This application claims priority under 35 U.S.C. §119 to Korean Application No. 10-2012-0117469 filed on Oct. 22, 2012, whose entire disclosure is hereby incorporated by reference.
1. Field
This relates to a dryer, and more particularly, to a dryer having enhanced dehumidifying power.
2. Background
In a laundry treating apparatus having a drying function such as a washer or dryer, once washing and dehydration are completed, hot air may be supplied into the drum to evaporate moisture from the laundry, thereby drying the laundry. Such a dryer may include a drum rotatably provided within a cabinet, a drive motor to drive the drum, a blower fan to blow air into the drum, and a heating device to heat air conveyed into the drum. The heating device may use, for example, high-temperature electric resistance heat generated using electric resistance, or combustion heat generated by combusting gas.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
Embodiments described herein and configurations shown the drawings are exemplary embodiments only, and do not represent all of the technical concepts as broadly described herein. Rather, it is understood that there may be various equivalents and modification examples that may replace them at the time of application.
Dryers may be classified according to a method for processing the high temperature humid air discharged from the drum as a condensation (circulation) type dryer for condensing moisture contained in the high temperature humid air by cooling the air below the dew point temperature while it circulates, without discharging the high temperature humid air out of the dryer, or an exhaustion type dryer for directly discharging the high temperature humid air from the drum to the outside.
In the condensation type dryer, in order to condense air discharged from the drum, the air may be cooled below the dew point temperature and then heated by the heating device prior to being supplied to the drum again. Here, loss of heat energy contained in the air may be generated while being cooled down during the condensation process, and an additional heater or the like may further heat the air to a temperature required for drying.
In the exhaustion type dryer, the high temperature humid air is discharged to the outside and outside air at a normal (room) temperature is drawn in and heated to a required temperature level by the heating device. In particular, residual thermal energy contained in the high temperature air being discharged to the outside may be wasted, thereby reducing thermal efficiency.
A laundry treating apparatus for collecting energy to generate hot air and unused energy being discharged to the outside may increase energy efficiency, such as, for example, a laundry treating apparatus having a heat pump system. The heat pump system may include two heat exchangers, a compressor and an expansion apparatus, and energy contained in the discharged hot air may be reused to heat air being supplied to the drum, thereby increasing energy efficiency.
Specifically, in such a heat pump system, an evaporator may be provided at the exhaust side of the drum, and a condenser at an inlet side of the drum, and thus thermal energy may be transferred to refrigerant through the evaporator and then thermal energy contained in the refrigerant may be transferred to air conveyed into the drum, thereby generating hot air using waste energy. A heater for reheating air that has been heated while passing through the evaporator may also be provided.
However, in a dryer using this type of heat pump, the size of the condenser may be somewhat restricted due to a lack of space, thereby causing difficulty in achieving the desired condensation effect. Accordingly, heat exchange efficiency may be reduced and the cooling of refrigerant may not be properly carried out, thereby reducing dehumidifying capability.
Referring to
When so configured, heating required for drying may be sufficiently supplied in a relatively short period of time, thereby reducing drying time. In other words, additional heating may be supplied in a short period of time when necessary to further heat the air flowing in the circulation flow path.
The air supplied to the drum 110 may be supplied through a circulation flow path formed in the drying duct 190, separately from the air provided through the intake flow path formed in the intake duct 170. The drying duct 190 may be provided in the cabinet 100 to circulate air discharged from the drum 110 back to the drum 110.
The air in the drum 110 dries/absorbs moisture from the laundry and then flows into a front surface duct located at a lower front side of the drum 110, and is supplied back to the drum 110 through the drying duct 190 by way of a lint filter, or is discharged to the outside of the cabinet 100 through an exhaust duct.
A blower fan 120 to forcibly blow air to the outside of the dryer may be provided on the circulation flow path formed by the drying duct 190.
An evaporator 130 and a condenser 140 may be sequentially provided on a flow path formed by the drying duct 190. The evaporator 130 and condenser 140, forming a kind of heat exchanger, may form a refrigerant cycle of the heat pump, thereby achieving heat exchange with air (Ad) on the circulation flow path.
The air supplied to the drum 110 may be heated by the heater 180 on the intake flow path or the condenser 140 on the circulation flow path to become high-temperature dry air at about 150-250° C. when supplied back into the drum 110. The high-temperature air may contact an object to be dried to evaporate moisture therefrom. The evaporated moisture will then be contained in intermediate temperature air exhausted out of the drum 110. The moisture may be removed from this intermediate temperature humid air so that it may be circulated and re-used. Since the moisture content in the air is affected by the temperature, the moisture may be removed by cooling the air. Accordingly, the air on the circulation flow path may be cooled by heat exchange with the evaporator 130. In order to supply the air cooled by the evaporator 130 back to the drum 110 at an appropriate temperature for drying, it may be heated by high temperature air, carried out by the condenser 140.
A refrigerant cycle may perform heat exchange with the environment using phase change(s) of refrigerant. Briefly described, refrigerant may be transformed into a low-temperature and low-pressure gas by absorbing heat from the environment in the evaporator, compressed into a high-temperature and high-pressure gas in the compressor, transformed into a high-temperature and high-pressure liquid by dissipating heat to the environment in the condenser, transformed into a low-temperature and low-pressure liquid by dropping its pressure in the expansion apparatus, and brought into the evaporator again. Due to the circulation of refrigerant, heat may be absorbed from the environment in the evaporator and heat may be supplied to the environment in the condenser. The refrigerant cycle may be also referred to as a heat pump.
Such a refrigerant cycle may include the compressor 150 and expansion apparatus 160 along with the evaporator 130 and condenser 140.
The flow path of air in heat exchange with the refrigerant cycle is illustrated in
As illustrated in
In general, the evaporator 130 and condenser 140 may mainly be in charge of heat exchange during the refrigerant cycle, and the air from which heat is taken in the evaporator 130 liquefies moisture contained therein to exhaust it as condensation water, so that dry air may be heated by the compressor 150 and condenser 140 to be changed into high temperature dry air. In this manner, the high-temperature air may be provided into the drum 110 along with the air from the intake flow path to perform the drying process. Part of the air provided to the drum and used in the drying process is exhausted to the outside of the dryer 100, and part is reused.
In a heat pump type dryer as embodied and broadly described herein, waste heat may be collected using the refrigerant cycle, without causing an overload during the refrigerant cycle. In other words, the heat exchange of refrigerant may be carried out by phase change(s) at optimal operating temperature and pressure, and to this end, a heat exchanger such as an evaporator and a condenser, a compressor, an expansion apparatus and the like may be used. Accordingly, in order to collect more heat, the size of the heat exchanger or compressor may be increased. However, due to limited installation space in the dryer, the size of these components may be somewhat limited.
Accordingly, the heater 180 may be provided within the intake duct 170 to continuously replenish the inhaled air with heating. According to embodiments as broadly described herein, heating may be replenished by the heater 180 to sufficiently supply the heating required for drying, thereby reducing drying time. Furthermore, the heat exchange of refrigerant may be carried out by phase change(s) at optimal operating temperature(s) and pressure(s), and to this end, heating may be sufficiently supplied. Otherwise, it may cause a problem such as refrigerant being supplied to the compressor in a liquid phase or the like, and thus the cycle cannot be stably operated, thereby reducing the reliability of the cycle. Accordingly, as disclosed herein, the air provided to the drum may be additionally replenished with heating by the heater 180, and thus the refrigerant cycle may be stably operated in a normal state.
In certain embodiments, the additional blower fan 120 may be provided on the intake flow path to provide more airflow, and prevent the heater 180 from overheating, as shown in
In certain embodiments, part of the air may be exhausted to the outside of the cabinet 100 upstream of the evaporator 130 on the circulation flow path. Accordingly, as illustrated in
According to the foregoing configuration, waste heat may be absorbed from part of the intermediate temperature humid air coming out of the drum 110 within a range that can be processed by the refrigerant cycle, and the rest of the air is exhausted. Accordingly, energy waste may be reduced overload during the refrigerant cycle may be avoided. Furthermore, it may be possible to reduce power consumption as well as enhance reliability.
Hereinafter, a heat pump type dryer including a second, or auxiliary, condenser installed in the evaporator to maximize a condensation effect, will be described with reference to
The exemplary evaporator 130 shown in
In such a refrigerant cycle, the evaporator 130 merely performs a heat exchange operation with high temperature and humid air in the dryer to reduce the temperature of the air and extract condensation water. Furthermore, air flowing through the condenser 140 is heated to allow the high temperature and humid air to flow back into the drum 110. Due to this, in a dryer as embodied and broadly described herein, the condenser 140 may function as a first condenser 140, and a second condenser 141 may be provided in the evaporator 130 to further increase a heating change, thereby enhancing heat exchange efficiency.
During the refrigerant cycle, refrigerant follows a path through the compressor 150, the first condenser 140, expansion apparatus 160 and the evaporator 130. In this embodiment, refrigerant that has passed through the compressor 150 is condensed in the first condenser 140, and then condensed again in the second condenser 141 separately provided in the evaporator 130, thereby enhancing a condensation effect.
Referring to
In certain embodiments, as illustrated in
The heat dissipation fin may be formed such that a plurality of plate-shaped metals having excellent thermal conductivity overlap with one another to efficiently perform external heat exchange with the refrigerant flowing through the refrigerant pipe. In this manner, a degree of supercooling may be further increased through the first condensation carried out by the first condenser 140 and the second condensation carried out by the second condenser 141 to enhance dehumidifying capability in the evaporator 130, thereby enhancing the efficiency of the heat pump.
The refrigerant cycle in a condensation type dryer having a heat pump, as embodied and broadly described herein, may enhance dehumidifying capability in the evaporator 130 for removing moisture in the dry flow path. To this end, refrigerant flowing into the pipe from the first condenser 140 outlet passes through the second condenser 141 without directly passing through the expansion apparatus 160. Accordingly, it has a structure in which refrigerant in the second condenser 141 may be further supercooled and brought into the evaporator 130 in a low temperature dry state through the expansion apparatus 160, thereby enhancing dehumidifying capability.
The second condenser 141 may be vertically arranged at the rear end, or downstream end, of the evaporator 130, or horizontally arranged at the lower bottom end thereof, as illustrated in
As shown in
The disposition and arrangement of the pipe plumbing of the second condenser 141 may maximize heat exchange efficiency by causing air to first pass through the second condenser 141 and then pass through the first condenser 140 since the moisture is removed and the temperature is reduced while high temperature and humid air (Ad) first passes through the evaporator 130.
In certain embodiments, the refrigerant pipe plumbing path of the evaporator 130 is configured with one path, and the refrigerant pipe plumbing path of the second condenser 141 is formed with an independent refrigerant line separated from the plumbing flow path of the evaporator 130.
For example, the refrigerant pipe plumbing path of the evaporator 130 may include one path vertically arranged in a zigzag pattern in four columns, and the refrigerant pipe plumbing path of the second condenser 141 may include one path vertically arranged in a zigzag pattern in one column, as shown in
In this arrangement, refrigerant may be evaporated in the evaporator plumbing (first through fourth columns from the front end) to transfer the heat of vaporization to external high temperature and humid air (Ad), thereby allowing moisture in the air to be cooled into condensation water. Accordingly, dry air at ambient temperature that has passed through the evaporator 130 may be heat transferred to the second condenser 141 through condenser refrigerant in a portion (the fifth column, at the rear end) used for the second condenser 141, thereby increasing the degree of supercooling of the refrigerant due to the second condenser 141.
According to another embodiment illustrated in
Hereinafter, enhanced dehumidifying performance in an evaporator including a second condenser as discussed above will be described in detail with reference to
As discussed above, the first condenser 140 which is a heat pump system, the second condenser 141, the expansion apparatus 160, the evaporator 130 and the compressor 150 are connected to circulate refrigerant along a refrigerant circulation line so as to form a refrigerant cycle. Furthermore, as illustrated in the graph of
The dehumidifying performance of the evaporator 130 may be enhanced by approximately 400 W during the refrigerant cycle due to a difference (ΔQ) between the enthalpy of refrigerant (P2) coming out of the first condenser 140 and the enthalpy of refrigerant (P3) coming out of the second condenser 141.
As shown in
In a laundry treating apparatus as embodied and broadly described herein, the second condenser 141 may be integrally added to the evaporator 130 to supercool refrigerant in the refrigerant cycle and maximize a condensation effect, thereby enhancing heat exchange efficiency.
Furthermore, the second condenser 141 may be positioned along a path separated from the refrigerant line of the evaporator 130, thereby enhancing dehumidifying performance by about 400 W due to condensation water cooling providing enhanced heat exchange efficiency.
A dryer is provided, the dryer employing a circulation type heat pump in which a second condenser is integrally added to an evaporator to supercool refrigerant in the refrigerant cycle and maximize a condensation effect, thereby enhancing heat exchange efficiency.
A dryer is provided, the dryer employing a heat pump structure in which a second condenser is configured through a path separated from the refrigerant line of the evaporator, in the rear heat or lower heat of the evaporator, thereby promoting heat exchange efficiency enhanced through cool dry air or lower condensation water, and enhancing dehumidifying performance by about 400 W.
A heat pump type dryer as embodied and broadly described herein may include a cabinet, a drum rotatably provided within the cabinet, a drying duct provided in the cabinet to circulate air discharged from the drum by resupplying it thereto, an evaporator and a first condenser sequentially provided on a flow path formed by the drying duct, and a compressor and an expansion apparatus configured to form a refrigerant cycle along with the evaporator and the first condenser.
The evaporator may include a second condenser to condense refrigerant condensed from the first condenser again, and the refrigerant pipe of the evaporator and the refrigerant pipe of the second condenser may be intrusively formed in the same heat dissipation fins to supercool refrigerant during the refrigerant cycle, thereby enhancing dehumidifying capability in the evaporator.
Furthermore, the refrigerant pipe of the evaporator and the refrigerant pipe of the second condenser may be intrusively formed in the same heat dissipation fins.
In certain embodiments, the refrigerant pipe of the evaporator may be vertically arranged in a zigzag pattern, and the lowest end portion of the refrigerant pipe may be disposed on the condensation water line, and the refrigerant pipe of the second condenser may be vertically arranged in a zigzag pattern at the rear side with respect to the flow direction of dry air.
In certain embodiments, the refrigerant pipe plumbing path of the evaporator may be configured with one path, and the refrigerant pipe plumbing path of the second condenser may be formed with an independent refrigerant line separated from the pluming flow path of the evaporator.
In certain embodiments, the refrigerant pipe plumbing path of the evaporator may be formed with one path vertically arranged in a zigzag pattern with four columns, and the refrigerant pipe plumbing path of the second condenser may be formed with one path vertically arranged in a zigzag pattern with one column.
According to another embodiment as broadly described herein, the refrigerant pipe plumbing path of the evaporator may be vertically arranged in a zigzag pattern, and the refrigerant pipe plumbing path of the second condenser may be disposed to be submerged under condensation water below a condensation water line at a lower portion of the evaporator, and horizontally arranged in a zigzag pattern.
In certain embodiments, the first condenser, the second condenser, the expansion apparatus, the evaporator and the compressor may be connected to circulate refrigerant along a refrigerant circulation line so as to form a refrigerant cycle.
Furthermore, the refrigerant cycle may perform a second condensing operation on refrigerant (P2) coming out of the first condenser through the second condenser to increase the supercooling degree of refrigerant (P3) coming out of the second condenser.
As a result, the enthalpy of refrigerant (P3) coming out of the second condenser may be less than that of refrigerant (P2) coming out of the first condenser.
When so configured, the dehumidifying performance of the evaporator may be enhanced by 400 W during the refrigerant cycle due to a difference (ΔQ) between the enthalpy of refrigerant (P2) coming out of the first condenser and the enthalpy of refrigerant (P3) coming out of the second condenser.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0117469 | Oct 2012 | KR | national |