This application is based on and claims priority under 35 U.S.C. §119 from Japanese Patent Application No. 2014-043242 filed on Mar. 5, 2014.
The present invention relates to a drying device and an image forming apparatus.
According to a first aspect of the exemplary embodiments of the present invention, there is provided a drying device comprising: a drying unit configured to dry a recording medium having an image formed thereon by an image forming unit; a detection unit configured to detect a moisture content ratio of a print part having predetermined density and size and formed on the recording medium and a moisture content ratio of a blank part, which is a region of the recording medium on which an image is not formed, before the recording medium having the image formed thereon is conveyed to the drying unit by a conveyance unit; and a control unit configured to control at least one of a drying strength of the drying unit and a conveying speed of the conveyance unit on the basis Of the moisture content ratio of the print part and the moisture content ratio of the blank part.
Exemplary embodiments of the present invention will be described in detailed based on the following figures, wherein:
Hereinafter, illustrative embodiments of the present invention will be described in detail with reference to the drawings. Meanwhile, in the illustrative embodiments, the present invention is applied to an image forming apparatus of an inkjet type.
An image forming apparatus 10 of this illustrative embodiment is described with reference to
As shown in
Also, the image forming apparatus 10 has a post-processing unit 18 configured to accommodate therein the continuous business form sheet P discharged from the image forming unit 12 and a buffer unit 20 arranged between the image forming unit 2 and the post-processing unit 18 and configured to regulate a conveying amount and the like of the continuous business form sheet P discharged from the image forming unit 12 towards the post-processing unit 18.
The image forming unit 12 has a roll member (a reference numeral thereof is omitted) configured to guide the continuous business form sheet P along a conveyance path 24 of the continuous business form sheet P and a droplet discharge device 21 configured to discharge droplets onto the continuous business form sheet P being conveyed along the conveyance path 24 of the continuous business form sheet P and to form an image thereon.
The droplet discharge device 21 has a droplet discharge head 22K configured to discharge ink drops (an example of the droplets) onto the continuous business form sheet P and to form a K (black) image thereon, a droplet discharge head 22Y configured to discharge ink drops onto the continuous business form sheet P and to form a Y (yellow) image thereon, a droplet discharge head 22M configured to discharge ink drops onto the continuous business form sheet P and to form an M (magenta) image thereon, and a droplet discharge head 22C configured to discharge ink drops onto the continuous business form sheet P and to form a C (cyan) image thereon. The droplet discharge head 22K, the droplet discharge bead 22Y, the droplet discharge bead 22M and the droplet discharge head 22C are aligned to face the continuous business form sheet P in corresponding order from an upstream side towards a downstream side along a conveying direction (denoted with an arrow a in
Meanwhile, in this illustrative embodiment, the aligning order of the droplet discharge head 22K, the droplet discharge head 22Y, the droplet discharge head 22M and the droplet discharge head 22C is jus exemplary and is not limited to the order shown in
Further, a drying device 26 used to dry the image formed on the continuous business form sheet P is disposed at a downstream side of the droplet discharge device 21 with respect to the sheet conveying direction. The drying device 26 includes a heater 50 configured to supply heat for drying the image formed on the continuous business form sheet P and fans 52-1, 52-2 (hereinafter, which may also be collectively referred to as ‘fan 52’) configured to cool the heater 50 and to discharge the high humidity air in the drying device 26.
The fan 52 is configured to suck the air from the fan 52-1 and to blow the air towards the heater 50 in an arrow direction shown in
Further, the image forming unit 12 is provided with a control unit 32 configured to control the respective units of the image forming apparatus 10.
In the meantime, the pre-processing unit 14 has a feeder roll 27 on which the continuous business form sheet P to be fed to the image forming unit 12 is wound. The feeder roll 27 is rotatably supported to a frame member (not shown).
In contrast, the post-processing unit 18 has a winding roil 28 configured to wind the continuous business form sheet P having the image formed thereon. When the winding roll 28 is rotated by a rotating force from a motor (not shown), the continuous business form sheet P is conveyed along the conveyance path 24. A motor control unit 42 (refer to
By the above configuration, when the winding roll 28 is rotated, a tensional force in the sheet conveying direction is applied to the continuous business form sheet P and the continuous business form sheet P fed from the feeder roll 27 is conveyed along the conveyance path 24. The droplet discharge heads 22 discharge the ink drops of each color onto the continuous business form sheet P being conveyed, thereby forming an image on the continuous business form sheet P.
The continuous business form sheet P having the image formed thereon passes through the drying device 26, so that the image formed on the continuous business form sheet P is dried by the heater 50. Then, the continuous business form sheet P is wound by the winding roll 28.
In this illustrative embodiment, the image forming apparatus 10 further has a moisture content ratio meter 44. The moisture content ratio meter 44 will be described in detail later.
Subsequently, a configuration of main units of an electric system of the image forming apparatus 10 is described with reference to
As shown in
The ROM 32B is configured to store therein a variety of programs such as a program for controlling the entire image forming apparatus 10, a drying control processing program (which will be described later) and the like. The CPU 32A is configured to read out the programs from the ROM 32B and to develop and execute the same into the RAM 32C, so that a variety of controls are performed.
The NVM 32D is a non-volatile storage medium configured to store therein a variety of information that should be kept even when a power supply switch of the apparatus becomes off.
The I/O 32E is connected with a user interface (UI) panel 40, the motor control unit 42, the drying device 26 and the moisture content ratio meter 44. The UI panel 40 is configured by a touch panel display having a transmission touch panel superimposed on a display, for example. A variety of information is displayed on a display surface of the display, and the user touches the touch panel, so that the information and an instruction can be received. Meanwhile, in this illustrative embodiment, an example where the UI panel 40 is applied is described. However, the present invention is not limited thereto. For example, a display unit such as a liquid crystal monitor and an operation unit having ten keys, an operation button and the like may be separately provided.
As described above, the motor control unit 42 is configured to control the motor for transmitting the rotating force to the winding roll 28 via the CPU 32A, thereby changing the conveying speed of the continuous business form sheet P.
In the drying device 26, a heater output (heater light amount) of the heater 50, a wind speed of the fan 52 and the like are set under control of the CPU 32A.
The moisture content ratio meter 44 is configured to measure a moisture content ratio of a test print part TP1 (refer to
In an image forming apparatus for which a high-speed image formation (hereinafter, also referred to as ‘printing’) is required, a drying means for drying a printing surface may be provided at a downstream side of the image forming unit. Particularly, the image forming apparatus of an inkjet type using a continuous business form sheet as the recording medium, like the image forming apparatus 10 of this illustrative embodiment, is provided with the drying means in many cases because it is necessary to dry the priming surface in a short time.
Here, when the drying energy of the drying means is insufficient, a transfer (offset) of an image may occur at the sheet winding part (for example, the winding roll 28 shown in
On the other hand, when the drying energy of the drying means is excessive, sheet deformation (wrinkle and the like) and the like may occur. The shape, degree and the like of the sheet deformation are changed depending on a difference (hereinafter, also referred to as ‘moisture content ratio difference’) of moisture content ratios between a print part and a non-print part (hereinafter, also referred to as ‘blank part’) of the continuous business form sheet, a type of droplets (in below descriptions, an example where inks are used as the droplets is described) used for the droplet discharge device, a type of the continuous business form sheet, a thickness of the continuous business form sheet, a size of a printing region of the continuous business form sheet, and the like. Among them, the moisture content ratio difference is changed depending on a moisture content ratio before the printing (which depends on environmental conditions of the image forming apparatus and a pre-process of the printing), a droplet ejection amount of ink, environmental conditions (mainly, temperature and humidity conditions), and the like. Therefore, from a standpoint of suppressing the stain or sheet deformation, it is preferably to control the drying energy of the drying means, considering the moisture content ratio difference.
Therefore, the image forming apparatus 10 of this illustrative embodiment is configured to measure moisture content ratios of a test print part and a blank part around the test print part and to calculate the moisture content ratio difference therebetween, before the printed continuous business form sheet P enters the drying device 26. That is, a printed state of the continuous business form sheet P is detected before the continuous business form sheet P enters the drying device 26. Then, at least one of the heater output and the sheet speed, which are the dying conditions, is determined depending on the calculated moisture content ratio difference.
In the below, a method of measuring the moisture content ratio difference by using the test print part according to this illustrative embodiment is described with reference to
As shown in
The image region Pg indicates an image printed on the basis of the image information in the image forming apparatus 10, i.e., an image printed in the original job.
In this illustrative embodiment, the test print part TP1 is disposed at a position of the head of the image region Pg and is formed as a square print part having one side of Y mm (so-called, a solid pattern) printed with a predetermined droplet ejection ratio. The droplet ejection rate means a ratio of a number of ejected droplets per a unit area (corresponding to a pixel number in the image information of an image to be printed) to a number of ejectable droplets. When the ink is ejected with a total number of ejectable droplets in a single color, the droplet ejection ratio is 100%. Also, when inks of two colors are composed to reproduce another color, the droplet ejection ratio is maximum 200%.
As described in detail later, printing conditions (the droplet ejection ratio and a size) of the test print part TP1 are determined by extracting a droplet ejection ratio and a size of a region becoming a high density, on the basis of the image information of the image region Pg. More specifically, a maximum droplet ejection ratio is calculated from the image information of an image to be printed and a size of a maximum region (hereinafter, also referred to as ‘maximum extraction region’) of regions having a predetermined shape in the region of the maximum droplet ejection ratio is obtained. Meanwhile, in this illustrative embodiment, the predetermined shape is a square shape.
A method of obtaining a size of the maximum extraction region is described with reference to
Meanwhile, in this illustrative embodiment, the square is adopted as the predetermined shape. However, the present invention is not limited to the square inasmuch as the predetermined shape is an isotropic shape. For example, the other shapes such as a circle and the like may also be adopted. Also, the color used for printing of the test print part TP1 may be a predetermined fixed color and may also be selected from colors of regions becoming a high density of the image regions Pg.
Further, in this illustrative embodiment, an example where the maximum size of the square in the maximum droplet ejection ratio region GDm in the image information GD is obtained is described. However, the present invention is not limited thereto. For example, a maximum size within a range from the maximum droplet ejection ratio to a droplet ejection ratio lower than the maximum droplet ejection ratio by a predetermined droplet ejection ratio may be obtained.
Referring to
αd=αt−αh(%) (1)
As described later, in the image forming apparatus 10 of this illustrative embodiment, the heater output of the heater 50 of the drying device 20 and the sheet speed are determined on the basis of the moisture content ratio difference αd.
The way of selecting the test print part TP1 is described in more detail with reference to
Also,
In
In the image forming apparatus 10 of this illustrative embodiment, the test print part TP1 of the printing condition selected as described above is arranged and printed at the position shown in
In the meantime, the printing conditions of the test print part TP1 shown in
Here, a relation between the moisture content ratio difference αd and the sheet deformation is described in more detail with reference to
It can be seen from
Subsequently, a relation between the moisture content ratio difference and the maximum deformation amount L of the continuous business form sheet P where the heater output and the conveying speed (hereinafter, also referred to as ‘sheet speed’) of the continuous business form sheet P are used as parameters is described. In
Also, in this illustrative embodiment, an upper limit Lmax of the maximum displacement amount L is 0.8 mm. The upper limit Lmax of the maximum displacement amount L is not limited to 0.8 mm. For example, an appropriate value may also be set, considering a distance between the printing surface of the continuous business form sheet P and a tip of the droplet discharge head 22, and the like when a duplex printing is performed. In the meantime, the heater output of this illustrative embodiment is indicated with a ratio when the maximum output of the heater is set as 100%.
As shown in
It can be seen from
Subsequently, drying control processing that is executed in the image forming apparatus 10 of this illustrative embodiment is described with reference to
After the image information of an image to be printed is supplied from an external apparatus (not shown) and the like to the image forming apparatus 10, when an instruction to start the printing is issued, the CPU 32A reads out a drying control processing program from the storage means such as the ROM 32B and the like, so that the processing shown in
In this illustrative embodiment, an example where the drying control processing program is beforehand stored in the ROM 32B and the like is described. However, the present invention is not limited thereto. For example, the drying control processing program may be stored in a computer-readable portable storage medium or may be transmitted through a wired or wireless communication means.
Also, in this illustrative embodiment, the drying control processing is implemented by a software configuration using a computer by executing a program. However, the present invention is not limited thereto. For example, the drying control processing may also be implemented by a hardware configuration adopting an ASIC (Application Specific Integrated Circuit) or a combination of the hardware configuration and the software configuration.
As shown in
In next step S104, the CPU 32A calculates the maximum droplet ejection ratio and the size of the maximum extraction region on the basis of the image information of an image to be printed by the method described with reference to
In next step S106, the CPU 32A compares the maximum droplet ejection ratio and size of the maximum extraction region calculated in step S104 and the test print part printing condition LUT read out in step S102 and determines the priming condition (the printing conditions 1 to 9 in
In next step S108, the CPU 32A controls the droplet discharge head 22 to print the test print part TP1 having the printing condition determined in step S106 before printing an image of the job.
In next step S110, the CPU 32A controls the moisture content ratio meter 44 by the method described with reference to
In next step S112, the CPU 32A compares the moisture content ratio difference αd calculated in step S110 and the drying condition LUT read out in step S102 to determine the drying conditions. The determined drying conditions may be temporarily stored in the storage means such as the RAM 32C, the NVM 32D and the like.
In next step S114, the CPU 32A controls the heater 50 to set the heater output and the motor control unit 42 to set the sheet speed on the basis of the drying conditions determined in step S112.
In next step S116, the CPU 32A determines whether the printing is over. When a result of the determination is negative, the CPU 32A continues the printing, and when a result of the determination is positive, the CPU 32A ends the drying condition processing program. The CPU 32A may determine whether the printing is over by determining whether the printing of a number of sheets to be printed set by a user before the printing is completed.
As described in detail above, according to the drying device, the image forming apparatus and the program of this illustrative embodiment, it is possible to suppress the sheet deformation due to the excessive drying energy.
In this illustrative embodiment, both the heater output and the sheet speed are controlled. However, the present invention is not limited. For example, any one of the heater output and the sheet speed may be controlled.
Also, in this illustrative embodiment, one drying condition LUT shown in
Also, in this illustrative embodiment, the drying energy of the drying device 26 is controlled by the heater output. However, the present invention is not limited thereto. For example, the drying energy may be controlled by an air volume of the fan 52, instead of the heater output or together with the heater output.
Also, in this illustrative embodiment, the present invention is applied to the image forming apparatus configured to print one surface of the continuous business form sheet P. However, the present invention is not limited thereto. For example, the present invention can also be applied to an image forming apparatus configured to print both surfaces. In this case, the test print parts TP1 may be printed on both surfaces of the continuous business form sheet P (the droplet ejection ratios and sizes of the test print parts TP1 may be different between both surfaces) to calculate the moisture content ratio differences αd and a larger moisture content ratio difference αd of both surfaces may be adopted to determine the drying conditions.
An image forming apparatus 100 of this illustrative embodiment is described with reference to
As described above, in an image forming apparatus for which the high-speed printing is required, the drying means may be provided at the downstream side of the droplet discharge device with respect to the sheet conveying direction. When the drying in the drying means is insufficient, the ink remains as it is liquid. Therefore, the transfer of the image may occur at the sheet winding part or the roller for sheet conveyance may be stained. In the meantime, if the ink is excessively dried, the ink is not deeply permeated. Therefore, the color material such as pigment of the ink is concentrated on the surface of the recording medium, so that the transfer of the image or the stain occurs. Hence, in order to suppress the transfer of the image and the stain of the roller, it is necessary to perceive a degree of the dryness of the printing surface and an amount of the color material close to the surface of the recording medium and then to control the drying conditions by the control means.
Thus, the image forming apparatus 100 of this illustrative embodiment is provided with the moisture content ratio meter 46 and the density meter 48 at the downstream side of the drying device 26 with respect to the sheet conveying direction.
The moisture content ratio of the printing surface is measured by the moisture content ratio meter 36, so that the degree of the dryness of the printing surface is perceived. The moisture content ratio of the printing surface is changed depending On the type of the ink, the type of the continuous business form sheet P, the thickness of the continuous business form sheet P, the environmental conditions (the temperature and humidity of the exterior air, the temperature and humidity in the image forming apparatus 100), the printing speed (sheet speed), the non-uniformity in the discharge amount and the like of the droplet discharge head 22 and the non-uniformity in the temperature of the ink. As the moisture content ratio meter 46, the same meter as the moisture content ratio meter 44 may be used.
Also, an optical density (hereinafter, also referred to as ‘OD value’) of the printing surface is measured by the density meter 48, so that the amount of the color material close to the surface of the printing surface of the continuous business form sheet P is perceived. The OD value is also changed depending on the same factors as the non-uniformity in the moisture content ratio. The density meter 48 is not particularly limited and a general density meter is used. In this illustrative embodiment, a reflection-type density meter is used.
Like this, in the image forming apparatus 100 of this illustrative embodiment, after the sheet passes through the drying device 26, the degree of the dryness and the amount of the color material are perceived.
Like the image forming apparatus 10, also in the image forming apparatus 100, the test print part is used when measuring the moisture content ratio by the moisture content ratio meter 46 and measuring the OD value by the density meter 48.
As shown in
The test print part TP2 is followed by an image region Pg (not shown) of an image to be printed in the job, like
In the below, a method of determining the drying conditions in the image forming apparatus 100 of this illustrative embodiment is described. First, a method of calculating the moisture content ratio and OD value (hereinafter, also referred to as ‘target value’, respectively) to be targeted in the determining method is described with reference to
In the image forming apparatus 100 of this illustrative embodiment, a permitted value of the smudge is set to 0.05 or less. The permitted value is a value that is set by measuring and evaluating various smudges with an actual equipment of the image forming apparatus 100.
When the permitted value of the smudge is set to 0.05, the target value of the moisture content ratio is calculated as 9% (hereinafter, the target value of the moisture content ratio is denoted as ‘αth’) from
In the meantime, the relations shown in
Subsequently, a drying condition determining processing that is executed in the image forming apparatus 100 of this illustrative embodiment is described with reference to
The drying condition determining processing is processing for determining a heater output with which both the moisture content ratio and the OD value are within the target values. Meanwhile, in this illustrative embodiment, when it is difficult to bring both the moisture content ratio and the OD value within the target values, the heater output is determined with preference being given to the moisture content ratio. This is to avoid a case where when the moisture content ratio is high, a wrinkle occurs, as described above, and the wrinkle may contact and rub the tip of the droplet discharge head 22 depending on a degree of the wrinkle.
Also, the drying condition determining processing is executed continuously to the drying control processing described above. However, in the below, the descriptions of the drying control processing are omitted. Also, when the drying conditions are different between the drying condition determining processing and the drying control processing, a result of the drying control processing may be corrected (for example, the heater output determined by the drying control processing may be multiplied by a predetermined coefficient) by a result of the drying condition determining processing. Alternatively, the priority may be given to any one of the results of the drying condition determining processing and the drying control processing.
After the image information of an image to be printed is supplied from an external apparatus (not shown) and the like to the image forming apparatus 100, when an instruction to start the printing is issued, the CPU 32A reads out a drying condition determining processing program from the storage means such as the ROM 32B and the like, so that the processing shown in
In the drying condition determining processing of this illustrative embodiment, the test print part TP2 (or the test print parts TP3, TP4) may be arranged at a head of the job and the drying conditions may be determined for each job. Alternatively, the test print part TP2 (or the test print parts TP3, TP4) may be arranged periodically in the job to periodically control the drying conditions during the job. In
As shown in
In next step S202, the CPU 32A sets the heater output P to art initial value P1. As shown in
In next step S204, the CPU 32A starts to print the test print part TP2.
In next step S206, the CPU 32A measures the moisture content ratio α by the moisture content ratio meter 46 and the OD value β by the density meter 48.
In next step S208, the CPU 32A determines whether the moisture content ratio α is less than the target value αth. When a result of the determination is positive, the CPU 32A proceeds to step S212. On the other hand, when a result of the determination is negative, the CPU 32A proceeds to step S210 and calculates the net change ΔP of the heater output P by at following equation (2). Thereafter, the CPU 32A proceeds to step S204 and again prints the test print part TP2 and measures the moisture content ratio α and the OD value β.
ΔP=A·P1·(α−αth) (2)
Here, α indicates the moisture content ratio measured in step S206 and A indicates a predetermined positive constant.
In step S212, the CPU 32A determines whether the value of the counter N is Nmax or greater. When a result of the determination is positive, the CPU 32A proceeds to step S220. On the other hand, when a result of the determination is negative, the CPU 32A proceeds to step S214. Nmax is an upper limit of the counter N and is a positive constant.
The upper limit Nmax is an upper limit for avoiding a situation where a loop shown in steps S214 to S218 becomes an endless loop. The situation where an endless loop is made means a situation where after the heater output is set by the moisture content ratio α, it is difficult to bring the OD value β within the target value βth. In this case, the heater output is determined with preference being given to the moisture con tent ratio α, as described above. In the meantime, the value of the upper limit Nmax may be appropriately set, considering the calculation time and the like. In this illustrative embodiment, the upper limit Nmax is set to 5. Also, the upper limit Nmax may be stored in the storage means such as the ROM 32B.
In step S214, the CPU 32A determines whether the OD value β is less than the target value βth. When a result of the determination is positive, the CPU 32A proceeds to step S220. On the other hand, when a result of the determination is negative, the CPU 32A proceeds to step S216.
In step S216, the CPU 32A calculates the net change ΔP of the heater output P by a following equation (3).
ΔP=B·P1·(βth−β) (3)
Here, β indicates the OD value measured in step S206 and B is a predetermined positive constant.
In next step S218, the CPU 32A increments the value of the counter N by 1 and then proceeds to step S204, and again prints the test print part TP2 and measures the moisture content ratio α and the OD value β.
In next step S220, the CPU 32A ends the printing operation of the test print part TP2.
In next step S222, the CPU 32A stores a heater output Ps, which is obtained by adding the initial value P1 to the net change ΔP of the heater output P at that time, in the storage means such as the RAM 32C, the NVM 32D and the like.
In next step S224, the CPU 32A sets the heater output Ps stored in step S222, as the heater output P of the heater 50.
In next step S226, the CPU 32A starts to print the job.
In next step S228, the CPU 32A determines whether the printing is over. When a result of the determination is negative, the CPU 32A continues the printing, and when a result of the determination is positive, the CPU 32A ends the drying condition determining processing program. The CPU 32A may determine whether the printing is over by determining whether the printing of a number of sheets to be pouted set by a user before the pruning is completed.
Subsequently, a relation between the heater output P and the sheet speed is described with reference to
As clearly seen from
In this illustrative embodiment, the configuration where the moisture content ratio meter 44, the moisture content ratio meter 46 and the density meter 48 are provided has been described. However, the present invention is not limited thereto. For example, a configuration where the moisture content ratio meter 46 and the density meter 48 are provided, i.e., a configuration of executing only the drying condition determining processing is also possible.
As described in detail above, according to the drying device, the image forming apparatus and the program of this illustrative embodiment, the sheet deformation due to the excessive drying energy is suppressed. According to the drying device, the image forming apparatus and the program of this illustrative embodiment, the transfer of the image and the stain of the roller due to the deficiency in the drying energy are also suppressed.
In the respective illustrative embodiments, the present invention is applied to the image forming apparatus of the inkjet type. However, the present invention is not limited thereto. For example, the present invention can also be applied to an image forming apparatus of an electrophotographic type.
In the respective illustrative embodiments, the continuous business form sheet P has been exemplified as the recording medium. However, the present invention is not limited thereto. For example, a cut sheet can also be adopted.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2014-043242 | Mar 2014 | JP | national |