The present application claims the benefit of the priority date of a prior foreign application under 35 U.S.C. §119 namely Mexican Patent Application No. 2003/002208 filed on Mar. 13, 2003. The foreign application is incorporated herein by reference.
1. Field of the Invention
Currently, cable TV networks are designed taking into account the use of coaxial cables for signal transmission from the generation building to the subscribers. Said coaxial cables are classified in trunk, distribution and drop cables, and are usually made up of a core conductor, a dielectric insulation, and external conductor and a protective cover.
2. Previous Art
In order to connect coaxial cables to the transmission or reception equipment, it is necessary to prepare the cable to place and then seal the connectors to prevent water penetration. However, water penetration problems are common due to poor seal together with an inadequate cable installation. For example, when the cable is placed in ducts exposed to prolonged humidity such as flooding, if water penetration occurs, the cable is affected in its electrical and mechanical properties.
The current methods to prevent water penetration in this type of cables focused on the use of fillers such as oil dispersed water insoluble materials, stabilizers based on glycol, ester acetate, ethylene glycol ester or ethylene glycol ester acetate. All these materials show an adequate protection against water penetration in coaxial cables, however all of them use materials with oily adhesive and/or characteristic properties. This complicates the use of solvents to clean the cable before connecting it.
For example, in U.S. Pat. No. 5,949,018, a coaxial cable having water blocking cover is described, which includes, besides the conductor and the dielectric material around it, a first metal cover around the dielectric material and the conductor; a first metallic tape cover around and a second metallic cover around the tape; a water swellable material placed between the two covers and a second metallic tape, and a final jacket.
In patent application PCT/US01/11879, a coaxial cable is described. Said coaxial cable is protected against corrosion through the use of a composition applied on the cable, said composition being based on an oil dispersed corrosion compound and a glycolic ethers ether stabilizer, propylene glycol based on glycolic ester acetate or ethylene. Said composition is applied preferably on the external conductor of said cable.
The applicant had developed a technique through the design of a dry cable, i.e. without filler, but incorporating within its design a water penetration prevention element, which would permit to prepare and connect the coaxial cable without using solvents and other cleaning elements.
Hereinafter, the invention is described according to
The coaxial cable 10 of
The coaxial cable 10 is normally formed by a metal core conductive element 11 which can be manufactured from different materials such as: copper alloys, aluminum alloys, or combinations of said metals with others. Said core conductor can be protected by a surrounding layer 12 of a polymer mix with an adhesive component of ethylene acrylate acid (EAA) or ethylene vinyl acid (EVA), among others, to ensure a correct watertightness between the core conductor and the dielectric. The dielectric consists of a cellular high expansion polymer, said high expansion polymer can be formed by a low density polyethylene or mixture of low, medium and high density polyethylene plus a swelling agent for controlling the swelling material that can be azodicarbonamide, p-toluene sulfonyl hydrazide, 5-phenyl tetrazol, among others. Between the dielectric and the second conductor, there can be or not a layer or film of polymer mixed with a certain proportion of adhesive such as ethylene acrylate acid (EAA) or ethylene vinyl acid (EVA), among others. The object of said second polyethylene film is to give watertightness to the swelling dielectric and to improve the surface appearance of the dielectric, and also to permit a better control of the dielectric swelling process. The second or external conductor 15 can be formed by a tape made of aluminum alloy, copper alloy or any combination of said metals with others, formed in, a tube that can be longitudinally welded, extruded or with overlapping-edges. On said second conductor a water penetration protective element is placed, said protection consisting of one or several swellable fibers or tapes made of polyester threads or other fibers as basis for the swellable element applied helically, annularly or longitudinally. Finally, on the external conductor a protective cover is placed which can be of any type of polymer such as low density, medium density and high density polyethylene or any combination of them.
According to the invention,
The protective layer 17 shown in
The main insulating element 12 or dielectric is placed in the extrusion device 20 which can be a single extruder (simple) or two serial extruders which are known as cascade, to obtain high cellular expansion. Normally, high, low or medium density polyethylene is used, or any combination of them with a swelling control agent that can be azodicarabonamide, p-toluene sulfonyl hydrazide, phenyl tetrazol, among others, to reach high cellular expansion. Besides the above-mentioned materials, a physical expansion can be generated injecting a high pressure inert gas in the extrusion process, the gas used being Nitrogen, Argon, Carbon Dioxide, among others or any combination of these. However, there also exists the chemical swelling which is conducted directly by the swelling agent as the above-mentioned azodicarbonamide. The second polymer film is optional and is applied on the equipment 27. Said second polymer film can be equal to the first film and applied through extrusion, flooding the conductor in the insulating element and then removing the excess or through sprinkling. If it is through extrusion, said film is applied through co-extrusion, i.e., there are two extruders, one for the main insulating element 13 and the other for the second polymer film 14. Said extruders are connected to a single extrusion head appropriately designed for this purpose, as previously mentioned, said second film consisting of polyethylene, polyester or polypropylene mixed in a given ratio with an adhesive which can be ethylene acrylate acid (EAA), among others. Other option to manufacture the core is through triple co-extrusion, in which there are three extruders, one for the first film 12 another for the main insulation material 13, and the other for the second film 14, connected to an extrusion head properly designed to obtain the core with the 3 above-mentioned interfaces.
Once the core or central insulation 11 is obtained, it must be cooled to prevent deformation when winding it, which is made in the cooling trough 22 and water at controlled temperature, air, vapor, or any combination of them can be used. Finally, the core is stored on a reel 23 to be sent to the following process.
The diagram in
The cable 32 indicated in
Once the cable 36 is obtained, it is protected by the cover and has to be cooled to prevent deformations when winding it, and this is conducted in a cooling trough 35 using water at controlled temperature. Finally the cable 36 is stored on a reel 37 to be stored, cut or shipped.
Internal Conductor (Core)
The core conductor is made of copper plated aluminum wire, with a 3.15±0.03 mm diameter; it also has a uniform round cross section, seamless and imperfection free, and meets the requirements of ASTM B 566 standard, Class 10A.
Dielectric
The dielectric consists of three layers. The first layer, the conductor, is a uniformly thick film made of low density polyethylene mixed with adhesive. Said layer links the conductor to the dielectric and acts as a moisture blocking element and minimizes the presence of air bubbles that contribute to the instability of the characteristic impedance and the structural return losses (SRL). The second layer of the dielectric is a polyethylene mix physically expanded through gas injection. The materials used have to be virgin. Recycled or reprocessed materials shall not be used. The dielectric is to be applied concentrically on the conductor, adhering onto it, and shall have a 13.0±0.10 mm diameter. The third layer has the same properties as the first layer and ensures the surface uniformity of the intermediate layer and enhances the adherence of the aluminum pipe onto the dielectric. The polyethylene mix used in the dielectric shall fulfill the requirements of standard ASTM D 1248 Type I, III and IV, Class A, category 3.
External Conductor
The external conductor is a cylindrical pipe made of aluminum alloy 1350, and shall meet the requirements of ASTM B 233. The thickness of the pipe shall be 0.34 mm and its diameter shall be 13.70 mm±0.10 mm.
Water Blocking Threads
The external conductor is helically surrounded with a pair of water blocking threads. Said threads have an absorption speed ≧15 ml/g per minute and their absorption capacities is about 30 ml/g.
External Cover
The external cover is made of medium density black polyethylene, adding the precise ratios of antioxidant and carbon black to ensure the best conditions against weathering, including protection against UV rays.
The surface of the cover shall be free of holes, cracks and any other defect.
The cover diameter shall be 15.5 mm±0.10 mm, with a 0.67 mm±0.02 mm thickness.
The polyethylene used for the cover shall meet the following characteristics:
Physical Tests:
Cable Bending Test
The complete cable must fulfill all the requirements established in standard EN 50117, Clause 10.2 for the bending test.
Cable Tensile Stress Test
The cable shall withstand a maximum tensile stress of 980 N, without presenting changes in the electrical characteristics specified in this document. Besides, the cable shall not present cracks or ruptures in the insulation, in the metal elements or in the cover, after having been submitted to the tests described in standard EN 50117, Clause 10.3.
Compressive Strength Test
The cable must pass the compressive strength test conducted according to standard EN 50117, Clause 10.4. After a maximum recovery time of 5 minutes, the maximum irregularity will be below 1%.
Insulation Longitudinal Contraction Test
Samples of insulated conductor shall be submitted to contraction test according to the procedures specified in ASTM D 4565. The total contraction of the insulation shall not be over 6.4 mm.
Cover Longitudinal Contraction Test
The cable cover shall be tested to measure its longitudinal contraction, following the procedure established in standard SCTE IPS-TP-003. The contraction shall not be above 9.52 mm in a 152 mm long sample.
Test of Adherence Between the Core Conductor and the Insulation
The core conductor shall adhere onto the dielectric material insulating the cable. Said adherence shall be strong enough to prevent sliding between the two elements, but must also allow the separation of said two elements during cable preparation for connection. The test shall be conducted according to standard EN 50117, Clause 10.1.
Weathering Test
The finished cable shall be submitted to the weathering test according to the procedures established in standard EN 50117, Clause 10.6. This test is conducted in order to determine the capacity of the cable to maintain its electrical characteristics and the cover integrity in case of weather changes.
Electrical Characteristics of the Finished Product
The cable shall present the following electrical characteristics when they are evaluated according to standard EN 50117-1:
Mechanical Characteristics of the Product
The cable shall present the following mechanical characteristics tested according to standard EN50117-1:
The cable shall be designed to operate at temperatures between −40 to 80° C. and shall present a nominal net weight of 140 Kg/Km.
It will be recognized by persons skilled in the art that numerous variations and modifications may be made to the invention without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PA/A/2003/002208 | Mar 2003 | MX | national |
Number | Name | Date | Kind |
---|---|---|---|
3321572 | Garner | May 1967 | A |
3795640 | Mildner | Mar 1974 | A |
4145567 | Bahder et al. | Mar 1979 | A |
4256921 | Bahder | Mar 1981 | A |
4703134 | Uematsu | Oct 1987 | A |
5010209 | Marciano-Agostinelli et al. | Apr 1991 | A |
5043538 | Hughey et al. | Aug 1991 | A |
5082719 | Arroyo | Jan 1992 | A |
5249248 | Arroyo et al. | Sep 1993 | A |
5281757 | Marin et al. | Jan 1994 | A |
5300733 | Uematsu | Apr 1994 | A |
5373100 | Arroyo et al. | Dec 1994 | A |
5486648 | Chan et al. | Jan 1996 | A |
6455769 | Belli et al. | Sep 2002 | B1 |
6784371 | Goehlich | Aug 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050016755 A1 | Jan 2005 | US |