A drum or drum segment for a drying apparatus of pourable material and method for producing a drum or drum segment
The invention relates to a drum or drum segment for a drying apparatus of pourable material according to the preamble of claim 1. The invention further relates to a method for producing a drum or a drum segment for a drying apparatus according to the preamble of claim 11.
Rotary drums are used for drying pourable material in the processing industry for drying wood chips or other cellulose-containing material. The material to be dried and a heated gas are entered at the entrance to the rotary drum and the dried material and the gas are delivered at the outlet. The relevant aspect for a favorable drying effect is that the material comes into regular contact with the heated gas and an optimal heat transmission can be achieved. The material to be dried is guided by means of mechanical and/or pneumatic transport through a rotating drum made of sheet steel.
In addition, built-in components are usually provided in the drum, which ensure a thorough mixing of the material during the rotation of the drum within the manner of a mixer. The built-in components are either held in stays or are welded or screwed together directly with the drum wall. Preferably, the industry uses so-called cross-shaped built-in components which in addition to thorough mixing also lift off the free-flowing or pourable materials in short intervals, transport the same upwardly and subsequently allow the same to pour down in the further course of the rotation from the top to bottom through the drum. Moreover, the cross-shaped built-in components which plunge into the material disposed on the floor of the drum during the rotation destroy any obstructions or accumulations of the material and ensure an even heating of the material. Cross-shaped built-in components are known for example from DE 23 62 725 B2. It is known from DE 196 31 998 C1 however to install radial built-in components, starting from the circumference of the drum in the direction towards the center of the drum.
Even though not described in detail, it is obvious and known to the person skilled in the art that these built-in components are fixed by welded joints and/or by screwed joints. Depending on the requirements, built-in supporting components may be used or an inside tube is additionally installed in order to ensure the required stability of the built-in components during operation. Reinforcing rings can be attached on the inside, outside or in the drum jacket for improving the stability of the drum, depending on the application. The external reinforcing rings come with the advantage that they can be used as so-called raceways and also as bearings for the entire drum. The drive is usually provided by means of gear ring, chain or frictional wheel drives. In the design, construction and assembly of drum driers it is necessary to provide optimized heat transmission of hot gas to the material to be dried by respective choice and arrangement of the built-in components. It is relevant that local areas which are capable of causing accumulations of the material must be avoided. Otherwise, the material in the drum can ignite due to excessive action of heat. As a result of the high temperatures during operation it is further important to provide construction and production of the drum in such a way that absorbing and compensating thermal tensions by different temperatures and different expansion behavior of the built-in components, the drum jacket and optionally the reinforcing rings are provided. Furthermore, it needs to be ensured that the occurring tensions are absorbed and compensated properly which are caused by the dead weight and the dynamically moving drum and its twisting.
In order to compensate the occurring stresses during operation, and especially during the heating and the conveying of the material, it has been common practice in regard to construction to support the entire construction on sliding elements, joints and/or spring units in the case of rigid built-in components. All these technical built-in parts lead to an increase in the weight of the drum and, optionally, to a certain imbalance. In addition, the problem arises that the material to be dried acts in a strongly adhesive manner and accumulates preferably at such places, and the function of the sliding elements, joints and/or the spring unit is obstructed or even prevented after a number of operational units. The serious consequence is that damage occurs in the drum drier itself.
The probability for faults is also highly dependent on the manner of mounting. It usually occurs by introducing and mounting individual parts during the production in a production plant or at the future location on the construction site. In order to avoid forced positions during the mounting of the individual parts which occurs in the interior of the drum, a regular rotation of the drum is necessary, which again leads to a change in the occurring stresses. For reasons of work safety it is mandatory to completely clear the entire drum prior to each rotation. This includes not only the staff, but also the production implements (welding devices), tools and loose material. A simultaneous and actually useful performance of the mounting work at several places is hardly possible in practice due to these regularly performed drum movements and the occurring exhaust gases during welding. Depending on the number of the individual parts of the built-in components, this has serious consequences on the duration and thus the costs of the mounting, because an immense process of cleaning up and securing is accompanied by each rotation of the drum.
It is the object of the invention to provide a drum or drum segment which with respect to the occurring stresses in the construction of the built-in components and the drum during mounting and operation enables optimal self-compensation and does not have the disadvantages of the state of the art, and to further provide a method for producing a drum or drum segment which avoids the disadvantages of the state of the art as mentioned above and enables simple mounting of the built-in components in the drum with little stress.
The object concerning a drum or a drum segment is achieved in such a way that several support rings are arranged between the built-in components and the wall of the drum, which rings are arranged to be capable of support in a static respect, but are still capable of compensating tensile and compressive stresses in an elastic manner and are connected in a positive and non-positive way with the built-in components and/or their support frame and the drum.
The object for the method is achieved by producing a module for built-in components by mounting built-in components between two support frames, with further metallic support rings which absorb tensile and compressive stresses in an elastic manner being mounted on all sides on the module for built-in components in such a way that they face outwardly, and the module for built-in components with the support rings is introduced into a drum or drum segment and is pre-fixed in a preliminary fashion by means of wedges and/or stitch welding, with subsequently the elastic support rings of the module for the built-in components being connected with the drum or a drum segment in a non-positive and/or positive way.
The drum or drum segment in accordance with the invention is suitable for drying wood chips, cuttings or similar cutting material, especially for so-called flakes or strands in the production of OSB (oriented strand board—board made of aligned chips), but also for drying other free-flowing or pourable material.
The support rings which are open on one side are especially suitable for
In a preferred embodiment, the support rings which are open on one side are provided with feet on the open side of the support ring, thus leading to an “omega-shaped” (Ω) appearance of the support ring. Detached from the arrangement of the individual stays or cross-shaped built-in components, the connection with the drum jacket is provided through several omega-shaped support rings. The construction which is rigid on the one hand but is still statically tolerant to stresses on the other hand allows completing the mounting of the built-in components in sections outside of the actual drum (welding, screwing) and introducing the same in sections. The type and quantity of the built-in components (crosses, scoops or the like) arranged between the two omega support disks depends on the application, e.g. on throughput and the material to be dried. Within the drum, only the actual connection with the drum jacket needs to be produced via the omega feet. Work in forced positions and/or rotating of the drum during mounting can be avoided. The application of the stays within the omega support disk occurs in a statically optimized way and is also dependent upon the application. In comparison with other solutions, a relatively large part of the drum cross section remains open, thus promoting the transport of material and substantially preventing accumulations. Mounting can occur starting easily from the middle of the drum towards the two ends at the same time, with the cleaning doors which are conventionally provided anyway being used as entrance and exit. The complete pre-assembly away from the construction site and the pre-assembly of complete drum drier segments (drum jacket and built-in components readily installed in 3 or 4 m of axial lengths for example) are also possible. In this case, the individual segments which already comprise the finished built-in components are welded by joining the drum jacket into the actual drum drier. A necessary mounting of built-in components on the construction site itself can then be completed avoided.
Preferably, the feet of the omega-shaped support rings are connected with the drum, with a twisted arrangement obviously also being possible and the bulging portions of the support rings being connected with the drum, with welded and/or screwed joints being arranged. It is also possible to provide plug-in systems for the complete segment of built-in components. In a further embodiment, the width of the flow against support rings in the direction of flow through the drum is approximately equal to the width of flow against the built-in components. In a preferred embodiment, the built-in components are arranged between two circularly arranged support frames, with the circular support frames having a smaller radius than the drum radius and the support rings being arranged between the support frame and the drum.
A drum or drum segment according to one or several of the claims 1 to 7, characterized in that the support rings are arranged in the direction of through-flow for avoiding a high air resistance.
Further advantageous measures and embodiments of the subject matter of the invention are provided in the sub-claims and the following description with the drawing, wherein:
In a preferred embodiment, the support rings 7 which are open on one side comprise feet 19 on the side of opening 15 which provide the support ring 7 with an omega-shaped appearance. Within the terms of the invention, the support ring 7 can compensate tensile and compressive stresses which arise from the change of temperature between the mounting and the operating state, which compensation occurs via legs 16 which can deform in an elastic manner, as required. It is thus contributed to stress reduction in an optimal and especially simple way, and the overall construction (built-in components 8, the support frame 14 in conjunction with the drum 5) is not subjected to any damage during operation or during changes of state in running operations.
The application decides whether the support rings 7 are arranged in the direction of through-flow (not shown) or offer with their broad sides a similar resistance to through-flow like the built-in components 8 and/or the support frames 14. The application also decides on the types of built-in components 8. In the present example, cross-shaped built-in components 8 are provided. It is obvious however that there are a large number of variations.
In summary of the method (
It can be noted in summary that the presented solutions do not act in any way in a limiting fashion on the inventive idea, but offer the person skilled in the art a large number of possibilities within the terms of the invention as to how the support rings can be arranged in order to enable elastic absorption of stresses in combination with a supporting function of the built-in components.
Number | Date | Country | Kind |
---|---|---|---|
06020815.4 | Oct 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/008622 | 10/4/2007 | WO | 00 | 11/20/2009 |