the water surface. If it's above the water surface, gravity causes the float member weight to pull down on the yoke 37 and pull the diaphragm 30 away from opening 28. If it's below the water surface, the buoyancy effect of the water on the float member causes the float member to push up on the yoke and push the diaphragm against the opening. The yoke is elevated through its side members 34 and its axles 39 which are rotatably connected into receptacles 31 of guard 22. The yoke 38 is permanently affixed to the fulcrum 37 while the float member 32 is merely hooked onto the fulcrum 37 so that the float member is free to swing in a limited fashion about the fulcrum.
As also shown in FIGS. 2 and 3, splashguard 22 is configured to releasably mate with the remaining structure of dry top 20. Each side of guard 22 has a pair of receptacles 27 and 29 configured to receive corresponding cylindrical tabs 35 and 36 extending from each side of top tube 26. In addition, the top of guard 22 has a receptacle 21 designed to receive an extending tab 23 above opening 28 on top tube 26 to firmly attach splashguard 22 in the manner shown in FIG. 2. A plurality of louvers 25 permit air to pass through guard 22 on its path through opening 28.
Referring now to FIGS. 4, 4A, 4B, 5 and 6, it will be seen that the diaphragm yoke 38 comprises a pair of arches 40 attached at two spaced apart locations along fulcrum 37. At the center of fulcrum 37 and between arches 40, resides a blocking tab 42 extending upwardly therefrom. It will also be seen that extending from the top surface 33 of float member 32 is a hook member 44 having an aperture 46 at the uppermost portion thereof. Aperture 46 has an appropriate shape and size to receive blocking tab 42. When the floating member 32 is buoyant, hook member 44 and blocking tab 42 are disengaged so that diaphragm yoke 38 is free to rotate diaphragm 30 into sealing engagement with opening 28. However, when floating member 32 is not buoyant (i.e., out of the water) hook member 44 engages blocking tab 42 which is then trapped in aperture 46. As shown in FIGS. 7-9, because of the proximity of the float member to the interior surface of the splashguard, it cannot rotate more than a few degrees before contacting that interior surface. Therefore, while blocking tab 42 is trapped in aperture 46, the diaphragm also cannot rotate more than a few degrees before the float member hits the splashguard interior surface. Thus, when the dry top 20 is out of water (i.e., above the water surface) any extent of tilting of snorkel 10 will not permit diaphragm 30 to close the opening 28. Even the 45° tilt shown in FIG. 9 will not produce a closure of the snorkel dry top while it is above the water surface. Therefore, a significant disadvantage of the prior art is overcome by the locking device shown herein.
Another improvement of the dry top of the present invention is depicted in FIG. 10. More specifically, as shown in FIG. 10, the crucial components of the dry top (i.e., float member, diaphragm, yoke, fulcrum) are connected to the splashguard 22 and not to the top tube 26. This equates to a form of protection of those critical components whenever the splashguard is removed. Therefore, unlike the prior art, there's no easy way to remove the splashguard and gain access to the float member and diaphragm while they're still configured for functional operation in conjunction with the snorkel top tube.
Having therefore disclosed improvements to prior art dry top snorkels, it will now be apparent that various modifications and additions may be made to the described embodiment without deviating from the inventive features of such improvements. Accordingly, the scope hereof is not to be deemed to be limited by the disclosed embodiment, but only by the appended claims and their equivalents.