Drying ink in digital printing using infrared radiation

Information

  • Patent Grant
  • 11833813
  • Patent Number
    11,833,813
  • Date Filed
    Tuesday, November 10, 2020
    3 years ago
  • Date Issued
    Tuesday, December 5, 2023
    5 months ago
Abstract
A system (10, 110) includes: (i) a flexible intermediate transfer member (ITM) (44, 500, 600), including: a stack of: In (a) a first layer (602), located at an outer surface of the ITM (44, 500, 600), configured to receive ink droplets to form an ink image thereon, and to transfer the ink image to a target substrate (50, 51), and (b) a second layer (603) including a matrix holding particles (622), configured to receive optical radiation (99) passing through the first layer (602), and to heat the ITM (44, 500, 600) by absorbing the optical radiation (99); (ii) an illumination assembly (113), configured to dry the ink droplets by directing the optical radiation (99) to impinge on the particles (622); and (iii) a temperature control assembly (121), configured to control a temperature of the ITM (44, 500, 600) by directing a gas (101) to the ITM (44, 500, 600).
Description
FIELD OF THE INVENTION

The present invention relates generally to digital printing processes, and particularly to methods and systems for drying ink applied to a surface during a digital printing process.


BACKGROUND OF THE INVENTION

Optical radiation, such as infrared (IR) and near-IR radiation, has been used for drying ink in various printing processes.


For example, U.S. Patent Application Publication 2012/0249630 describes a process for printing an image including printing a substrate with an aqueous inkjet ink and drying the printed image with a near-infrared drying system. Various embodiments provide a process for inkjet printing and drying inks with improved absorption in the near-IR region of the spectrum for improved drying performance of aqueous, hypsochromic inks, and an inkjet ink set with improved balanced near-IR drying of black and yellow inkjet inks.


SUMMARY OF THE INVENTION

An embodiment of the present invention that is described herein provides a system including a flexible intermediate transfer member (ITM), an illumination assembly, and a temperature control assembly. The ITM includes a stack of at least (i) a first layer, located at an outer surface of the ITM and configured to receive ink droplets from an ink supply subsystem to form an ink image thereon, and to transfer the ink image to a target substrate, and (ii) a second layer including a matrix that holds particles at respective given locations. The second layer is configured to receive optical radiation passing through the first layer, and the particles are configured to heat the ITM by absorbing at least part of the optical radiation. The illumination assembly is configured to dry the droplets of ink by directing the optical radiation to impinge on at least some of the particles. The temperature control assembly is configured to control a temperature of the ITM by directing a gas to the ITM.


In some embodiments, the first and second layers are adjacent to one another, and the particles are arranged at a predefined distance from one another so as to heat the outer surface uniformly. In other embodiments, the particles are embedded within a bulk of the second layer at a given distance from the outer surface so as to heat the outer surface uniformly. In yet other embodiments, the system includes a processor, which is configured to receive a temperature signal indicative of a temperature of the ITM, and, based on the temperature signal, to control at least one of (i) an intensity of the optical radiation, and (ii) a flow rate of the gas.


In an embodiment, the system includes one or more temperature sensors disposed at one or more respective given locations relative to the ITM and configured to produce the temperature signal. In another embodiment, the illumination assembly includes one or more light sources disposed at one or more respective predefined locations relative to the ITM. In yet another embodiment, at least one of the light sources is mounted adjacent to a print bar of the ink supply subsystem, which is configured to direct the ink droplets to the outer surface.


In some embodiments, the illumination assembly includes at least an array including a plurality of the light sources. In other embodiments, the array includes the plurality of the light sources arranged along a moving direction of the ITM.


In an embodiment, the optical radiation includes infrared (IR) radiation, and at least one of the particles includes carbon black (CB). In another embodiment, the gas includes pressurized air, and the temperature control assembly includes an air blower, which is configured to supply the pressurized air.


There is additionally provided, in accordance with an embodiment of the present invention, a method including directing optical radiation to a flexible intermediate transfer member (ITM) including a stack of at least (i) a first layer, located at an outer surface of the ITM for receiving ink droplets to form an ink image thereon, and for transferring the ink image to a target substrate, and (ii) a second layer including a matrix that holds particles disposed at one or more respective given locations. The optical radiation passes through the first layer, the particles are absorbing at least part of the optical radiation for heating the ITM, and the optical radiation impinges on at least some of the particles of the second layer so as to dry the droplets of ink on the outer surface. A temperature of the ITM is controlled by directing a gas to the ITM.


There is further provided, in accordance with an embodiment of the present invention, a method for manufacturing a flexible intermediate transfer member (ITM), the method including producing a first layer, located at an outer surface of the ITM for receiving ink droplets to form an ink image thereon, and for transferring the ink image to a target substrate. A second layer including a matrix that holds particles disposed at one or more respective given locations, is applied to the first layer.


In some embodiments, producing the first layer includes applying the first layer onto a carrier, and the method includes removing the carrier from the ITM after applying at least the second layer.


There is further provided, in accordance with an embodiment of the present invention, a system including a flexible intermediate transfer member (ITM), an illumination assembly, and a temperature control assembly.


In some embodiments, the illumination assembly includes one or more light sources that are disposed at one or more respective predefined locations relative to the ITM, and are configured to direct the optical radiation to impinge on at least some of the particles. In other embodiments, at least one of the light sources is mounted adjacent to a print bar that directs the ink droplets to the ITM.


In an embodiment, the illumination assembly includes at least an array of light sources that are arranged along a moving direction of the ITM, and are configured to direct the optical radiation to impinge on at least some of the particles. In another embodiment, the illumination assembly and the temperature control assembly are packaged in a housing.


The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2
FIG. 2 are schematic side views of digital printing systems, in accordance with some embodiments of the present invention;



FIG. 3 is a schematic side view of a dryer for drying ink in a digital printing process, in accordance with an embodiment of the present invention;



FIG. 4 is a schematic side view of a main dryer for drying ink in a digital printing process, in accordance with an embodiment of the present invention;



FIG. 5 is a schematic pictorial illustration of a blanket used in a digital printing system, in accordance with an embodiment of the present invention;



FIG. 6 is a diagram that schematically illustrates a sectional view of a process sequence for producing a blanket used in a digital printing system, in accordance with an embodiment of the present invention;



FIG. 7 is a flow chart that schematically illustrates a method for producing a blanket of a digital printing system, in accordance with an embodiment of the present invention; and



FIG. 8 is a flow chart that schematically illustrates a method for drying ink and controlling the temperature of a blanket during a digital printing process, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Embodiments of the present invention that are described hereinbelow provide improved techniques for drying ink applied to a surface of a substrate during a digital printing process.


In some embodiments, a digital printing system comprises a movable flexible intermediate transfer member (ITM), also referred to herein as a blanket, an image forming station for applying ink droplets to the ITM, an illumination assembly, and a temperature control assembly. The illumination assembly is configured to direct infrared (IR) radiation to the ITM.


In some embodiments, the ITM comprises a multi-layered stack comprising (i) a release layer, which is transparent to the IR radiation and is located at an outer surface of the ITM, facing the illumination assembly. The release layer is configured to receive ink droplets from print bars of the image forming station, such that, when the ITM moves, the print bars form multiple ink images at respective sections of the release layer. Subsequently, the ITM is configured to transfer the ink images to a target substrate, such as sheets or a continuous web.


In some embodiments, the ITM further comprises a layer, also referred to herein as an “IR layer,” which is coupled to the release layer and is substantially opaque to the IR radiation. The IR layer has a matrix comprising a suitable type of silicone, and carbon-black (CB) particles embedded within the matrix of the IR layer.


In some embodiments, the IR layer is configured to receive the IR radiation passing through the release layer, and, in response to the IR radiation, the CB particles are configured to heat at least the IR layer and the release layer of the ITM, so as to dry the ink droplets applied to the release layer.


In some embodiments, the CB particles are arranged within the bulk of the IR layer at a predefined distance from one another and at a given distance from the outer surface of the release layer. In such embodiments, because of the low thermal conductivity of the silicone matrix, the heat emitted from the CB particles may be distributed uniformly within the IR layer and the release layer, and thereby may dry the ink uniformly across the outer surface of the release layer.


Note that the ITM may be damaged at a certain temperature, e.g., at about 140° C. or 150° C. In some embodiments, the temperature control assembly, comprises an air blower, which is configured to supply pressurized air, at a temperature of about 30° C., directed to the ITM so as to prevent overheating of the ITM.


In some embodiments, the digital printing system further comprises a processor and multiple temperature sensors mounted at respective locations relative to the ITM. Each of the temperature sensors is configured to produce a temperature signal indicative of the temperature of the ITM at the respective location.


In some cases, the surface of the release layer comprises, between adjacent ink images, a bare section that does not receive the ink droplets, and therefore, the ITM is more prone to overheat at the bare section. In some embodiments, as the ITM moves, the processor is configured to control the temperature sensors to sense the ITM temperature at the bare sections.


In some embodiments, based on the temperature signals, the processor is configured to control the illumination assembly to adjust the intensity of the IR radiation, and/or to control the temperature control assembly to adjust the flow rate of the pressurized air, so as to retain the temperature of the bare sections below the aforementioned certain temperature. In other embodiments, the illumination and cooling assemblies may operate in an open loop, e.g., without measuring and adjusting the temperature.


In some embodiments, the image forming station may comprise multiple print bars, each of which configured to print a different color of ink image. Note that some sections of the ink image may comprise a mixture of first and second different colors of ink printed, respectively and sequentially, by first and second print bars mounted on the digital printing system at a predefined distance from one another.


In some embodiments, the digital printing system has multiple units, each of which comprising one or more IR light sources and a pressurized air outlet coupled, via an outlet valve, to the temperature control assembly. In such embodiments, a unit is mounted between the first and second print bars, and is configured to partially dry the ink droplets of the first color applied to the ITM by the first print bar so that, after applying the droplets of the second color, the first and second colors of ink droplets will be mixed with one another on the surface of the release layer.


In some embodiments, the digital printing system comprises an array of multiple (e.g., ten) units arranged along a moving direction of the ITM so as to obtain a complete drying of the ink image printed by the print bars on the ITM.


The disclosed techniques improve the quality of printed images by obtaining a uniform drying process across the printed image. Moreover, the disclosed techniques improve the productivity of digital printing systems by reducing the time of ink drying, and therefore, reducing the cycle time of the printing process.


System Description


FIG. 1 is a schematic side view of a digital printing system 10, in accordance with an embodiment of the present invention. In some embodiments, system 10 comprises a rolling flexible blanket 44 that cycles through an ink supply subsystem, also referred to herein as an image forming station 60, multiple drying stations, an impression station 84 and a blanket treatment station 52. In the context of the present invention and in the claims, the terms “blanket” and “intermediate transfer member (ITM)” are used interchangeably and refer to a flexible member comprising one or more layers used as an intermediate member configured to receive an ink image and to transfer the ink image to a target substrate, as will be described in detail below.


In an operative mode, image forming station 60 is configured to form a mirror ink image, also referred to herein as “an ink image” (not shown) or as an “image” for brevity, of a digital image 42 on an upper run of a surface of blanket 44. Subsequently the ink image is transferred to a target substrate, (e.g., a paper, a folding carton, a multilayered polymer, or any suitable flexible package in a form of sheets or continuous web) located under a lower run of blanket 44.


In the context of the present invention, the term “run” refers to a length or segment of blanket 44 between any two given rollers over which blanket 44 is guided.


In some embodiments, during installation, blanket 44 may be adhered edge to edge to form a continuous blanket loop (not shown). An example of a method and a system for the installation of the seam is described in detail in U.S. Provisional Application 62/532,400, whose disclosure is incorporated herein by reference.


In some embodiments, image forming station 60 typically comprises multiple print bars 62, each mounted (e.g., using a slider) on a frame (not shown) positioned at a fixed height above the surface of the upper run of blanket 44. In some embodiments, each print bar 62 comprises a strip of print heads as wide as the printing area on blanket 44 and comprises individually controllable print nozzles.


In some embodiments, image forming station 60 may comprise any suitable number of bars 62, each bar 62 may contain a printing fluid, such as an aqueous ink of a different color. The ink typically has visible colors, such as but not limited to cyan, magenta, red, green, blue, yellow, black and white. In the example of FIG. 1, image forming station 60 comprises seven print bars 62, but may comprise, for example, four print bars 62 having any selected colors such as cyan, magenta, yellow and black.


In some embodiments, the print heads are configured to jet ink droplets of the different colors onto the surface of blanket 44 so as to form the ink image (not shown) on the outer surface of blanket 44.


In some embodiments, different print bars 62 are spaced from one another along the movement axis, also referred to herein as a moving direction of blanket 44, represented by an arrow 94. In this configuration, accurate spacing between bars 62, and synchronization between directing the droplets of the ink of each bar 62 and moving blanket 44 are essential for enabling correct placement of the image pattern.


In some embodiments, system 10 comprises dryers 66. In the present example, each dryer 66 comprises an infrared-based (IR-based) heater, which is configured to dry some of the liquid carrier of the ink applied to the ITM surface, by increasing the temperature of blanket 44 and evaporating at least part of the liquid carrier of the ink. In the example of FIG. 1, dryers 66 are positioned in between print bars 62, and are configured to partially dry the ink droplets deposited on the surface of blanket 44.


Note that some sections of the ink image printed on blanket 44 may comprise a mixture of two or more colors of ink, so as to produce a different color. For example, a mixture of cyan and magenta may result in a blue color. In this example, the red print bar may be positioned, along the moving direction of blanket 44 (represented by arrow 94), before the yellow print bar.


In some embodiments, after jetting the red ink at a given position on the surface of blanket 44, a processor 20 of system 10 is configured to control one or more of dryers 66 located between the red and yellow print bars to partially dry the red ink. In such embodiments, after jetting the yellow ink at the given location, the partial drying of the red ink enables the mixing of the red and yellow inks, so as to form the orange color at the given position on the surface of blanket 44.


In some embodiments, blanket 44 has a specification of operational temperatures, for example, blanket 44 is configured to operate at temperatures below about 140° C. or 150° C. in order to prevent damage, such as distortion, to the structure of blanket 44. In some embodiments, system 10 further comprises a temperature control assembly 121, (described in detail in FIGS. 3 and 4 below), which is configured to supply any suitable gas to the surface of blanket 44, so as reduce the heat applied by the IR-based heaters, and thereby, to maintain the temperature of blanket 44 below about 140° C. or 150° C. or any other certain temperature.


In some embodiments, the gas may comprise pressurized air and temperature control assembly 121 may comprise a central air blower, configured to supply the pressurized air, via outlet valves, to dryers 66. In some embodiments, dryer 66 comprises a combination of the aforementioned IR-based heater, for heating blanket 44, and air-flow channels for cooling blanket 44. In such embodiments, the pressurized air may be used for cooling sections of dryer 66 that are heated by the IR-based heater.


In some embodiments, temperature control assembly 121 further comprises an exhaust, which is configured to pump the pressurized air used for cooling blanket 44 and dryer 66, so as to reduce or prevent condensation of ink by products at the surface of the print heads.


In the context of the present disclosure and in the claims, the term “drying unit” may refer to an apparatus comprising a combination of an IR-based heater for heating blanket 44, and air-flow channels for cooling blanket 44. In the example configuration of system 10, each dryer 66 may comprise a single drying unit.


The structure and functionality of temperature control assembly 121 and of dryers 66 are depicted in detail in FIGS. 3 and 4 below.


In some embodiments, this heating between the print bars may assist, for example, in reducing or eliminating condensation at the surface of the print heads and/or in handling satellites (e.g., residues or small droplets distributed around the main ink droplet), and/or in preventing blockage of the inkjet nozzles of the print heads, and/or in preventing the droplets of different color inks on blanket 44 from undesirably merging into one another.


In some embodiments, system 10 comprises a drying station, referred to herein as a main dryer 64, which is configured to dry the ink image applied to the surface of blanket 44 by image forming station 60. Note that at each of dryers 66 is configured to dry ink droplets during the formation of the ink image.


In the example configuration of system 10, main dryer 64 comprises an array of ten drying units arranged in a row parallel to the moving direction of blanket 44. In this configuration, main dryer 64 is configured to receive blanket 44 at any suitable temperature, for example, between about 60° C. and about 100° C. and to increase the temperature of blanket 44 to any suitable temperature, for example, between about 110° C. and about 150° C. after being heated by main dryer 64.


When passing through main dryer 64, blanket 44 (having the ink image thereon) is exposed to the IR radiation and may reach the aforementioned temperature (e.g., about 140° C.). In some embodiments, main dryer 64 is configured to dry the ink more thoroughly by evaporating most or all of the liquid carrier, and leaving on the surface of blanket 44 only a layer of resin and coloring agent, which is heated to the point of being rendered tacky ink film.


The structure and functionality of main dryer 64 will be depicted in detail, for example, in FIG. 4 below.


In some embodiments, system 10 comprises a vertical dryer 96 having an assembly for pumping (e.g., using vacuum) gas residues evaporated from the surface of blanket 44. Additionally or alternatively, vertical dryer 96 may comprise an air knife, which is configured to blow pressurized air (or any other suitable gas) on the surface of blanket 44, so as to reduce the temperature of blanket 44 and/or to remove the aforementioned gas residues from the surface of blanket 44.


In some embodiments, processor 20 is configured to control, in vertical dryer 96, the vacuum level and/or the air pressure, so as to obtain the desired cleanliness and/or temperature on the surface of blanket 44. Note that the cleanliness of the surface of blanket 44 is particularly important before the ink image printed on blanket 44 enters impression station 84 as will be described in detail herein.


In some embodiments, system 10 comprises a blanket pre-heater 98, which comprises an IR radiation source (not shown) having an exemplary length of about 1120 mm or any other suitable length. The IR heat source may comprise any suitable product complying with the specified power density (which is application-dependent) supplied, for example by Heraeus (Hanau, Germany), or by Helios (Novazzano, Switzerland). In such embodiments, blanket pre-heater 98 is configured for uniformly heating blanket 44 to an exemplary temperature of about 75° C., so as to prepare blanket 44 for the printing process (described above) of the ink image, carried out by image forming station 60.


Note that various elements of blanket module 70, such as rollers 78, typically remain at room temperature (e.g., 25° C.) or any other suitable temperature, typically lower than the temperature required for drying the ink jetted on the surface of blanket 44. As a result, blanket 44 is cooling when rolling along these elements of blanket module 70. In some embodiments, processor 20 controls vertical dryer 96 for completion (if needed) of the ink drying before blanket 44 enters impression station 84, and further controls blanket pre-heater 98 for maintaining the specified temperature (e.g., about 75° C.) of blanket 44 before entering image forming station 60.


In other embodiments, blanket pre-heater 98 may comprise an air blower (not shown) configured to supply and direct hot air for heating the surface of blanket 44. The inventors found that using IR radiation reduces the time (compared to hot air) for obtaining the specified temperature of blanket 44 before receiving the ink image from image forming station 60. The reduced time is particularly important when starting up system 10, thus, improving the availability and productivity of system 10. For example, the inventors found that blanket 44 may be heated to about 75° C. within a few (e.g., five) minutes using IR radiation, or within about half hour using the hot air.


In some embodiments, system 10 comprises a blanket module 70 comprising blanket 44. In some embodiments, blanket module 70 comprises one or more rollers 78, wherein at least one of rollers 78 may comprise an encoder (not shown), which is configured to record the position of blanket 44, so as to control the position of a section of blanket 44 relative to a respective print bar 62.


In some embodiments, the encoder of roller 78 typically comprises a rotary encoder configured to produce rotary-based position signals indicative of an angular displacement of the respective roller. Note that in the context of the present invention and in the claims, the terms “indicative of” and “indication” are used interchangeably.


In other embodiments, blanket module 70 may comprise any other suitable apparatus for sensing and/or tracking the position of one or more reference points of blanket 44. For example, blanket 44 may comprise markers disposed on the blanket surface and/or engraved within the blanket. In such embodiments, system 10 may comprise sensing assemblies, configured to sense the markers and to send, e.g., to processor 20, position signals indicative of the positions of respective markers of blanket 44.


In some embodiments, blanket 44 may comprise a fabric made from two or more sets of fibers interleaved with one another. The fabric has an opacity that varies in accordance with a periodic pattern of the interleaved fibers. In some embodiments, system 10 may comprise an optical assembly (not shown) having a light source at one side of blanket 44, and a light detector at the other side of blanket 44. The optical assembly is configured to illuminate blanket 44 with light, to detect the light passing through the fabric, and to derive from the detected light one or more position signals indicative of one or more respective position reference points (e.g., fibers) in the periodic pattern of the fabric.


In some embodiments, based on the signals, processor 20 is configured to control the printing process and to monitor the condition of various elements of system 10, such as blanket 44.


Additionally or alternatively, blanket 44 may comprise any suitable type of integrated encoder (not shown) for controlling the operation of various modules of system 10. One implementation of the integrated encoder is described in detail, for example, in U.S. Provisional Application 62/689,852, whose disclosure is incorporated herein by reference.


In some embodiments, blanket 44 is guided over rollers 78 and a powered tensioning roller, also referred to herein as a dancer assembly 74. Dancer assembly 74 is configured to control the length of slack in blanket 44 and its movement is schematically represented by a double sided arrow. Furthermore, any stretching of blanket 44 with aging would not affect the ink image placement performance of system 10 and would merely require the taking up of more slack by tensioning dancer assembly 74. In some embodiments, dancer assembly 74 may be motorized.


The configuration and operation of rollers 78 are described in further detail, for example, in U.S. Patent Application Publication 2017/0008272 and in the above-mentioned PCT International Publication WO 2013/132424, whose disclosures are all incorporated herein by reference.


In other embodiments, dancer assembly 74 may comprise a pressurized-air based dancer assembly (not shown), comprising an air chamber and a light-weight roller fitted in the air chamber. The air chamber may comprise an inlet and an opening, which is sized and shaped to fit snugly over the roller. The pressurized-air based dancer assembly may comprise a controllable air blower (other than the aforementioned air blower of temperature control assembly 121), which is configured to supply pressurized air, via a given inlet, into the air chamber. The pressurized air applies a uniform pressure to the roller and moves the roller along a longitudinal axis of the air chamber. As a result, the roller may protrude from the air chamber through the opening, and applies a tension to blanket 44 while being rotated by blanket 44. The pressurized-air based dancer assembly is further described, for example, in U.S. provisional application 62/889,069, whose disclosure is incorporated herein by reference.


In some embodiments, system 10 may comprise one or more tension sensors (not shown) disposed at one or more positions along blanket 44. The tension sensors may be integrated in blanket 44 or may comprise sensors external to blanket 44 using any other suitable technique to acquire signals indicative of the mechanical tension applied to blanket 44. In some embodiments, processor 20 and additional controllers of system 10 are configured to receive the signals produce by the tension sensors, so as to monitor the tension applied to blanket 44 and to control the operation of dancer assembly 74.


In impression station 84, blanket 44 passes between an impression cylinder 82 and a pressure cylinder 90, which is configured to carry a compressible blanket.


In some embodiments, system 10 comprises a control console 12, which is configured to control multiple modules of system 10, such as blanket module 70, image forming station 60 located above blanket module 70, and a substrate transport module 80, which is located below blanket module 70 and comprises one or more impression stations as will be described below.


In some embodiments, console 12 comprises processor 20, typically a general-purpose computer, with suitable front end and interface circuits for interfacing with controllers of dancer assembly 74 and with a controller 54, via an electrical cable, referred to herein as a cable 57, and for receiving signals therefrom.


In some embodiments, controller 54, which is schematically shown as a single device, may comprise one or more electronic modules mounted on system 10 at predefined locations. At least one of the electronic modules of controller 54 may comprise an electronic device, such as control circuitry or a processor (not shown), which is configured to control various modules and stations of system 10. In some embodiments, processor 20 and the control circuitry may be programmed in software to carry out the functions that are used by the printing system, and store data for the software in a memory 22. The software may be downloaded to processor 20 and to the control circuitry in electronic form, over a network, for example, or it may be provided on non-transitory tangible media, such as optical, magnetic or electronic memory media.


In some embodiments, console 12 comprises a display 34, which is configured to display data and images received from processor 20, or inputs inserted by a user (not shown) using input devices 40. In some embodiments, console 12 may have any other suitable configuration, for example, an alternative configuration of console 12 and display 34 is described in detail in U.S. Pat. No. 9,229,664, whose disclosure is incorporated herein by reference.


In some embodiments, processor 20 is configured to display on display 34, a digital image 42 comprising one or more segments (not shown) of image 42 and/or various types of test patterns that may be stored in memory 22.


In some embodiments, blanket treatment station 52, is configured to treat the blanket by, for example, cooling the blanket and/or applying a treatment fluid to the outer surface of blanket 44, and/or cleaning the outer surface of blanket 44. At blanket treatment station 52, the temperature of blanket 44 can be reduced to a desired value of temperature. The treatment may be carried out by passing blanket 44 over one or more rollers or blades configured for applying cooling and/or cleaning and/or treatment fluid on the outer surface of the blanket.


In some embodiments, blanket treatment station 52 may be positioned adjacent to impression station 84. Additionally or alternatively, the blanket treatment station may comprise one or more bars (not shown), adjacent to print bars 62. In this configuration, the treatment fluid may be applied to blanket 44 by jetting.


In some embodiments, system 10 comprises one or more temperature sensors 92, in the present example, sensors 92A, 92B, 92C and 92D, disposed at one or more respective given locations relative to blanket 44 and configured to produce signals indicative of the surface temperature of blanket 44, also referred to herein as “temperature signals.”


In some embodiments, at least one of temperature sensors 92A-92D may comprise an IR-based temperature sensor, which is configured to sense the temperature based IR radiation emitted from the surface of blanket 44. In other embodiments, at least one of temperature sensors 92A-92D may comprise any other suitable type of temperature sensor.


In the example configuration of FIG. 1, system 10 comprises: (i) a first temperature sensor 92A, disposed in close proximity to a blanket-tension drive roller, referred to herein as a roller 78A, (ii) a second temperature sensor 92B, disposed between a first print bar 62 and a first dryer, referred to herein as a pre-heater 66A, (iii) a third temperature sensor 92C, disposed between the right-most print bar 62 (in the moving direction) and main dryer 64, and (iv) a fourth temperature sensor 92D, disposed in close proximity to a blanket-control drive roller, referred to herein as a roller 78B.


In some embodiments, temperature sensor 92A, which is disposed between blanket pre-heater 98 and image forming station 60, is configured to sense the temperature of blanket 44 before entering image forming station 60. In an embodiment, temperature sensor 92B is positioned (in the moving direction shown by arrow 94) after pre-heater 66A, so as to measure the temperature of blanket 44 before entering the first print bar.


In some embodiments, controller 54 and/or processor 20 are configured to receive temperature signals from one or more of the temperature sensors described above, and to control the printing process based on the received temperature signals, as will be described in detail below.


In other embodiments, the temperature signal from temperature sensor 92B may be sufficient for controlling starting a new cycle of a printing process carried out by image forming station 60, so that temperature sensor 92A may be redundant, and therefore may be removed from the configuration of system 10.


Note that the temperature of blanket 44 is important for the quality of the printing process carried out by image forming station 60. In some embodiments, the temperature of blanket 44 is set to a predefined temperature (e.g., about 70° C.) so as to: (i) dry the ink droplets of a first color applied to the ITM by the first print bar, and (ii) regain the blanket temperature (which is cooled by the ink droplets having a typical temperature of about 30° C. or 35° C.) to the predefined temperature of about 70° C.


In some embodiments, in response to the blanket heating, a controlled amount of vapors of the first printing fluid (e.g., ink) typically evaporate from the blanket surface without adhering to nozzles of any print bars 62. Moreover, based on the required color scheme of the ink image, the temperature of the first ink is control by the blanket temperature, so that, after applying the droplets of the second color, the first and second colors of ink droplets are mixed with one another so as to form the requested color on the surface of a release layer of blanket 44.


In the example configuration of system 10, temperature sensors 92A-92D are positioned after every event or sub-step of the printing process, which affects or may affect the temperature of blanket 44. In some embodiments, based on the temperature signals received from the temperature sensors, processor 20 (and/or controller 54) is configured to control a power source (not shown) to adjust the power density applied to one or more infrared sources (shown for example in FIG. 3 below) of the respective heater.


In such embodiments, processor 20 is configured to adjust the power density applied to the dryers using a closed-loop methodology, both in feed-back and feed-forward modes. The term “feed-back” refers to adjusting the power density in a given dryer based on temperature measured after using the given dryer, so as to obtain the required temperature in a subsequent section of the blanket. The term “feed-forward” refers to adjusting the power density based on temperature measured before using the dryer, so as to compensate for any deviation from the required temperature. In the example configuration of FIG. 1, processor 20 is configured to control the power density applied to the one or more IR source(s) of pre-heaters 98 and 66A, based on the temperature signal received from temperature sensor 92A, using, respectively, feed-back and feed-forward modes of the closed loop. For example, when the signal received from sensor 92A indicates that the temperature of a first section of blanket 44 is below the predefined 70° C. temperature, processor 20 controls the power source to: (i) increase the power density applied to pre-heater 66A for obtaining the 70° C. in the first section of blanket 44 (using the feed-forward mode), and (ii) increase the power density applied to pre-heater 98 for obtaining the 70° C. in a second section of blanket 44, which follows the first section (using the feed-back mode).


In some embodiments, after adjusting the power density applied to the power source(s) of pre-heater 66A, processor 20 receives the temperature signal from temperature sensor 92B. In case the temperature is about 70° C., processor 20 allows the first print bar of image forming station 60, to apply droplets of the first ink to blanket 44. But in case the temperature measured by temperature sensor 92B is substantially different from about 70° C. (e.g., about 50° C.), processor 20 prevents the print bars of image forming station 60 from applying ink droplets to blanket 44, and controls the power source for adjusting the blanket temperature to the predefined temperature of about 70° C. Only after obtaining the 70° C., processor 20 controls image forming station 60 to resume the printing process using print bars 62, as described above.


In some embodiments, using the techniques described above processor 20 is configured to: (i) control the power density applied to main dryer 64, based on temperature signals received from temperature sensor 92C, and (ii) control the power density applied to vertical dryer 96, based on temperature signals received from temperature sensor 92D. Additionally or alternatively, processor 20 may use the signals received from temperature sensor 92D for adjusting the power density supplied to main dryer 64.


In some embodiments, in response to receiving the temperature signals, processor 20 is configured to control the blanket temperature by adjusting the flow rate of the pressurized air in the air-flow channels shown and described in detail in FIGS. 3 and 4 below. Note that processor 20 is configured to use the feed-forward and feed-back methodology to carry out the closed-loop control on relevant air blowers of system 10. For example, when the measured temperature exceeds the required temperature of blanket 44, processor 20 is configured to control the air blowers to increase the flow of the pressurized air applied to blanket 44 Similarly, when the measured temperature is below the required temperature of blanket 44, processor 20 is configured to control the air blowers to reduce the flow of the pressurized air applied to blanket 44.


In some embodiments, processor 20 is configured to control both the intensity of IR radiation (by adjusting the power density supply) and the flow of the pressurized air, at the same time, so as to control the temperature of blanket 44. For example, in response to receiving from temperature sensor 92D, a signal indicating that the temperature of blanket 44 is substantially different than about 140° C., processor 20 may control at least one of main dryer 64 and vertical dryer 96, to adjust the intensity of IR radiation and/or the flow of the pressurized air so as to obtain the specified temperature of about 140° C. on blanket 44.


In other embodiments, based on the aforementioned temperature signals, processor 20 is further configured to control the operation of other assemblies and stations of system 10, such as but not limited to blanket treatment station 52. Examples of such treatment stations are described, for example, in PCT International Publications WO 2013/132424 and WO 2017/208152, whose disclosures are all incorporated herein by reference.


Additionally or alternatively, treatment fluid may be applied to blanket 44, by jetting, prior to the ink jetting at the image forming station.


In the example of FIG. 1, station 52 is mounted between impression station 84 and image forming station 60, yet, station 52 may be mounted adjacent to blanket 44 at any other or additional one or more suitable locations between impression station 84 and image forming station 60. As described above, station 52 may additionally or alternatively comprise on a bar adjacent to image forming station 60.


In the example of FIG. 1, impression cylinder 82 impresses the ink image onto the target flexible substrate, such as an individual sheet 50, conveyed by substrate transport module 80 from an input stack 86 to an output stack 88 via impression cylinder 82.


In some embodiments, the lower run of blanket 44 selectively interacts at impression station 84 with impression cylinder 82 to impress the image pattern onto the target flexible substrate compressed between blanket 44 and impression cylinder 82 by the action of pressure of pressure cylinder 90. In the case of a simplex printer (i.e., printing on one side of sheet 50) shown in FIG. 1, only one impression station 84 is needed.


In other embodiments, module 80 may comprise two or more impression cylinders so as to permit one or more duplex printing. The configuration of two impression cylinders also enables conducting single sided prints at twice the speed of printing double sided prints. In addition, mixed lots of single and double sided prints can also be printed. In alternative embodiments, a different configuration of module 80 may be used for printing on a continuous web substrate. Detailed descriptions and various configurations of duplex printing systems and of systems for printing on continuous web substrates are provided, for example, in U.S. Pat. Nos. 9,914,316 and 9,186,884, in PCT International Publication WO 2013/132424, in U.S. Patent Application Publication 2015/0054865, and in U.S. Provisional Application 62/596,926, whose disclosures are all incorporated herein by reference.


As briefly described above, sheets 50 or continuous web substrate (not shown) are carried by module 80 from input stack 86 and pass through the nip (not shown) located between impression cylinder 82 and pressure cylinder 90. Within the nip, the surface of blanket 44 carrying the ink image is pressed firmly, e.g., by compressible blanket (not shown), of pressure cylinder 90 against sheet 50 (or other suitable substrate) so that the ink image is impressed onto the surface of sheet 50 and separated neatly from the surface of blanket 44. Subsequently, sheet 50 is transported to output stack 88.


In the example of FIG. 1, rollers 78 are positioned at the upper run of blanket 44 and are configured to maintain blanket 44 taut when passing adjacent to image forming station 60. Furthermore, it is particularly important to control the speed of blanket 44 below image forming station 60 so as to obtain accurate jetting and deposition of the ink droplets, thereby placement of the ink image, by forming station 60, on the surface of blanket 44.


In some embodiments, impression cylinder 82 is periodically engaged to and disengaged from blanket 44 to transfer the ink images from moving blanket 44 to the target substrate passing between blanket 44 and impression cylinder 82. In some embodiments, system 10 is configured to apply torque to blanket 44 using the aforementioned rollers and dancer assemblies, so as to maintain the upper run taut and to substantially isolate the upper run of blanket 44 from being affected by mechanical vibrations occurring in the lower run.


In some embodiments, system 10 comprises an image quality control station 55, also referred to herein as an automatic quality management (AQM) system, which serves as a closed loop inspection system integrated in system 10. In some embodiments, station 55 may be positioned adjacent to impression cylinder 82, as shown in FIG. 1, or at any other suitable location in system 10.


In some embodiments, station 55 comprises a camera (not shown), which is configured to acquire one or more digital images of the aforementioned ink image printed on sheet 50. In some embodiments, the camera may comprises any suitable image sensor, such as a Contact Image Sensor (CIS) or a Complementary metal oxide semiconductor (CMOS) image sensor, and a scanner comprising a slit having a width of about one meter or any other suitable width.


In the context of the present disclosure and in the claims, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. For example, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 72% to 100%.


In some embodiments, station 55 may comprise a spectrophotometer (not shown) configured to monitor the quality of the ink printed on sheet 50.


In some embodiments, the digital images acquired by station 55 are transmitted to a processor, such as processor 20 or any other processor of station 55, which is configured to assess the quality of the respective printed images. Based on the assessment and signals received from controller 54, processor 20 is configured to control the operation of the modules and stations of system 10. In the context of the present invention and in the claims, the term “processor” refers to any processing unit, such as processor 20 or any other processor or controller connected to or integrated with station 55, which is configured to process signals received from the camera and/or the spectrophotometer of station 55. Note that the signal processing operations, control-related instructions, and other computational operations described herein may be carried out by a single processor, or shared between multiple processors of one or more respective computers.


In some embodiments, station 55 is configured to inspect the quality of the printed images and test pattern so as to monitor various attributes, such as but not limited to full image registration with sheet 50, color-to-color (C2C) registration, printed geometry, image uniformity, profile and linearity of colors, and functionality of the print nozzles. In some embodiments, processor 20 is configured to automatically detect geometrical distortions or other errors in one or more of the aforementioned attributes. For example, processor 20 is configured to compare between a design version (also referred to herein as a “master” or a “source image” of a given digital image and a digital image of the printed version of the given image, which is acquired by the camera.


In other embodiments, processor 20 may apply any suitable type image processing software, e.g., to a test pattern, for detecting distortions indicative of the aforementioned errors. In some embodiments, processor 20 is configured to analyze the detected distortion in order to apply a corrective action to the malfunctioning module, and/or to feed instructions to another module or station of system 10, so as to compensate for the detected distortion.


In some embodiments, processor 20 is configured to detect, based on signals received from the spectrophotometer of station 55, deviations in the profile and linearity of the printed colors.


In some embodiments, processor 20 is configured to detect, based on the signals acquired by station 55, various types of defects: (i) in the substrate (e.g., blanket 44 and/or sheet 50), such as a scratch, a pin hole, and a broken edge, and (ii) printing-related defects, such as irregular color spots, satellites, and splashes.


In some embodiments, processor 20 is configured to detect these defects by comparing between a section of the printed and a respective reference section of the original design, also referred to herein as a master. Processor 20 is further configured to classify the defects, and, based on the classification and predefined criteria, to reject sheets 50 having defects that are not within the specified predefined criteria.


In some embodiments, the processor of station 55 is configured to decide whether to stop the operation of system 10, for example, in case the defect density is above a specified threshold. The processor of station 55 is further configured to initiate a corrective action in one or more of the modules and stations of system 10, as described above. The corrective action may be carried out on-the-fly (while system 10 continue the printing process), or offline, by stopping the printing operation and fixing the problem in a respective modules and/or station of system 10. In other embodiments, any other processor or controller of system 10 (e.g., processor 20 or controller 54) is configured to start a corrective action or to stop the operation of system 10 in case the defect density is above a specified threshold.


Additionally or alternatively, processor 20 is configured to receive, e.g., from station 55, signals indicative of additional types of defects and problems in the printing process of system 10. Based on these signals processor 20 is configured to automatically estimate the level of pattern placement accuracy and additional types of defects not mentioned above. In other embodiments, any other suitable method for examining the pattern printed on sheets 50 (or on any other substrate described above), can also be used, for example, using an external (e.g., offline) inspection system, or any type of measurements jig and/or scanner. In these embodiments, based on information received from the external inspection system, processor 20 is configured to initiate any suitable corrective action and/or to stop the operation of system 10.


The configuration of system 10 is simplified and provided purely by way of example for the sake of clarifying the present invention. The components, modules and stations described in printing system 10 hereinabove and additional components and configurations are described in detail, for example, in U.S. Pat. Nos. 9,327,496 and 9,186,884, in PCT International Publications WO 2013/132438, WO 2013/132424 and WO 2017/208152, in U.S. Patent Application Publications 2015/0118503 and 2017/0008272, whose disclosures are all incorporated herein by reference.


The particular configurations of system 10 is shown by way of example, in order to illustrate certain problems that are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of such systems. Embodiments of the present invention, however, are by no means limited to this specific sort of example system, and the principles described herein may similarly be applied to any other sorts of printing systems.


For example, in other embodiments, dryer 66 and/or blanket pre-heater 98 may comprise more than one source of IR radiation Similarly, main dryer 64 may comprise any other suitable number of drying units, or any other suitable type of ink-drying apparatus.


In alternative embodiments, at least one of the dryers may comprise a radiation sources configured to emit radiation other than IR. For example, near IR, visible light, ultraviolet (UV), or any other suitable wavelength or ranges of wavelengths.



FIG. 2 is a schematic side view of a digital printing system 110, in accordance with an embodiment of the present invention. In some embodiments, system 110 comprises blanket 44 that cycles through an image forming station 160, and through drying station 64, vertical dryer 96, blanket pre-heater 98, and blanket treatment station 52 described in FIG. 1 above.


In some embodiments, system 110 is configured to transfer the ink images from moving blanket 44 to a continuous flexible web substrate, referred to herein as web 51, which is the target substrate of system 110. In such embodiments, system 110 comprises a substrate transfer module 100, which is configured to convey web 51 from a pre-print buffer unit 186, via one or more impression stations 85 for receiving the ink image from blanket 44, to a post-print buffer unit 188.


Each impression station 85 may have any configuration suitable for transferring the ink image from blanket 44 to web 51. In some embodiments, the lower run of blanket 44 may selectively interact, at impression station 85, with an impression cylinder 192 to impress the image pattern onto web 51 compressed between blanket 44 and impression cylinder 192 by the action of pressure of a pressure cylinder 190. In case of a simplex printer (i.e., printing on one side of web 51) shown in FIG. 2, only one impression station 85 is needed. In case of a duplex printed (i.e., printing on both sides of web 51), which is not shown in FIG. 2, system 110 may comprise, for example, two impression stations 85.


In some embodiments, substrate transfer module 100 may have any suitable configuration for conveying web 51. One example implementation is described in detail in U.S. Provisional Application 62/784,576, whose disclosure is incorporated herein by reference.


In some embodiments, web 51 comprises one or more layers of any suitable material, such as an aluminum foil, a paper, polyester (PE), polyethylene terephthalate (PET), biaxially oriented polypropylene (BOPP), oriented polyamide (OPA), biaxially oriented polyamide (BOPA), other types of oriented polypropylene (OPP), a shrinked film also referred to herein as a polymer plastic film, or any other materials suitable for flexible packaging in a form of continuous web, or any suitable combination thereof, e.g., in a multilayered structure. Web 51 may be used in various applications, such as but not limited to food packaging, plastic bags and tubes, labels, decoration and flooring.


In some embodiments, image forming station 160 typically comprises multiple print bars 62, each mounted (e.g., using a slider) on a frame (not shown) positioned at a fixed height above the surface of the upper run of blanket 44. In some embodiments, each print bar 62 comprises a plurality of print heads arranged so as to cover the width of the printing area on blanket 44 and comprises individually controllable print nozzles, as also described in FIG. 1 above.


In some embodiments, image forming station 160 may comprise any suitable number of print bars 62, each print bar 62 may contain the aforementioned printing fluid, such as the aqueous ink. The ink typically has visible colors, such as but not limited to cyan, magenta, red, green, blue, yellow, black and white. In the example of FIG. 2, image forming station 160 comprises a white print bar 61 and four print bars 62 having any selected colors such as cyan, magenta, yellow and black.


In some printing applications white ink is applied to the surface of web 51 before all other colors, and in some cases it is important that in at least some sections of web 51 the white color will not be mixed with the other colors of ink.


In some embodiments, system 110 comprises a white-ink drying station, referred to herein as a white dryer 97, which is configured to dry the white ink applied to the surface of blanket 44 by image forming station 160. In such embodiments, white dryer 97 may comprise five drying units, each of which comprising a combination of the aforementioned IR-based heater for heating blanket 44, and one or more air-flow channels for cooling blanket 44.


In other embodiments, white dryer 97 may comprise any other configuration suitable for drying the white ink, for example, white dryer 97 may comprise any other number of drying units, or may comprise any other suitable dryer apparatus using any other suitable drying technique.


In an embodiment, white dryer 97 is controlled by processor 20 and/or by controller 54, and is configured to dry the white ink applied to the surface of blanket 44 by white print bar 61. In this embodiment, processor 20 and/or controller 54 are configured to control white dryer 97 for partially or fully drying the white ink applied to the surface of blanket 44.


In the configuration of system 110, white dryer 97 replaces one dryer 66 used for drying any color of ink other than white. Note that in the present configuration, system 110 does not have a print bar between white dryer 97 and the first dryer 66, but in other embodiments, system 110 may have any suitable printing components (e.g., a print bar) or sensing components (e.g., a temperature sensor or any other type of sensor), between white dryer 97 and the first dryer 66.


In other embodiments, system 110 may comprise any other suitable type of dryer for drying, or partially drying, any particular color of ink other than white.


In other printing applications, the white ink may be applied to the surface of web 51 after all other colors. In alternative embodiments, the white ink may be applied to the surface of web 51, using a subsystem external to or integrated with system 110. In such embodiments, the white ink is applied to the surface of web 51 before or after applying the other colors to the surface of blanket 44, using image forming station 160, and particularly, before or after applying the other colors to the surface of web 51 in impression station 85.


In some embodiments, temperature sensor 92B is disposed between the aforementioned first dryer 66 and print bar 62, so as to confirm the surface temperature of blanket 44 before applying the ink having a color other than white using print bar 62. Moreover, temperature sensor 92B is disposed between the last print bar of image forming station 160, and main dryer 64. Note that temperature sensors 92A, 92C and 92D are disposed at the same positions in both system 110 and system 10 of FIG. 1 above. Temperature sensor 92B, however, is disposed, along the path of blanket 44, after the white-color printing and drying (in the present example, after print bar 61 and dryer 97) and before the first print bar 62 of the colors other than white (e.g., cyan, magenta, yellow, black or any other color).


In some embodiments, temperature sensors 92B, 92C and 92D are disposed after processing sub-steps that typically affect or may affect the temperature of blanket 44, as also described in FIG. 1 above.


In some embodiments, system 110 may comprise a drying station, referred to herein as a bottom dryer 75, which is configured to emit infrared light or any other suitable frequency, or range of frequencies, of light for drying the ink image formed on blanket 44 using the technique described above. In the example of FIG. 2, bottom dryer 75 may comprise five drying units, each of which comprising a combination of the aforementioned IR-based heater for heating blanket 44, and one or more air-flow channels for cooling blanket 44.


In some embodiments, system 110 comprises a temperature sensor 92E, disposed between bottom dryer 75 and impression station 85, typically in closer proximity to bottom dryer 75.


In some embodiments, processor 20 (and/or controller 54) is configured to control the power source (not shown) described in FIG. 1 above, to adjust the power density applied to one or more infrared sources (shown in FIGS. 3 and 4 below) of the respective heater and/or dryer, so as to retain the predefined temperature of blanket 44 along the respective section of system 110.


In some embodiments, using the techniques described in FIG. 1 above, processor 20 (and/or controller 54) is configured to perform a closed-loop control on the temperature profile of blanket 44 along the respective sections of system 110. The control is carried out based on the temperature signals received from at least one of temperature sensors 92A-92E, and based on the temperature signals, processor 20 controls the power density applied to the IR power sources of the respective IR-based heaters (e.g., one or more of heater 98 and dryers 97, 66, 64, 96 and 75).


In other embodiments, bottom dryer 75 may comprise any other suitable configuration adapted for drying the ink at the lower run of blanket 44, before the blanket enters impression station 85.


In some embodiments, processor 20 and/or controller 54 are configured to control each dryer of system 10 (shown in FIG. 1) and system 110 (shown in FIG. 1) selectively.


The control may be carried out based on various conditions of the particular digital printing application. For example, based on the type, order and surface coverage level of colors applied to the surface of blanket 44, and based on the type of blanket 44 and target substrate (e.g., sheet 50 or web 51).


The term “coverage level” refers to the amount of color applied to the surface of blanket 44. For example, a 250% coverage level refers to two and half ink layers applied to a predefined section (or the entire area) of the ink image specified for being printed on blanket 44 and subsequently, for being transferred to the target substrate. Note that the two and half ink layers may comprise three or more of the aforementioned colors of ink as described above. It will be understood that larger coverage level typically requires larger flux of IR irradiation, and therefore, higher flow of air for cooling blanket 44.


In other embodiments, the ink drying process may be carried out in an open loop, e.g., without controlling at least one of (a) the intensity of the IR radiation and (b) the pressurized-air flow rate by temperature control assembly 121. For example, as part of a process recipe for printing a particular image, a recipe parameter may comprise the coverage level of the ink image, and processor 20 and/or controller 54 may preset one or more of (a) the intensity of the IR radiation and (b) the pressurized-air flow rate by temperature control assembly 121, so as to dry the ink and maintain the temperature of blanket 44 below the specified temperature (e.g., about 140° C. or about 150° C.).


The particular configurations of system 110 is shown by way of example, in order to illustrate certain problems that are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of such systems. Embodiments of the present invention, however, are by no means limited to this specific sort of example system, and the principles described herein may similarly be applied to any other sorts of printing systems.


A Drying Unit Implemented in an Image Pinning Unit


FIG. 3 is a schematic side view of dryer 66 for drying the ink applied by print bars 62, in accordance with an embodiment of the present invention. In some embodiments, dryer 66 comprises a single drying unit, such as the drying unit briefly described in FIG. 1 above and further described in detail herein.


In some embodiments, dryer 66 comprises one or more openings to an air inlet channel (AIC) 122, having an air blower and configured to supply pressurized air 101 (or any other type of suitable gas) into dryer 66.


In some embodiments, dryer 66 further comprises one or more openings to an air outlet channel (AOC) 123, having an air extraction apparatus (e.g., a suitable type of vacuum or negative pressure pump) configured to draw pressurized air 101 after cooling at least blanket 44, as will be described herein.


In the concept of the present disclosure and in the claims, the term “temperature control assembly” refers to at least one of AIC 122 and AOC 123 or a combination thereof, and is configured to direct pressurized air 101 (or any other suitable type of gas) to an outer surface 106 of blanket 44 so as to reduce the temperature of blanket 44 below the specified temperature (e.g., about 140° C. or about 150° C.), as will be described herein.


In some embodiments, dryers 66 are typically positioned within image forming station 60, and main dryer 64 is positioned between image forming station 60 and impression station 84 such that the drying process of the ink image applied to blanket 44 is carried out before the ink image is transferred to the target substrate (e.g., sheet 50) in impression station 84. Note that temperature control assembly 121 is configured to supply pressurized air 101, e.g., via pipes or tubes (not shown), to dryers 66 and main dryer 64, so as to control the temperature of blanket 44 within the specified temperature range described above. In other embodiments, system 10 may comprise multiple AICs 122 and/or AOCs 123, e.g., a first set of AIC 122 and AOC 123 for dryers 66 and a second set of AIC 122 and AOC 123 for main dryer 64. In alternative embodiments, system 10 may comprise any other suitable configuration of AICs 122 and/or AOCs 123 controlled by processor 20 and/or by local controllers that are synchronized with and/or controlled by processor 20.


In some embodiments, dryer 66 comprises one or more IR-based heaters, in the present example an illumination assembly 113 having IR radiation sources, referred to herein as sources 111 for brevity. In the example of FIG. 3, dryer 66 comprises two pairs of sources 111 arranged in two respective cavities of dryer 66. Each source 111 is configured to direct a beam 99 of IR radiation to blanket 44. For example, each source 111 is configured to emit a power density between about 30 w/cm and about 300 w/cm toward surface 106 of blanket 44.


In other embodiments, dryer 66 may comprise any other suitable number of sources 111 (or any other suitable type of one or more light sources configured to emit IR or other suitable one or more wavelengths of light) having any suitable geometry and arranged in any suitable configuration.


In some embodiments, dryer 66 may comprise one or more reflectors 108, coupled between sources 111 and the cavity of dryer 66. Reflectors 108 are configured to reflect beams 99 emitted from sources 111 toward blanket 44 so as to improve the efficiency and speed of the IR-based drying process, and for reducing the amount of IR radiation (and therefore excess heating) applied to dryer 66 by beams 99.


For example, each reflector 108 may reflect about 90% of beams 99 toward blanket 44 and may absorb the remaining 10%, which may increase the temperature at the cavities of dryer 66.


In some embodiments, dryer 66 comprises a heat transfer assembly (HTA) 104, which comprises heat conducting materials (e.g., copper, aluminum or other metallic or non-metallic materials) arranged around reflectors 108 as heat-conducting ribs and traces. HTA 104 IS configured to dissipate the excess heat away from the respective cavities of dryer 66.


In the example configuration of dryer 66, pressurized air 101 enters dryer 66, via AIC 122, at an exemplary temperature of about 30° C. or at any other suitable temperature between about 5° C. and about 100° C. Subsequently, pressurized air 101 flows through an internal channel of dryer 66 for transporting heat (e.g., by heat convection) away from HTA 104, and then directed, via an opening 95 of dryer 66, toward a position 102 on surface 106. Pressurized air 101 flow on surface 106 for transferring the heat from blanket 44, and subsequently, AOC 123 draws pressurized air 101 away from surface 106, via an air outlet passage 112 of dryer 66, for maintaining the temperature of blanket 44 below the specified temperature described above.


As shown in FIGS. 1-3, dryer 66 may be located adjacent to a print bar 62, and typically between two adjacent print bars 62. In some embodiments, dryer 66 is configured to draw pressurized air 101 via air outlet passage 112, so that pressurized air 101 will not make physical contact with any of print bars 62. Note that pressurized air 101 comprises vapors of the ink ingredients that may interfere with the printing process. For example, such vapors may partially or fully block nozzles of print bars 62, which may reduce the quality of the printed image (e.g., missing ink in case of a fully-blocked nozzle, or defects comprising clusters of dried ink in case of partially-blocked nozzle).


In some embodiments, the structure of dryer 66 prevents mixture of pressurized air 101 incoming from AIC 122 with pressurized air 101 flowing through opening 95 into surface 106. As described above, after flowing through opening 95, pressurized air 101 is forced to flow via air outlet passage 112, into AOC 123. In other words, the outflowing air that may contain residues of ink, and the incoming air for cooling surface 106 are never mixed with one another within dryer 66.


In some embodiments, beam 99 is directed to position 102 based on the position of sources 111 within the cavity of dryer 66 Similarly, dryer 66 is designed such that pressurized air 101 is directed to position 102 for cooling blanket 44. Note that each drying unit of dryer 66 comprises two sets, of IR-based heating and pressurized-air-based cooling, having air outlet passage 112 therebetween. In this configuration pressurized air 101 inflows toward blanket 44 from the sides of dryer 66, and outflows away from blanket 44 through air outlet passage 112 located at the center of dryer 66, so as to prevent contact between pressurized air 101 and print bars 62.


In some embodiments, a distance 131, which is the distance between dryer 66 and surface 106 may be used for controlling the amount of the IR-based heating and air-based cooling. In principle, smaller distance 131 accelerates the heating rate of blanket 44. In other words, when distance 131 is small, in response to IR-based heating, blanket 44 will reach the specified temperature (e.g., about 140° C. or about 150° C.) faster, resulting in faster drying of the ink on the surface of blanket 44.


In some embodiments, distance 131 may be predetermined, e.g., when mounting dryer 66 on the frame of system 10 and/or system 110. In other embodiments, distance 131 may be controlled, e.g., by using any suitable mount for moving dryer 66 relative to blanket 44.


In some embodiments, by controlling distance 131, processor 20 may control the intensity and uniformity of the power density applied, by source 111, to predefined sections of blanket 44. For example, larger distance 131 may result in smaller power density applied to a given section of blanket 44, but may improve the heating uniformity within the given section and in close proximity thereto Similarly, the proximity between blanket 44 and dryer 66 may affect the level of cooling by dryer 66. For example, larger distance 131 reduces the cooling effectivity of the blanket surface by pressurized air 101.


As described above, when blanket 44 is moved in the direction shown by arrow 94, print bar 62 that is located adjacent to dryer 66, jets ink droplets to blanket 44. In some embodiments that will be described in more detail in FIG. 6 below, dryer 66 and the blanket are designed such that beam 99 is configured to heat blanket 44, and the increased temperature induces evaporation of the liquid carried of the ink so as to dry or partially dry the ink on surface 106. Note that beam 99 is not directed to the ink for the evaporation, but is directed to blanket 44 for increasing the temperature of the blanket. Similarly, pressurized air 101 is directed to blanket 44, by AIC 122, and extracted from blanket by AOC 123, so as to reduce the temperature thereof.


The particular configuration of the drying unit of dryer 66 is provided by way of example, in order to illustrate certain problems, such as partially drying the ink image applied to blanket 44 and cooling the blanket, which are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of digital printing systems such as systems 10 and 110 described above. Embodiments of the present invention, however, are by no means limited to this specific configuration and sort of example drying unit, and the principles described herein may similarly be applied to any other sorts of drying units in digital printing systems or any other type of printing systems.


In other embodiments, pressurized air 101 may be used solely for reducing the temperature of blanket 44, whereas a separate (e.g., dedicated) cooling apparatus may be used for cooling HTA 104.


Dryers Comprising Multiple Drying Units


FIG. 4 is a schematic side view of main dryer 64, in accordance with an embodiment of the present invention. In some embodiments, main dryer 64 comprises multiple drying units 222, and an air outlet passage 130 between a respective pair of neighboring drying units 222.


Reference is now made to an inset 133 showing a pair of drying units 222 and air outlet passage 130 located therebetween. Each drying unit 222 is positioned at a distance 132 from surface 106 of blanket 44. Note that distance 132 may differ from distance 131 and may be controllable, e.g., using a mount as described in FIG. 3 above. Alternatively, distance 132 may be predetermined based on the distance between the frame of image forming station and the position of blanket 44.


In some embodiments, each drying unit 222 has two cavities, each of which having a pair of sources 111 of illumination assembly 113, which are configured for directing beam 99 so as to heat blanket 44, using the technique described for dryer 66 in FIG. 3 above. Drying unit 222 further comprises a heat transfer assembly (HTA) 124 having the same cooling functionality of HTA 104, but a different structure that fits the structure of drying unit 222.


In some embodiments, pressurized air 101 enters drying unit 222, via AIC 122, at an exemplary temperature of about 30° C. or any other suitable temperature as described, for example in FIG. 3 above, and flowing through HTA 124 for cooling drying unit 222. Subsequently, pressurized air 101 is directed out of drying unit 222, through an opening 195, toward blanket 44, so as to reduce the temperature of blanket 44 as described for dryer 66 in FIG. 3 above, and pumped away from blanket 44, via air outlet passage 130, toward AOC 123, using the same technique described in FIG. 3 above.


Note that in this configuration, pressurized air 101 outflows from the center of drying unit 222 toward blanket 44, and is pumped away from blanket 44 through air outlet passages 130 located at the sides of drying unit 222.


In the example of FIG. 4, main dryer 64 comprises nine drying units 222 and two halves of drying unit 222 at the ends of main dryer 64. In this configuration, main dryer 64 comprises ten air outlet passages 130, which improves the extraction of pressurized air 101 compared to a set of ten full-sized drying units 222 (not shown) having a total number of nine air outlet passages 130.


In some embodiments, processor 20 and/or controller 54 are configured to receive temperature signal from one or more of temperature sensors 92A-92E, and based on the temperature signal to control at least one of (a) the intensity of the optical radiation applied to blanket 44 by one or more light sources, such as sources 111, and (b) the flow rate of pressurized air 101, or any other suitable gas, directed to surface 106 of blanket 44.


In the present example, processor 20 and/or controller 54 are configured to control the IR light intensity and the flow rate of pressurized air 101 based on multiple temperature signals received from multiple temperature sensors disposed along blanket 44. As described above, blanket 44 is typically cooled by the temperature of the surrounding environment. For example, the temperature of the surrounding air and of rollers 78 may be substantially smaller than 100° C. (e.g., at any temperature between about 25° C. and 100° C.).


In some embodiments, white dryer 97 and bottom dryer 75 of system 110 may comprise, each, five drying units 222, arranged in a configuration similar to that of main dryer 64, or using any other suitable configuration. In an embodiment, blanket pre-heater 98 may comprise a single drying unit 222, or one dryer 66, or one or more sources 111 without an apparatus for flowing pressurized air 111.


In some embodiments, the structure of drying units 222 prevents mixture of pressurized air 101 incoming from AIC 122 with pressurized air 101 flowing through opening 195 into surface 106. As described above, after flowing through opening 195, pressurized air 101 is forced to flow, via air outlet passage 130 located between adjacent units 222, into AOC 123. In other words, after flowing through opening 195, the pressurized air that may contain residues of ink is not mixing with the incoming air flowing within drying unit 222.


The configurations of main dryer 64, white dryer 97, bottom dryer 75, drying units 222, and air outlet passages 130 are provided by way of example. In other embodiments, at least one of these dryers and units may have any other suitable configuration. For example, rather than having central AIC 122 and AOC 123 and controlling the flow rate of pressurized air 101 using valves (not shown), system 10 and/or system 110 may comprise multiple AICs 122 and/or AOCs 123 coupled to one or more of the dryers described above.


Controlling the Ink Drying Process


FIG. 5 is a schematic pictorial illustration of a blanket 500 used in a digital printing system, in accordance with an embodiment of the present invention. Blanket 500 may replace, for example, blanket 44 of systems 10 and 110 shown in FIGS. 1-4 above.


In some embodiments, blanket 500 is moved in the moving direction represented by arrow 94, and comprises sections 502 having the ink image printed thereon and sections 506, located between adjacent sections 502 and not receiving the ink droplets from print bars 61 and 62 described above.


In some embodiments, blanket 500 has a width 510 of about 1040 mm-1050 mm, section 502 has a length 504 of about 750 mm, and section 506 has a length 508 of about 750 mm.


In some embodiments, sources 111 are typically laid out along width 510 and at least some of sources 111 have a width of about 1120 mm that allows uniform heating along the entire width of blanket 500. In such embodiments, processor 20 and/or controller 54 are configured to control the movement of blanket 500, in the direction of arrow 94, at a predefined speed (e.g., about 1.7 meters per second) that maintains the uniform heating of the entire area of blanket 500.


In some embodiments, processor 20 and/or controller 54 are configured to control temperature sensors 92 (e.g., temperature sensors 92A-92E) to measure the temperature of blanket 500 at a predefined frequency, in the present example about every 20 milliseconds. In such embodiments, at a moving speed of 1.7 meters per second, each temperature sensor 92 measures the temperature of blanket 500 at a frequency of about every 34 mm.


In some embodiments, processor 20 and/or controller 54 are configured to receive temperature signals 554 and 555 indicative of the temperature measured (e.g., by temperature sensors 92) at sections 502 and 506 of blanket 500, respectively. As described in FIG. 2 above, the blanket temperature depends, inter-alia, on the coverage level, which is the amount of ink applied to the blanket surface.


In the example of blanket 500, the coverage level in section 502 may vary in accordance with the pattern of the ink image, whereas section 506, which does not receive ink from print bars 61 and 62, is expected to have a uniform temperature. Note that due to the latent heat of the ink disposed on section 502, at least some of the energy of beams 99 is absorbed by the ink and is less effective for the direct heating of blanket 500.


In some embodiments, when processor 20 and/or controller 54 receive temperature signals 554 and 555 from one or more of temperature sensors 92 (e.g., selected from among temperature sensors 92A-92E), the temperature measured at section 506 is typically higher than the temperature measured at section 502.


In some embodiments, processor 20 and/or controller 54 are configured to determine, based on temperature signals 554 and 555, the highest temperature of blanket 500, using any suitable analysis. For example, processor 20 and/or controller 54 may store a predefined amount (e.g., about 100) of the latest temperature signals 554 and 555. Subsequently, processor 20 and/or controller 54 may select, from among the stored signals, the temperature signals indicative of the top three highest temperatures, and may determine the highest temperature of blanket 500 by calculating a median of the top three highest temperatures.


In other embodiments, processor 20 and/or controller 54 may determine the highest temperature of blanket 500 using any suitable analysis of temperature signals 554 and 555.


In alternative embodiments, processor 20 and/or controller 54 are configured to control temperature one or more of temperature sensors 92A-92E, to measure the temperature of blanket 500 using any other suitable sampling frequency.


In some embodiments, based on the calculated highest temperature of blanket 500, processor 20 and/or controller 54 are configured to control the intensity of IR radiation emitted from sources 111, and the flow rate of pressurized air 101.


In such embodiments, in response to calculating a highest temperature of about 140° C., processor 20 and/or controller 54 are configured to reduce the intensity of beams 99 and/or to increase the flow rate of pressurized air 101.


In some embodiments, processor 20 and/or controller 54 are configured to calculate the temperature along different sections of blanket 500, based on any suitable sampling amount of temperature signals 554 and 555.


In some embodiments, processor 20 and/or controller 54 are configured to hold thresholds indicative of the highest and lowest specified temperatures of the printing process, and to maintain the temperature of blanket 500 by controlling at least some of the dryers described above (e.g., main dryer 64 and bottom dryer 75).


For example, in response to sensing and calculating after main dryer 64, a temperature level lower than the lowest specified temperature, processor 20 and/or controller 54 are configured to control bottom dryer 75 to increase the intensity of beams 99 and/or to reduce the flow rate of pressurized air 101.


As described above, in addition to the flow rate of pressurized air 101, the blanket is typically cooled by the surrounding environment that have physical contact with the blanket. For example, the temperature of the air (or other gas) surrounding the blanket, and the temperature of rollers 78, may be substantially smaller than 100° C. (e.g., at any temperature between about 25° C. and 100° C.).


In some embodiments, processor 20 may receive position signals indicative of the positions of respective markers or other reference points of the blanket, as described in FIG. 1 above. Based on the position signals, processor 20 and/or controller 54 are configured to adjust the intensity of beams 99 and/or the flow rate of pressurized air 101, at one or more of the dryers described above.


For example, when blanket is moved in system 10, processor 20 may associate first specific markers of blanket 500 with sections 502, and second specific markers of blanket 500 with sections 506. In an embodiment, when the first specific markers are passing in close proximity to a given source 111 of main dryer 64, processor 20 may control main dryer 64 to increase the intensity of beams 99 directed from given source 111 to blanket 500.


Similarly, when the second specific markers are passing in close proximity to given source 111 of main dryer 64, processor 20 may control main dryer 64 to reduce the intensity of beams 99 emitted from given source 111.


In some embodiments, processor 20 and/or controller 54 are configured to set, e.g., in dryers 62, a constant intensity of beams 99 and a constant flow rate of pressurized air 101. In such embodiments, a first set of ink droplets disposed at a given position on the blanket surface will partially dry so that a second set of ink droplets applied to the given position later by other print bars will be mixed with the first set of ink droplets so as to produce a specified mixed color at the given location of the blanket.


In some embodiments, processor 20 and/or controller 54 are configured to control the temperature of pressurized air 101 applied to the blanket (e.g., blanket 44 or blanket 500). For example, the specified temperature of pressurized air 101 may be about 30° C. Systems 10 and 110 may operate at various countries and seasons having a broad range of environmental temperatures, For example, the environmental temperature may range between about 45° C. in the summer at warm countries and about −30° C. in the winter at cold countries.


In some embodiments, at an environmental temperature lower than 30° C., systems 10 and 110 are configured to filter ink byproducts from the hot air extracted from surface 106 of blanket 44 by AOC 123. In such embodiments, processor 20 and/or controller 54 are configured to control AIC 122 to mix between the hot filtered air and the air of the environment so as to have air at about 30° C. pressurized and applied to blanket 44.


In some embodiments, at an environmental temperature higher than 30° C., processor 20 and/or controller 54 are configured to control AIC 122 to mix between the hot air of the environment and air cooled (e.g., using an air conditioning system or any other technique) by a print shop using system 10 or 110 so as to have air at about 30° C., and to pressurize and apply the mixed air to blanket 44.


In some embodiments, systems 10 and 110 comprise a current sensor (not shown) coupled to an electrical cable (not shown) supplying electrical current to source 111. The current sensor is configured to sense the inductance level on the electrical cable. In such embodiments, processor 20 and/or controller 54 are configured to receive from the current sensor a signal indicative of the electrical current flowing through the electrical cable and to determine whether or not the respective source 111 is functional.


Blanket Structure and a Process Sequence for Producing Blanket Adapted for IR-Based Drying Of Ink


FIG. 6 is a diagram that schematically illustrates a sectional view of a process sequence for producing a blanket 600, in accordance with an embodiment of the present invention. Blanket 600 may replace, for example, blanket 44 of any of systems 10 and 110 and features thereof shown and described in FIGS. 1-5 above.


The process begins with preparing on a carrier (not shown), an exemplary stack of six layers comprising blanket 600.


In some embodiments, the carrier may be formed of a flexible foil, such as a flexible foil comprising aluminum, nickel, and/or chromium. In an embodiment, the foil comprises a sheet of aluminized polyethylene terephthalate (PET), also referred to herein as a polyester, e.g., PET coated with fumed aluminum metal.


In some embodiments, the carrier may be formed of an antistatic polymeric film, for example, a polyester film. The properties of the antistatic film may be obtained using various techniques, such as addition of various additives, e.g., an ammonium salt, to the polymeric composition.


In some embodiments, the carrier has a polished flat surface (not shown) having a roughness (Ra) on an order of 50 nm or less, also referred to herein as a carrier contact surface.


In some embodiments, a fluid first curable composition (not shown) is provided and a release layer 602 is formed therefrom on the carrier contact surface. In some embodiments, release layer 602 comprises an ink reception surface 612 configured to receive the ink image, e.g., from image forming station 60, and to transfer the ink image to a target substrate, such as sheet 50, shown and described in FIG. 1 above. Note that layer 602, and particularly surface 612 are configured to have low release force to the ink image, measured by a wetting angle, also referred to herein as a receding contact angle (RCA), between surface 612 and the ink image, as will be described below.


The low release force enables complete transfer of the ink image from surface 612 to sheet 50. In some embodiments, release layer 602 may comprise a transparent silicon elastomer, such as a vinyl-terminated polydimethylsiloxane (PDMS), or from any other suitable type of a silicone polymer, and may have an exemplary thickness of about 10 μm -15 μm, or any other suitable thickness larger than about 10 μm.


In some embodiments, the fluid first curable material comprises a vinyl-functional silicone polymer, e.g., a vinyl-silicone polymer comprising at least one lateral vinyl group in addition to the terminal vinyl groups, for example, a vinyl-functional polydimethyl siloxane.


In some embodiments, the fluid first curable material may comprise a vinyl-terminated polydimethylsiloxane, a vinyl-functional polydimethylsiloxane comprising at least one lateral vinyl group on the polysiloxane chain in addition to the terminal vinyl groups, a crosslinker, and an addition-cure catalyst, and optionally further comprises a cure retardant.


In the example of FIG. 6, release layer 602 may be uniformly applied to the PET-based carrier, leveled to a thickness of 5-200 and cured for approximately 2-10 minutes at 120-130° C. Note that the hydrophobicity of ink transfer surface 612 may have a RCA of about 60°, with a 0.5-5 microliter (μl) droplet of distilled water. In some embodiments, a surface of release layer 602 (that in contact with a surface 614 that will be described below) may have a RCA that is significantly higher, typically around 90°.


In some embodiments, PET carriers used to produce ink-transfer surface 612 may have a typical RCA of 40° or less. All contact angle measurements were carried out using a Contact Angle analyzer “Easy Drop” FM40Mk2 produced by Krüss™ Gmbh, Borsteler Chaussee 85, 22453 Hamburg, Germany and/or using a Dataphysics OCA15 Pro, produced by Particle and Surface Sciences Pty. Ltd., Gosford, NSW, Australia.


In some embodiments, blanket 600 comprises an IR layer 603 having an exemplary thickness range of about 30 μm-150 μm, and configured to absorb the entire IR radiation of beam 99 or a significant portion thereof. In the present example, IR layer 603 is adapted to absorb, within the top 5 μ thereof, about 50% of the IR radiation of beam 99. In other words, IR layer 603 is substantially opaque to beam 99.


Reference is now made to an inset 611 showing a sectional view of IR layer 603. In some embodiments, IR layer 603 is applied to release layer 602 and has surface 612 interfacing therewith, and a surface 618 interfacing with a compliance layer 604 described in detail below.


In some embodiments, IR layer 603 comprises a matrix made from silicone (e.g., PDMS) and multiple particles 622 disposed at given locations within the bulk of the PDMS matrix of layer 603. In some embodiments, particles 622 comprise a suitable type of pigment, such as but not limited to off-the-shelf carbon black (CB) particles, each of which having a typical diameter range between about 10 μm (for IR layer 603 thickness of about 30 μm) and 30 μm (for IR layer 603 thickness of about 50 μm).


In some embodiments, particles 622 are embedded at the bulk of IR layer 603, within a distance 616 of about 10 μm or 20 μm from surface 614. Particles 622 are also arranged uniformly along layer 603 at a distance 617 of about 0.1 μm-5μm from one another. In other embodiments, distances 616 and 617 may be altered between different blankets, for example, at least one particle may be in close proximity or in contact with any of surfaces 614 or 618. Similarly, distance 617 may vary along IR layer 603.


In some embodiments, having particles 622 embedded within the bulk of IR layer 603, rather than at surface 614, may improve the adhesive force between IR layer 603 and release layer 602. Similarly, having particles 622 embedded within the bulk of IR layer 603 may improve the adhesive force between IR layer 603 and compliance layer 604.


In some embodiments, after coating and curing the release formulation on the PET, IR layer 603, having the CB particles, is coated on the cured release layer and also cured. Note that the insertion of the CB particles, or any other suitable type of particles into IR layer 603, may be carried out by mixing the particles in the matrix of the IR layer before applying the layer to the release layer, or by disposing the particles after applying the IR layer to the release layer, or using any other suitable technique. Subsequently, PDMS layer is coated on top of the cured IR layer, and fiber glass layer is applied and all structure is cured. Finally, silicone resin is coated on fiber glass fabric and cured.


In other embodiments, the CB particles and the position thereof may affect the drying process of the ink applied to surface 612 of release layer 602, as will be described in detail below.


Reference is now made back to the general view of blanket 600. In some embodiments, blanket 600 comprises compliance layer 604, also referred to herein as a conformal layer, typically made from PDMS and may comprise a black pigment additive. Compliance layer 604 is applied to IR layer 603 and may have a typical thickness of about 150 μm or any other suitable thickness equal to or larger than about 100 μm.


In some embodiments, compliance layer 604 may have mechanical properties (e.g., greater resistance to tension) that differ, for example, from release layer 602 and IR layer 603. Such desired differences in properties may be obtained, e.g., by utilizing a different composition with respect to release layer 602 and/or IR layer 603, by varying the proportions between the ingredients used to prepare the formulation of release layer 602 and/or IR layer 603, and/or by the addition of further ingredients to such formulation, and/or by the selection of different curing conditions. For example, adding filler particles may increase the mechanical strength of compliance layer 604 relative to release layer 602 and/or IR layer 603.


In some embodiments, compliance layer 604 has elastic properties that allows release layer 602 and surface 612 to follow closely the surface contour of a substrate onto which an ink image is impressed (e.g., sheet 50). The attachment of compliance layer 602 to the side opposite to ink-transfer surface 612 may involve the application of an adhesive or bonding composition in addition to the material of compliance layer 602.


In some embodiments, blanket 600 comprises reinforcement stacked layers, also referred to herein as a support layer 607 or a skeleton of blanket 600, which is applied to compliance layer 604 and is described in detail below. In some embodiments, support layer 607 is configured to provide blanket 600 with an improved mechanical resistance to deformation or tearing that may be caused by the torque applied to blanket 600, e.g., by rollers 78 and dancer assembly 74. In some embodiments, the skeleton of blanket 600 comprises an adhesion layer 606, made from PDMS or any other suitable material, which is formed together with a woven fiberglass layer 608. In some embodiments, layers 606 and 608 may have typical thickness of about 150 μm and about 112 μm, respectively, or any other suitable thickness, such that the thickness of support layer 607 is typically about 200 μm.


In other embodiments, the skeleton may be produced using any other suitable process, e.g., by disposing layer 606 and subsequently coupling layer 608 thereto and polymerizing, or by using any other process sequence.


In some embodiments, the polymerization process may be based on hydrosilylation reaction catalyzed by platinum catalyzed, commercially known as “addition cure.”


In other embodiment, the skeleton of blanket 600 may comprise any suitable fiber reinforcement, in the form of a web or a fabric, to provide blanket 600 with sufficient structural integrity to withstand stretching when blanket 600 is held in tension, e.g., in system 10. The skeleton may be formed by coating the fiber reinforcement with any suitable resin that is subsequently cured and remains flexible after curing.


In an alternative embodiment, support layer 607 may be separately formed, such that fibers embedded and/or impregnated within an independently cured resin. In this embodiment, support layer 607 may be attached to compliance layer 604 via an adhesive layer, optionally eliminating the need to cure support layer 607 in situ. In this embodiment, support layer 607, whether formed in situ on compliance layer 604 or separately, may have a thickness of between about 100 μm and about 500 μm, part of which is attributed to the thickness of the fibers or the fabric, which thickness generally varies between about 50 μm and 300 μm. Note that thickness of support layer 607 is not limited to the above values.


In some embodiments, blanket 600 comprises a high-friction layer 610, also referred to herein as a grip layer, made from a typically transparent PDMS and configured to make physical contact between blanket 600 and the rollers and dancers of system 10 and 110 described, respectively, in FIGS. 1 and 2 above. Note that although layer 610 is made from relatively soft materials, the surface facing the rollers has high friction so that blanket 600 will withstand the torque applied by the rollers and dancers without sliding. In an example embodiment, layer 610 may have a thickness of about 100 μm, but may alternatively have any other suitable thickness, e.g., between 10 μm and 1 mm.


Additional embodiments that implement the production of layers 602, 604, 606, 608 and 610 of blanket 600 are described in detail, for example, in PCT International Publication WO 2017/208144, whose disclosure is incorporated herein by reference.


Reference is now made back to inset 611. As described, for example, in FIGS. 1, 3 and 4 above, print bars 62 of image forming station 60 apply the ink droplets to surface 106 of blanket 44. In the example of blanket 600 shown in FIG. 6, print bars 62 of image forming station 60 apply the ink droplets to surface 612 of release layer 602.


In some embodiments, the CB content of particles 622 is configured to absorb the IR radiation of beams 99 passing through release layer 602. In response to the IR radiation of beams 99, particles 622 are configured to have a temperature larger than the temperature of the silicone matrix of IR layer 603. In other words, the CB particles absorb the IR radiation and emit heat waves 620 and 621 across IR layer 603. In such embodiments, heat waves 620 and 621 are increasing the temperature of layers 602 and 604, respectively.


In some embodiments, the silicone matrix of IR layer 603 has low thermal conductivity so that heat waves 620 are progressing within IR layer 603 and are forming a uniform increased temperature across IR layer 603 and release layer 602.


Additionally or alternatively, the CB particles may be embedded in release layer 602.


In some embodiments, by having release layer 602 (which is transparent to IR radiation) on top of IR layer 603 (which is configured to absorb the IR radiation) is capturing heat waves 620 and 621 within blanket 600 and is, thereby, expediting the drying process of the ink droplets applied to surface 612.


In such embodiments, the heat produced by heat waves 620 may accumulate between and within layers 602 and 603 and the low thermal conductivity of these layers allowing the heat to be distributed uniformly across surface 612 of blanket 600.


Based on the above-description of blanket 600, the total thickness between particle 622 and the outer surface of layer 610 is about 0.5 mm, whereas the distance between particle 622 and surface 612 is about 20 μm or 30 μm. As shown in FIG. 6, heat waves 621 appear shorter than heat waves 620, so as to show that most of the heat produced by the CB particles is dissipating toward surface 612. In such embodiments, most of the heat produced by the CB particles is used for drying the ink droplets applied to surface 612 of blanket 600.



FIG. 7 is a flow chart that schematically illustrates a method for producing blanket 600, in accordance with an embodiment of the present invention. The method begins at a first layer production step 700 with producing release layer 602 formed on the PET-based carrier contact surface as described in FIG. 6 above. In some embodiments, release layer 602 comprises an ink reception surface 612 configured to receive the ink image, e.g., from image forming station 60, and to transfer the ink image to a target substrate, such as sheet 50, shown and described in FIG. 1 above. In some embodiments, release layer 602 is at least partially transparent to beam 99 of the IR radiation and is located at the outer surface of blanket 600, as shown and described in detail in FIG. 6 above.


At a second layer applying step 702, IR layer 603 is applied to release layer 602. In some embodiments, IR layer 603 comprises the matrix made from silicone (e.g., PDMS). The matrix holds multiple particles 622 (e.g., carbon black particles) disposed at given locations within the bulk of the PDMS matrix of layer 603, and configured to absorb optical radiation (in the present example IR radiation of beam 99) for heating release layer 602 and drying at least part of the ink droplets applied to ink reception surface 612. Step 702 concludes the method of FIG. 7, however, additional steps for producing blanket 600 are described in detail in FIG. 6 above.



FIG. 8 is a flow chart that schematically illustrates a method for drying ink and controlling the temperature of a blanket during a digital printing process, in accordance with an embodiment of the present invention.


In the context of the present disclosure and in the claims, the term “blanket” refers to blanket 44 of FIGS. 1-4, to blanket 500 of FIG. 5, to blanket 600 of FIG. 6, and to any other sort of suitable ITM. Embodiments of the method of FIG. 8 are described using blanket 600, but are applicable for all the types of blankets and ITMs described above, and for other suitable types of ITMs.


The method begins at an optical radiation direction step 800, with directing IR radiation, such as beam 99, to surface 612 of release layer 602, which is at least partially transparent to the optical radiation, and is configured to: (i) receive the ink droplets, (ii) form the image thereon, and (iii) transfer the image to target substrate, such as sheet 50 or web 51. In some embodiments, at least some of the IR radiation of beam 99 is absorbed by particles 622 (e.g., carbon black particles) disposed at given locations within the bulk of the PDMS matrix of layer 603.


In some embodiments, when absorbed by particles 622, the IR radiation heats release layer 602 and at least partially dries the ink droplets of the ink image formed on the surface of the release layer.


At a blanket temperature controlling step 802 that concludes the method, processor 20 controls the temperature control assembly to direct gas (in the present example, pressurized air) at a predefined flow rate for controlling the temperature of the blanket, e.g., to about 70° C. or 80° C. as described in FIGS. 1 and 2 above.


For example, as described on FIGS. 2 and 3 above, dryer 66 comprises one or more openings to AIC 122, having the air blower and configured to supply pressurized air 101 (or any other type of suitable gas) into dryer 66. In some embodiments, dryer 66 further comprises one or more openings to AOC 123, having the air extraction apparatus (e.g., a suitable type of vacuum or negative pressure pump) configured to draw pressurized air 101 after cooling the blanket.


Although the embodiments described herein mainly address drying of an intermediate transfer member in a digital printing system, the methods and systems described herein can also be used in other applications, such as in drying liquid from any substrate, or in other applications, such as but not limited to heating or annealing or curing of any substrate.


It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art. Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that to the extent any terms are defined in these incorporated documents in a manner that conflicts with the definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.

Claims
  • 1. A system, comprising: a flexible intermediate transfer member (ITM) comprising a stack of at least (i) a first layer, located at an outer surface of the ITM and configured to receive ink droplets from an ink supply subsystem to form an ink image thereon, and to transfer the ink image to a target substrate, and (ii) a second layer comprising a matrix that holds particles at respective given locations, wherein the second layer is configured to receive optical radiation passing through the first layer, and wherein the particles are configured to heat the ITM by absorbing at least part of the optical radiation;an illumination assembly, which is configured to dry the droplets of ink by directing the optical radiation to impinge on at least some of the particles; anda temperature control assembly, which is configured to control a temperature of the ITM by directing a gas to the ITM.
  • 2. The system according to claim 1, wherein the first and second layers are adjacent to one another, and wherein the particles are arranged at a predefined distance from one another so as to heat the outer surface uniformly.
  • 3. The system according to claim 1, wherein the particles are embedded within a bulk of the second layer at a given distance from the outer surface so as to heat the outer surface uniformly.
  • 4. The system according to claim 1, and comprising a processor, which is configured to receive a temperature signal indicative of a temperature of the ITM, and based on the temperature signal, to control at least one of (i) an intensity of the optical radiation, and (ii) a flow rate of the gas.
  • 5. The system according to claim 4, and comprising one or more temperature sensors disposed at one or more respective given locations relative to the ITM and configured to produce the temperature signal.
  • 6. The system according to claim 1, wherein the optical radiation comprises infrared (IR) radiation, and wherein at least one of the particles comprises carbon black (CB).
  • 7. The system according to claim 1, wherein the gas comprises pressurized air, and wherein the temperature control assembly comprises an air blower, which is configured to supply the pressurized air.
  • 8. A method, comprising: directing optical radiation to a flexible intermediate transfer member (ITM) comprising a stack of at least (i) a first layer, located at an outer surface of the ITM for receiving ink droplets to form an ink image thereon, and for transferring the ink image to a target substrate, and (ii) a second layer comprising a matrix that holds particles disposed at one or more respective given locations, wherein the optical radiation passes through the first layer and, the particles are absorbing at least part of the optical radiation for heating the ITM, and wherein the optical radiation impinges on at least some of the particles of the second layer so as to dry the droplets of ink on the outer surface; andcontrolling a temperature of the ITM by directing a gas to the ITM.
  • 9. The method according to claim 8, wherein the first and second layers are adjacent to one another, and wherein the particles are arranged at a predefined distance from one another so as to heat the outer surface uniformly.
  • 10. The method according to claim 8, wherein the particles are embedded within a bulk of the second layer at a given distance from the outer surface so as to heat the outer surface uniformly.
  • 11. The method according to claim 8, and comprising receiving a temperature signal indicative of a temperature of the ITM, and based on the temperature signal, controlling at least one of (i) an intensity of the optical radiation, and (ii) a flow rate of the gas.
  • 12. The method according to claim 11, and comprising producing the temperature signal by sensing the temperature of the ITM at one or more respective given locations.
  • 13. The method according to claim 8, wherein directing the optical radiation comprises directing infrared (IR) radiation, and wherein at least one of the particles comprises carbon black (CB).
  • 14. The method according to claim 8, wherein the gas comprises pressurized air, and wherein controlling the temperature of the ITM comprises supplying the pressurized air using an air blower.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is U.S. National Phase of PCT Application PCT/IB2020/060552, filed Nov. 10, 2020, which claims the benefit of U.S. Provisional Patent Application 62/939,726, filed Nov. 25, 2019. The disclosures of these related applications are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2020/060552 11/10/2020 WO
Publishing Document Publishing Date Country Kind
WO2021/105806 6/3/2021 WO A
US Referenced Citations (662)
Number Name Date Kind
2839181 Renner Jun 1958 A
3011545 Welsh et al. Dec 1961 A
3053319 Cronin et al. Sep 1962 A
3235772 Emanuel Feb 1966 A
3697551 Thomson Oct 1972 A
3697568 Boissieras et al. Oct 1972 A
3837878 Beers Sep 1974 A
3889802 Jonkers Jun 1975 A
3898670 Erikson et al. Aug 1975 A
3935055 Carmien Jan 1976 A
3947113 Buchan et al. Mar 1976 A
4009958 Kurita et al. Mar 1977 A
4093764 Duckett et al. Jun 1978 A
4204471 Becker May 1980 A
4293866 Takita et al. Oct 1981 A
4401500 Hamada et al. Aug 1983 A
4520048 Ranger May 1985 A
4535694 Fukuda Aug 1985 A
4538156 Durkee et al. Aug 1985 A
4555437 Tanck Nov 1985 A
4575465 Viola Mar 1986 A
4586807 Yuasa May 1986 A
4642654 Toganoh et al. Feb 1987 A
4792473 Vitale Dec 1988 A
4853737 Hartley et al. Aug 1989 A
4867830 Chung Sep 1989 A
4976197 Yamanari et al. Dec 1990 A
5012072 Martin et al. Apr 1991 A
5039339 Phan et al. Aug 1991 A
5062364 Lewis et al. Nov 1991 A
5075731 Kamimura et al. Dec 1991 A
5099256 Anderson Mar 1992 A
5106417 Hauser et al. Apr 1992 A
5128091 Agur et al. Jul 1992 A
5190582 Shinozuka et al. Mar 1993 A
5198835 Ando et al. Mar 1993 A
5246100 Stone et al. Sep 1993 A
5264904 Audi et al. Nov 1993 A
5278199 Ohkawa et al. Jan 1994 A
5305099 Morcos Apr 1994 A
5320214 Kordis Jun 1994 A
5333771 Cesario Aug 1994 A
5349905 Taylor et al. Sep 1994 A
5352507 Bresson et al. Oct 1994 A
5365324 Gu et al. Nov 1994 A
5406884 Okuda et al. Apr 1995 A
5471233 Okamoto et al. Nov 1995 A
5532314 Sexsmith Jul 1996 A
5552875 Sagiv et al. Sep 1996 A
5575873 Pieper et al. Nov 1996 A
5587779 Heeren et al. Dec 1996 A
5608004 Toyoda et al. Mar 1997 A
5613669 Grueninger Mar 1997 A
5614933 Hindman et al. Mar 1997 A
5623296 Fujino et al. Apr 1997 A
5642141 Hale et al. Jun 1997 A
5660108 Pensavecchia Aug 1997 A
5677719 Granzow Oct 1997 A
5679463 Visser et al. Oct 1997 A
5683841 Kato Nov 1997 A
5698018 Bishop et al. Dec 1997 A
5723242 Woo et al. Mar 1998 A
5733698 Lehman et al. Mar 1998 A
5736250 Heeks et al. Apr 1998 A
5757390 Gragg et al. May 1998 A
5772746 Sawada et al. Jun 1998 A
5777576 Zur et al. Jul 1998 A
5777650 Blank Jul 1998 A
5780412 Scarborough et al. Jul 1998 A
5841456 Takei et al. Nov 1998 A
5859076 Kozma et al. Jan 1999 A
5865299 Williams Feb 1999 A
5880214 Okuda Mar 1999 A
5883144 Bambara et al. Mar 1999 A
5883145 Hurley et al. Mar 1999 A
5884559 Okubo et al. Mar 1999 A
5889534 Johnson et al. Mar 1999 A
5891934 Moffatt et al. Apr 1999 A
5895711 Yamaki et al. Apr 1999 A
5902841 Jaeger et al. May 1999 A
5923929 Ben et al. Jul 1999 A
5929129 Feichtinger Jul 1999 A
5932659 Bambara et al. Aug 1999 A
5935751 Matsuoka et al. Aug 1999 A
5978631 Lee Nov 1999 A
5978638 Tanaka et al. Nov 1999 A
5991590 Chang et al. Nov 1999 A
6004647 Bambara et al. Dec 1999 A
6009284 Weinberger et al. Dec 1999 A
6024018 Darel et al. Feb 2000 A
6024786 Gore Feb 2000 A
6033049 Fukuda Mar 2000 A
6045817 Ananthapadmanabhan Apr 2000 A
6053438 Romano, Jr. et al. Apr 2000 A
6055396 Pang Apr 2000 A
6059407 Komatsu et al. May 2000 A
6071368 Boyd et al. Jun 2000 A
6072976 Kuriyama et al. Jun 2000 A
6078775 Arai et al. Jun 2000 A
6094558 Shimizu et al. Jul 2000 A
6102538 Ochi et al. Aug 2000 A
6103775 Bambara et al. Aug 2000 A
6108513 Landa et al. Aug 2000 A
6109746 Jeanmaire et al. Aug 2000 A
6132541 Heaton Oct 2000 A
6143807 Lin et al. Nov 2000 A
6166105 Santilli et al. Dec 2000 A
6195112 Fassler et al. Feb 2001 B1
6196674 Takemoto Mar 2001 B1
6213580 Segerstrom et al. Apr 2001 B1
6214894 Bambara et al. Apr 2001 B1
6221928 Kozma et al. Apr 2001 B1
6234625 Wen May 2001 B1
6242503 Kozma et al. Jun 2001 B1
6257716 Yanagawa et al. Jul 2001 B1
6261688 Kaplan et al. Jul 2001 B1
6262137 Kozma et al. Jul 2001 B1
6262207 Rao et al. Jul 2001 B1
6303215 Sonobe et al. Oct 2001 B1
6316512 Bambara et al. Nov 2001 B1
6318853 Asano et al. Nov 2001 B1
6332943 Herrmann et al. Dec 2001 B1
6335046 Mackey Jan 2002 B1
6354700 Roth Mar 2002 B1
6357869 Rasmussen et al. Mar 2002 B1
6357870 Beach et al. Mar 2002 B1
6358660 Agler et al. Mar 2002 B1
6363234 Landa et al. Mar 2002 B2
6364451 Silverbrook Apr 2002 B1
6377772 Chowdry et al. Apr 2002 B1
6383278 Hirasa et al. May 2002 B1
6386697 Yamamoto et al. May 2002 B1
6390617 Iwao May 2002 B1
6396528 Yanagawa May 2002 B1
6397034 Tarnawskyj et al. May 2002 B1
6400913 De Jong et al. Jun 2002 B1
6402317 Yanagawa et al. Jun 2002 B2
6405006 Tabuchi Jun 2002 B1
6409331 Gelbart Jun 2002 B1
6432501 Yang et al. Aug 2002 B1
6438352 Landa et al. Aug 2002 B1
6454378 Silverbrook et al. Sep 2002 B1
6471803 Pelland et al. Oct 2002 B1
6530321 Andrew et al. Mar 2003 B2
6530657 Polierer Mar 2003 B2
6531520 Bambara et al. Mar 2003 B1
6551394 Hirasa et al. Apr 2003 B2
6551716 Landa et al. Apr 2003 B1
6554189 Good et al. Apr 2003 B1
6559969 Lapstun May 2003 B1
6575547 Sakuma Jun 2003 B2
6586100 Pickering et al. Jul 2003 B1
6590012 Miyabayashi Jul 2003 B2
6608979 Landa et al. Aug 2003 B1
6623817 Yang et al. Sep 2003 B1
6630047 Jing et al. Oct 2003 B2
6633735 Kellie et al. Oct 2003 B2
6639527 Johnson Oct 2003 B2
6648468 Shinkoda et al. Nov 2003 B2
6678068 Richter et al. Jan 2004 B1
6682189 May et al. Jan 2004 B2
6685769 Karl et al. Feb 2004 B1
6704535 Kobayashi et al. Mar 2004 B2
6709096 Beach et al. Mar 2004 B1
6716562 Uehara et al. Apr 2004 B2
6719423 Chowdry et al. Apr 2004 B2
6720367 Taniguchi et al. Apr 2004 B2
6755519 Gelbart et al. Jun 2004 B2
6761446 Chowdry et al. Jul 2004 B2
6770331 Mielke et al. Aug 2004 B1
6789887 Yang et al. Sep 2004 B2
6811840 Cross Nov 2004 B1
6827018 Hartmann et al. Dec 2004 B1
6881458 Ludwig et al. Apr 2005 B2
6898403 Baker et al. May 2005 B2
6912952 Landa et al. Jul 2005 B1
6916862 Ota et al. Jul 2005 B2
6917437 Myers et al. Jul 2005 B1
6966712 Trelewicz et al. Nov 2005 B2
6970674 Sato et al. Nov 2005 B2
6974022 Saeki Dec 2005 B2
6982799 Lapstun Jan 2006 B2
6983692 Beauchamp et al. Jan 2006 B2
7025453 Ylitalo et al. Apr 2006 B2
7057760 Lapstun et al. Jun 2006 B2
7084202 Pickering et al. Aug 2006 B2
7128412 King et al. Oct 2006 B2
7129858 Ferran et al. Oct 2006 B2
7134953 Reinke Nov 2006 B2
7160377 Zoch et al. Jan 2007 B2
7204584 Lean et al. Apr 2007 B2
7213900 Ebihara May 2007 B2
7224478 Lapstun et al. May 2007 B1
7265819 Raney Sep 2007 B2
7271213 Hoshida et al. Sep 2007 B2
7296882 Buehler et al. Nov 2007 B2
7300133 Folkins et al. Nov 2007 B1
7300147 Johnson Nov 2007 B2
7304753 Richter et al. Dec 2007 B1
7322689 Kohne et al. Jan 2008 B2
7334520 Geissler et al. Feb 2008 B2
7348368 Kakiuchi et al. Mar 2008 B2
7360887 Konno Apr 2008 B2
7362464 Kitazawa Apr 2008 B2
7419257 Mouri et al. Sep 2008 B2
7459491 Tyvoll et al. Dec 2008 B2
7494213 Taniuchi et al. Feb 2009 B2
7527359 Stevenson et al. May 2009 B2
7575314 Desie et al. Aug 2009 B2
7612125 Muller et al. Nov 2009 B2
7655707 Ma Feb 2010 B2
7655708 House et al. Feb 2010 B2
7699922 Breton et al. Apr 2010 B2
7708371 Yamanobe May 2010 B2
7709074 Uchida et al. May 2010 B2
7712890 Yahiro May 2010 B2
7732543 Loch et al. Jun 2010 B2
7732583 Annoura et al. Jun 2010 B2
7808670 Lapstun et al. Oct 2010 B2
7810922 Gervasi et al. Oct 2010 B2
7845788 Oku Dec 2010 B2
7867327 Sano et al. Jan 2011 B2
7876345 Houjou Jan 2011 B2
7910183 Wu Mar 2011 B2
7919544 Matsuyama et al. Apr 2011 B2
7942516 Ohara et al. May 2011 B2
7977408 Matsuyama et al. Jul 2011 B2
7985784 Kanaya et al. Jul 2011 B2
8002400 Kibayashi et al. Aug 2011 B2
8012538 Yokouchi Sep 2011 B2
8025389 Yamanobe et al. Sep 2011 B2
8038284 Hori et al. Oct 2011 B2
8041275 Soria et al. Oct 2011 B2
8042906 Chiwata et al. Oct 2011 B2
8059309 Lapstun et al. Nov 2011 B2
8095054 Nakamura Jan 2012 B2
8109595 Tanaka et al. Feb 2012 B2
8119315 Heuft et al. Feb 2012 B1
8122846 Stiblert et al. Feb 2012 B2
8147055 Cellura et al. Apr 2012 B2
8162428 Eun et al. Apr 2012 B2
8177351 Taniuchi et al. May 2012 B2
8186820 Chiwata May 2012 B2
8192904 Nagai et al. Jun 2012 B2
8215762 Ageishi Jul 2012 B2
8242201 Goto et al. Aug 2012 B2
8256857 Folkins et al. Sep 2012 B2
8263683 Gibson et al. Sep 2012 B2
8264135 Ozolins et al. Sep 2012 B2
8295733 Imoto Oct 2012 B2
8303071 Eun Nov 2012 B2
8303072 Shibata et al. Nov 2012 B2
8304043 Nagashima et al. Nov 2012 B2
8353589 Ikeda et al. Jan 2013 B2
8434847 Dejong et al. May 2013 B2
8460450 Taverizatshy et al. Jun 2013 B2
8469476 Mandel et al. Jun 2013 B2
8474963 Hasegawa et al. Jul 2013 B2
8536268 Karjala et al. Sep 2013 B2
8546466 Yamashita et al. Oct 2013 B2
8556400 Yatake et al. Oct 2013 B2
8632147 Onishi Jan 2014 B2
8693032 Goddard et al. Apr 2014 B2
8711304 Mathew et al. Apr 2014 B2
8714731 Leung et al. May 2014 B2
8746873 Tsukamoto et al. Jun 2014 B2
8779027 Idemura et al. Jul 2014 B2
8802221 Noguchi et al. Aug 2014 B2
8867097 Mizuno Oct 2014 B2
8885218 Hirose Nov 2014 B2
8891128 Yamazaki Nov 2014 B2
8894198 Hook et al. Nov 2014 B2
8919946 Suzuki et al. Dec 2014 B2
9004629 De Jong et al. Apr 2015 B2
9044932 Ohnishi et al. Jun 2015 B2
9186884 Landa et al. Nov 2015 B2
9207585 Hatano et al. Dec 2015 B2
9227429 LeStrange et al. Jan 2016 B1
9229664 Landa et al. Jan 2016 B2
9264559 Motoyanagi et al. Feb 2016 B2
9284469 Song et al. Mar 2016 B2
9290016 Landa et al. Mar 2016 B2
9327496 Landa et al. May 2016 B2
9327519 Larson et al. May 2016 B1
9353273 Landa et al. May 2016 B2
9381736 Landa et al. Jul 2016 B2
9446586 Matos et al. Sep 2016 B2
9498946 Landa et al. Nov 2016 B2
9505208 Shmaiser et al. Nov 2016 B2
9517618 Landa et al. Dec 2016 B2
9566780 Landa et al. Feb 2017 B2
9568862 Shmaiser et al. Feb 2017 B2
9643400 Landa et al. May 2017 B2
9643403 Landa et al. May 2017 B2
9776391 Landa et al. Oct 2017 B2
9782993 Landa et al. Oct 2017 B2
9849667 Landa et al. Dec 2017 B2
9884479 Landa et al. Feb 2018 B2
9902147 Shmaiser et al. Feb 2018 B2
9914316 Landa et al. Mar 2018 B2
9969182 Torisaka et al. May 2018 B2
10052865 Goto Aug 2018 B2
10065411 Landa et al. Sep 2018 B2
10175613 Watanabe Jan 2019 B2
10179447 Shmaiser et al. Jan 2019 B2
10190012 Landa et al. Jan 2019 B2
10195843 Landa et al. Feb 2019 B2
10201968 Landa et al. Feb 2019 B2
10226920 Shmaiser et al. Mar 2019 B2
10266711 Landa et al. Apr 2019 B2
10300690 Landa et al. May 2019 B2
10336060 Liu Jul 2019 B2
10357963 Landa et al. Jul 2019 B2
10357985 Landa et al. Jul 2019 B2
10427399 Shmaiser et al. Oct 2019 B2
10434761 Landa et al. Oct 2019 B2
10477188 Stiglic et al. Nov 2019 B2
10518526 Landa et al. Dec 2019 B2
10569532 Shmaiser et al. Feb 2020 B2
10569533 Landa et al. Feb 2020 B2
10569534 Shmaiser et al. Feb 2020 B2
10576734 Landa et al. Mar 2020 B2
10596804 Landa et al. Mar 2020 B2
10632740 Landa et al. Apr 2020 B2
10642198 Landa et al. May 2020 B2
10703093 Karlinski et al. Jul 2020 B2
10703094 Shmaiser et al. Jul 2020 B2
10730333 Landa et al. Aug 2020 B2
10759953 Landa et al. Sep 2020 B2
10800936 Landa et al. Oct 2020 B2
10828888 Landa et al. Nov 2020 B2
10889128 Landa et al. Jan 2021 B2
10926532 Chechik et al. Feb 2021 B2
10933661 Landa et al. Mar 2021 B2
10960660 Landa et al. Mar 2021 B2
10981377 Landa et al. Apr 2021 B2
10994528 Burkatovsky May 2021 B1
11104123 Shmaiser et al. Aug 2021 B2
11106161 Landa et al. Aug 2021 B2
11179928 Shmaiser et al. Nov 2021 B2
11196984 Stiglic et al. Dec 2021 B2
11203199 Landa et al. Dec 2021 B2
11214089 Landa et al. Jan 2022 B2
11235568 Landa et al. Feb 2022 B2
11267239 Pomerantz et al. Mar 2022 B2
11285715 Landa et al. Mar 2022 B2
11318734 Chechik et al. May 2022 B2
11321028 Levant May 2022 B2
11327413 Landa et al. May 2022 B2
11697291 Landa et al. Jul 2023 B2
20010022607 Takahashi et al. Sep 2001 A1
20010033688 Taylor Oct 2001 A1
20020041317 Kashiwazaki et al. Apr 2002 A1
20020061451 Kita et al. May 2002 A1
20020064404 Iwai May 2002 A1
20020102374 Gervasi et al. Aug 2002 A1
20020121220 Lin Sep 2002 A1
20020150408 Mosher et al. Oct 2002 A1
20020164494 Grant et al. Nov 2002 A1
20020197481 Jing et al. Dec 2002 A1
20030004025 Okuno et al. Jan 2003 A1
20030007055 Ogawa Jan 2003 A1
20030018119 Frenkel et al. Jan 2003 A1
20030030686 Abe et al. Feb 2003 A1
20030032700 Morrison et al. Feb 2003 A1
20030041777 Karl et al. Mar 2003 A1
20030043258 Kerr et al. Mar 2003 A1
20030054139 Ylitalo et al. Mar 2003 A1
20030055129 Alford Mar 2003 A1
20030063179 Adachi Apr 2003 A1
20030064317 Bailey et al. Apr 2003 A1
20030081964 Shimura et al. May 2003 A1
20030103128 Missell et al. Jun 2003 A1
20030118381 Law et al. Jun 2003 A1
20030129435 Blankenship et al. Jul 2003 A1
20030186147 Pickering et al. Oct 2003 A1
20030214568 Nishikawa et al. Nov 2003 A1
20030234849 Pan et al. Dec 2003 A1
20040003863 Eckhardt Jan 2004 A1
20040020382 McLean et al. Feb 2004 A1
20040036758 Sasaki et al. Feb 2004 A1
20040047666 Imaizumi et al. Mar 2004 A1
20040087707 Zoch et al. May 2004 A1
20040105971 Parrinello et al. Jun 2004 A1
20040123761 Szumla et al. Jul 2004 A1
20040125188 Szumla et al. Jul 2004 A1
20040145643 Nakamura Jul 2004 A1
20040173111 Okuda Sep 2004 A1
20040177779 Steffen et al. Sep 2004 A1
20040200369 Brady Oct 2004 A1
20040221943 Yu et al. Nov 2004 A1
20040228642 Iida et al. Nov 2004 A1
20040246324 Nakashima Dec 2004 A1
20040246326 Dwyer et al. Dec 2004 A1
20040249327 Sendijarevic et al. Dec 2004 A1
20040252175 Bejat et al. Dec 2004 A1
20040265016 Kitani et al. Dec 2004 A1
20050031807 Quintens et al. Feb 2005 A1
20050082146 Axmann Apr 2005 A1
20050103437 Carroll May 2005 A1
20050110855 Taniuchi et al. May 2005 A1
20050111861 Calamita et al. May 2005 A1
20050117859 Suzuki et al. Jun 2005 A1
20050134874 Overall et al. Jun 2005 A1
20050150408 Hesterman Jul 2005 A1
20050185009 Claramunt et al. Aug 2005 A1
20050195235 Kitao Sep 2005 A1
20050235870 Ishihara Oct 2005 A1
20050266332 Pavlisko et al. Dec 2005 A1
20050272334 Wang et al. Dec 2005 A1
20060004123 Wu et al. Jan 2006 A1
20060066704 Nishida Mar 2006 A1
20060120740 Yamada et al. Jun 2006 A1
20060135709 Hasegawa et al. Jun 2006 A1
20060164489 Vega et al. Jul 2006 A1
20060175559 Fischer et al. Aug 2006 A1
20060192827 Takada et al. Aug 2006 A1
20060233578 Maki et al. Oct 2006 A1
20060286462 Jackson et al. Dec 2006 A1
20070014595 Kawagoe Jan 2007 A1
20070025740 Katoh et al. Feb 2007 A1
20070025768 Komatsu et al. Feb 2007 A1
20070029171 Nemedi Feb 2007 A1
20070045939 Toya et al. Mar 2007 A1
20070054981 Yanagi et al. Mar 2007 A1
20070064077 Konno Mar 2007 A1
20070077520 Maemoto Apr 2007 A1
20070120927 Snyder et al. May 2007 A1
20070123642 Banning et al. May 2007 A1
20070134030 Lior et al. Jun 2007 A1
20070144368 Barazani et al. Jun 2007 A1
20070146462 Taniuchi et al. Jun 2007 A1
20070147894 Yokota et al. Jun 2007 A1
20070166071 Shima Jul 2007 A1
20070176995 Kadomatsu et al. Aug 2007 A1
20070189819 Uehara et al. Aug 2007 A1
20070199457 Cyman et al. Aug 2007 A1
20070229639 Yahiro Oct 2007 A1
20070253726 Kagawa Nov 2007 A1
20070257955 Tanaka et al. Nov 2007 A1
20070285486 Harris et al. Dec 2007 A1
20080006176 Houjou Jan 2008 A1
20080030536 Furukawa et al. Feb 2008 A1
20080032072 Taniuchi et al. Feb 2008 A1
20080044587 Maeno et al. Feb 2008 A1
20080055356 Yamanobe Mar 2008 A1
20080055381 Doi et al. Mar 2008 A1
20080066277 Colson et al. Mar 2008 A1
20080074462 Hirakawa Mar 2008 A1
20080101895 Holcomb et al. May 2008 A1
20080112912 Springob et al. May 2008 A1
20080124158 Folkins May 2008 A1
20080138546 Soria et al. Jun 2008 A1
20080166495 Maeno et al. Jul 2008 A1
20080167185 Hirota Jul 2008 A1
20080175612 Oikawa et al. Jul 2008 A1
20080196612 Rancourt et al. Aug 2008 A1
20080196621 Ikuno et al. Aug 2008 A1
20080213548 Koganehira et al. Sep 2008 A1
20080232867 Minbu et al. Sep 2008 A1
20080236480 Furukawa et al. Oct 2008 A1
20080247780 Iara Oct 2008 A1
20080253812 Pearce et al. Oct 2008 A1
20080295724 Ohweg et al. Dec 2008 A1
20090022504 Kuwabara et al. Jan 2009 A1
20090041515 Kim Feb 2009 A1
20090041932 Ishizuka et al. Feb 2009 A1
20090064884 Hook et al. Mar 2009 A1
20090073222 Hori Mar 2009 A1
20090074492 Ito Mar 2009 A1
20090082503 Yanagi et al. Mar 2009 A1
20090087565 Houjou Apr 2009 A1
20090098385 Kaemper et al. Apr 2009 A1
20090116885 Ando May 2009 A1
20090148200 Hara et al. Jun 2009 A1
20090165937 Inoue et al. Jul 2009 A1
20090185204 Wu et al. Jul 2009 A1
20090190951 Torimaru et al. Jul 2009 A1
20090202275 Nishida et al. Aug 2009 A1
20090211490 Ikuno et al. Aug 2009 A1
20090220873 Enomoto et al. Sep 2009 A1
20090237479 Yamashita et al. Sep 2009 A1
20090256896 Scarlata Oct 2009 A1
20090279170 Miyazaki et al. Nov 2009 A1
20090315926 Yamanobe Dec 2009 A1
20090317555 Hori Dec 2009 A1
20090318591 Ageishi et al. Dec 2009 A1
20100012023 Lefevre et al. Jan 2010 A1
20100035501 Prudhomme et al. Feb 2010 A1
20100053292 Thayer et al. Mar 2010 A1
20100053293 Thayer et al. Mar 2010 A1
20100066796 Yanagi et al. Mar 2010 A1
20100075843 Ikuno et al. Mar 2010 A1
20100086692 Ohta et al. Apr 2010 A1
20100091064 Araki et al. Apr 2010 A1
20100123752 Eun et al. May 2010 A1
20100225695 Fujikura Sep 2010 A1
20100231623 Hirato Sep 2010 A1
20100239789 Umeda Sep 2010 A1
20100245511 Ageishi Sep 2010 A1
20100247171 Ono et al. Sep 2010 A1
20100282100 Okuda et al. Nov 2010 A1
20100284705 Aoki et al. Nov 2010 A1
20100285221 Oki et al. Nov 2010 A1
20100300604 Goss et al. Dec 2010 A1
20100303504 Funamoto et al. Dec 2010 A1
20100310281 Miura et al. Dec 2010 A1
20110044724 Funamoto et al. Feb 2011 A1
20110058001 Gila et al. Mar 2011 A1
20110058859 Nakamatsu et al. Mar 2011 A1
20110069110 Matsumoto et al. Mar 2011 A1
20110069117 Ohzeki et al. Mar 2011 A1
20110069129 Shimizu Mar 2011 A1
20110085828 Kosako et al. Apr 2011 A1
20110128300 Gay et al. Jun 2011 A1
20110141188 Morita Jun 2011 A1
20110149002 Kessler Jun 2011 A1
20110150509 Komiya Jun 2011 A1
20110150541 Michibata Jun 2011 A1
20110169889 Kojima et al. Jul 2011 A1
20110195260 Lee et al. Aug 2011 A1
20110199414 Lang Aug 2011 A1
20110234683 Komatsu Sep 2011 A1
20110234689 Saito Sep 2011 A1
20110242181 Otobe Oct 2011 A1
20110249090 Moore et al. Oct 2011 A1
20110269885 Imai Nov 2011 A1
20110279554 Dannhauser et al. Nov 2011 A1
20110298884 Furuta Dec 2011 A1
20110304674 Sambhy et al. Dec 2011 A1
20120013693 Tasaka et al. Jan 2012 A1
20120013694 Kanke Jan 2012 A1
20120013928 Yoshida et al. Jan 2012 A1
20120014726 Sekihara et al. Jan 2012 A1
20120026224 Anthony et al. Feb 2012 A1
20120039647 Brewington et al. Feb 2012 A1
20120094091 Van Mil et al. Apr 2012 A1
20120098882 Onishi et al. Apr 2012 A1
20120105561 Taniuchi et al. May 2012 A1
20120105562 Sekiguchi et al. May 2012 A1
20120113180 Tanaka et al. May 2012 A1
20120113203 Kushida et al. May 2012 A1
20120127250 Kanasugi et al. May 2012 A1
20120127251 Tsuji et al. May 2012 A1
20120140009 Kanasugi et al. Jun 2012 A1
20120154497 Nakao et al. Jun 2012 A1
20120156375 Brust et al. Jun 2012 A1
20120156624 Rondon et al. Jun 2012 A1
20120162302 Oguchi et al. Jun 2012 A1
20120163846 Andoh et al. Jun 2012 A1
20120183756 Higuchi Jul 2012 A1
20120194830 Gaertner et al. Aug 2012 A1
20120236100 Toya Sep 2012 A1
20120237260 Sengoku et al. Sep 2012 A1
20120249630 Bugner et al. Oct 2012 A1
20120280447 Kayanuma Nov 2012 A1
20120287260 Lu et al. Nov 2012 A1
20120301186 Yang et al. Nov 2012 A1
20120314013 Takemoto et al. Dec 2012 A1
20120314077 Clavenna, II et al. Dec 2012 A1
20130011158 Meguro et al. Jan 2013 A1
20130016156 Ooishi et al. Jan 2013 A1
20130017006 Suda Jan 2013 A1
20130044188 Nakamura et al. Feb 2013 A1
20130057603 Gordon Mar 2013 A1
20130088543 Tsuji et al. Apr 2013 A1
20130095254 Ageishi Apr 2013 A1
20130096871 Takahama Apr 2013 A1
20130120513 Thayer et al. May 2013 A1
20130182045 Ohzeki et al. Jul 2013 A1
20130201237 Thomson et al. Aug 2013 A1
20130229457 Yu Sep 2013 A1
20130234080 Torikoshi et al. Sep 2013 A1
20130235139 Schnabel et al. Sep 2013 A1
20130242016 Edwards et al. Sep 2013 A1
20130302065 Mori et al. Nov 2013 A1
20130338273 Shimanaka et al. Dec 2013 A1
20140001013 Takifuji et al. Jan 2014 A1
20140011125 Inoue et al. Jan 2014 A1
20140043398 Butler et al. Feb 2014 A1
20140104360 Häcker et al. Apr 2014 A1
20140153956 Yonemoto Jun 2014 A1
20140168313 Ramesh et al. Jun 2014 A1
20140168330 Liu et al. Jun 2014 A1
20140175707 Wolk et al. Jun 2014 A1
20140176641 Hawryschuk et al. Jun 2014 A1
20140198162 DiRubio et al. Jul 2014 A1
20140232782 Mukai et al. Aug 2014 A1
20140267777 Le et al. Sep 2014 A1
20140334855 Onishi et al. Nov 2014 A1
20140339056 Iwakoshi et al. Nov 2014 A1
20150022605 Mantell et al. Jan 2015 A1
20150024648 Landa et al. Jan 2015 A1
20150025179 Landa et al. Jan 2015 A1
20150072090 Landa et al. Mar 2015 A1
20150085036 Liu et al. Mar 2015 A1
20150085037 Liu et al. Mar 2015 A1
20150085038 Liu Mar 2015 A1
20150097906 Beier et al. Apr 2015 A1
20150116408 Armbruster et al. Apr 2015 A1
20150118503 Landa et al. Apr 2015 A1
20150165758 Sambhy et al. Jun 2015 A1
20150195509 Phipps Jul 2015 A1
20150210065 Kelly et al. Jul 2015 A1
20150273835 Arimizu et al. Oct 2015 A1
20150304531 Rodriguez et al. Oct 2015 A1
20150315403 Song et al. Nov 2015 A1
20150336378 Guttmann et al. Nov 2015 A1
20150343797 Song et al. Dec 2015 A1
20150361288 Song et al. Dec 2015 A1
20150375474 DeGolier et al. Dec 2015 A1
20150375543 Barnett et al. Dec 2015 A1
20160031246 Sreekumar et al. Feb 2016 A1
20160067974 Williams Mar 2016 A1
20160083609 Sisler et al. Mar 2016 A1
20160222232 Landa et al. Aug 2016 A1
20160250879 Chen et al. Sep 2016 A1
20160274519 Lim et al. Sep 2016 A1
20160286462 Gohite et al. Sep 2016 A1
20160375680 Nishitani et al. Dec 2016 A1
20160378036 Onishi et al. Dec 2016 A1
20170028688 Dannhauser et al. Feb 2017 A1
20170104887 Nomura Apr 2017 A1
20170282599 Ido Oct 2017 A1
20170329261 Salalha Nov 2017 A1
20180065358 Landa Mar 2018 A1
20180149998 Furukawa May 2018 A1
20180259888 Mitsui et al. Sep 2018 A1
20180281382 Umezawa et al. Oct 2018 A1
20180348672 Yoshida Dec 2018 A1
20180348675 Nakamura et al. Dec 2018 A1
20190016114 Sugiyama et al. Jan 2019 A1
20190094727 Landa et al. Mar 2019 A1
20190152218 Stein et al. May 2019 A1
20190218411 Landa et al. Jul 2019 A1
20190232638 Ziegenbalg et al. Aug 2019 A1
20200073301 Sakai et al. Mar 2020 A1
20200171813 Chechik et al. Jun 2020 A1
20200361202 Burkatovsky Nov 2020 A1
20200361715 Meier Nov 2020 A1
20200376860 Paker et al. Dec 2020 A1
20210001622 Landa et al. Jan 2021 A1
20210055666 Landa et al. Feb 2021 A1
20210062021 Landa et al. Mar 2021 A1
20210070083 Levanon et al. Mar 2021 A1
20210095145 Landa et al. Apr 2021 A1
20210245528 Landa et al. Aug 2021 A1
20210252876 Landa et al. Aug 2021 A1
20210260869 Landa et al. Aug 2021 A1
20210268793 Burkatovsky Sep 2021 A1
20210283899 Landa et al. Sep 2021 A1
20210309020 Siman Tov et al. Oct 2021 A1
20220016880 Landa et al. Jan 2022 A1
20220016881 Shmaiser et al. Jan 2022 A1
20220057732 Landa et al. Feb 2022 A1
20220111633 Shmaiser et al. Apr 2022 A1
20220119659 Landa et al. Apr 2022 A1
20220153015 Landa et al. May 2022 A1
20220153048 Landa et al. May 2022 A1
20220176693 Landa et al. Jun 2022 A1
20220188050 Levant Jun 2022 A1
20230016492 Landa et al. Jan 2023 A1
Foreign Referenced Citations (427)
Number Date Country
1121033 Apr 1996 CN
1200085 Nov 1998 CN
1212229 Mar 1999 CN
1305895 Aug 2001 CN
1324901 Dec 2001 CN
1445622 Oct 2003 CN
1493514 May 2004 CN
1535235 Oct 2004 CN
1543404 Nov 2004 CN
1555422 Dec 2004 CN
1680506 Oct 2005 CN
1703326 Nov 2005 CN
1720187 Jan 2006 CN
1261831 Jun 2006 CN
1809460 Jul 2006 CN
1289368 Dec 2006 CN
1961015 May 2007 CN
101073937 Nov 2007 CN
101096455 Jan 2008 CN
101177057 May 2008 CN
101248146 Aug 2008 CN
101249768 Aug 2008 CN
101344746 Jan 2009 CN
101359210 Feb 2009 CN
101396910 Apr 2009 CN
101433074 May 2009 CN
101508200 Aug 2009 CN
101519007 Sep 2009 CN
101524916 Sep 2009 CN
101544100 Sep 2009 CN
101544101 Sep 2009 CN
101592896 Dec 2009 CN
101607468 Dec 2009 CN
201410787 Feb 2010 CN
101820241 Sep 2010 CN
101835611 Sep 2010 CN
101835612 Sep 2010 CN
101873982 Oct 2010 CN
102229294 Nov 2011 CN
102248776 Nov 2011 CN
102300932 Dec 2011 CN
102341249 Feb 2012 CN
102529257 Jul 2012 CN
102566343 Jul 2012 CN
102648095 Aug 2012 CN
102673209 Sep 2012 CN
102925002 Feb 2013 CN
103045008 Apr 2013 CN
103309213 Sep 2013 CN
103568483 Feb 2014 CN
103627337 Mar 2014 CN
104015415 Sep 2014 CN
104220934 Dec 2014 CN
104220935 Dec 2014 CN
104245340 Dec 2014 CN
104271356 Jan 2015 CN
104271686 Jan 2015 CN
104284850 Jan 2015 CN
104618642 May 2015 CN
105058999 Nov 2015 CN
102555450 Mar 2016 CN
105844621 Aug 2016 CN
104271356 Oct 2016 CN
103991293 Jan 2017 CN
107111267 Aug 2017 CN
107879147 Apr 2018 CN
102010060999 Jun 2012 DE
102012011783 Dec 2013 DE
0457551 Nov 1991 EP
0499857 Aug 1992 EP
0606490 Jul 1994 EP
0609076 Aug 1994 EP
0613791 Sep 1994 EP
0676300 Oct 1995 EP
0530627 Mar 1997 EP
0784244 Jul 1997 EP
0835762 Apr 1998 EP
0843236 May 1998 EP
0854398 Jul 1998 EP
0953450 Nov 1999 EP
1013466 Jun 2000 EP
1146090 Oct 2001 EP
1158029 Nov 2001 EP
0825029 May 2002 EP
1247821 Oct 2002 EP
1271263 Jan 2003 EP
0867483 Jun 2003 EP
0923007 Mar 2004 EP
1454968 Sep 2004 EP
1503326 Feb 2005 EP
1777243 Apr 2007 EP
2028238 Feb 2009 EP
2042317 Apr 2009 EP
2065194 Jun 2009 EP
2228210 Sep 2010 EP
2270070 Jan 2011 EP
2042318 Feb 2011 EP
2042325 Feb 2012 EP
2634010 Sep 2013 EP
2683556 Jan 2014 EP
2075635 Oct 2014 EP
3260486 Dec 2017 EP
2823363 Oct 2018 EP
748821 May 1956 GB
1496016 Dec 1977 GB
1520932 Aug 1978 GB
1522175 Aug 1978 GB
2321430 Jul 1998 GB
S48043941 Dec 1973 JP
S5578904 Jun 1980 JP
S57121446 Jul 1982 JP
S6076343 Apr 1985 JP
S60199692 Oct 1985 JP
S6223783 Jan 1987 JP
S63274572 Nov 1988 JP
H03248170 Nov 1991 JP
H05147208 Jun 1993 JP
H05192871 Aug 1993 JP
H05249870 Sep 1993 JP
H05297737 Nov 1993 JP
H06954 Jan 1994 JP
H06100807 Apr 1994 JP
H06171076 Jun 1994 JP
H06345284 Dec 1994 JP
H07112841 May 1995 JP
H07186453 Jul 1995 JP
H07238243 Sep 1995 JP
H0862999 Mar 1996 JP
H08112970 May 1996 JP
2529651 Aug 1996 JP
H08272224 Oct 1996 JP
H09123432 May 1997 JP
H09157559 Jun 1997 JP
H09174646 Jul 1997 JP
H09281851 Oct 1997 JP
H09300678 Nov 1997 JP
H09314867 Dec 1997 JP
H10130597 May 1998 JP
H1142811 Feb 1999 JP
H11503244 Mar 1999 JP
H11106081 Apr 1999 JP
H11138740 May 1999 JP
H11245383 Sep 1999 JP
2000094660 Apr 2000 JP
2000108320 Apr 2000 JP
2000108334 Apr 2000 JP
2000141710 May 2000 JP
2000141883 May 2000 JP
2000168062 Jun 2000 JP
2000169772 Jun 2000 JP
2000190468 Jul 2000 JP
2000206801 Jul 2000 JP
2000337464 Dec 2000 JP
2000343025 Dec 2000 JP
2001088430 Apr 2001 JP
2001098201 Apr 2001 JP
2001139865 May 2001 JP
3177985 Jun 2001 JP
2001164165 Jun 2001 JP
2001199150 Jul 2001 JP
2001206522 Jul 2001 JP
2002020666 Jan 2002 JP
2002049211 Feb 2002 JP
2002504446 Feb 2002 JP
2002069346 Mar 2002 JP
2002103598 Apr 2002 JP
2002169383 Jun 2002 JP
2002229276 Aug 2002 JP
2002234243 Aug 2002 JP
2002278365 Sep 2002 JP
2002304066 Oct 2002 JP
2002326733 Nov 2002 JP
2002371208 Dec 2002 JP
2003057967 Feb 2003 JP
2003076159 Mar 2003 JP
2003094795 Apr 2003 JP
2003107819 Apr 2003 JP
2003114558 Apr 2003 JP
2003145914 May 2003 JP
2003183557 Jul 2003 JP
2003211770 Jul 2003 JP
2003219271 Jul 2003 JP
2003227549 Aug 2003 JP
2003246135 Sep 2003 JP
2003246484 Sep 2003 JP
2003267580 Sep 2003 JP
2003292855 Oct 2003 JP
2003313466 Nov 2003 JP
2004009632 Jan 2004 JP
2004011263 Jan 2004 JP
2004019022 Jan 2004 JP
2004025708 Jan 2004 JP
2004034441 Feb 2004 JP
2004077669 Mar 2004 JP
2004114377 Apr 2004 JP
2004114675 Apr 2004 JP
2004117118 Apr 2004 JP
2004148687 May 2004 JP
2004167902 Jun 2004 JP
2004231711 Aug 2004 JP
2004524190 Aug 2004 JP
2004261975 Sep 2004 JP
2004325782 Nov 2004 JP
2004340983 Dec 2004 JP
2005014255 Jan 2005 JP
2005014256 Jan 2005 JP
2005114769 Apr 2005 JP
2005215247 Aug 2005 JP
2005224737 Aug 2005 JP
3712547 Nov 2005 JP
2005307184 Nov 2005 JP
2005319593 Nov 2005 JP
2006001688 Jan 2006 JP
2006023403 Jan 2006 JP
2006095870 Apr 2006 JP
2006102975 Apr 2006 JP
2006137127 Jun 2006 JP
2006143778 Jun 2006 JP
2006152133 Jun 2006 JP
2006224583 Aug 2006 JP
2006231666 Sep 2006 JP
2006234212 Sep 2006 JP
2006243212 Sep 2006 JP
2006256087 Sep 2006 JP
2006263984 Oct 2006 JP
2006347081 Dec 2006 JP
2006347085 Dec 2006 JP
2007025246 Feb 2007 JP
2007041530 Feb 2007 JP
2007069584 Mar 2007 JP
2007079159 Mar 2007 JP
2007190745 Aug 2007 JP
2007216673 Aug 2007 JP
2007253347 Oct 2007 JP
2007298774 Nov 2007 JP
2007334125 Dec 2007 JP
2008006816 Jan 2008 JP
2008018716 Jan 2008 JP
2008019286 Jan 2008 JP
2008036968 Feb 2008 JP
2008082820 Apr 2008 JP
2008137146 Jun 2008 JP
2008137239 Jun 2008 JP
2008139877 Jun 2008 JP
2008142962 Jun 2008 JP
2008183744 Aug 2008 JP
2008194997 Aug 2008 JP
2008532794 Aug 2008 JP
2008201564 Sep 2008 JP
2008238674 Oct 2008 JP
2008246787 Oct 2008 JP
2008246990 Oct 2008 JP
2008254203 Oct 2008 JP
2008255135 Oct 2008 JP
2009040892 Feb 2009 JP
2009045794 Mar 2009 JP
2009045851 Mar 2009 JP
2009045885 Mar 2009 JP
2009083314 Apr 2009 JP
2009083317 Apr 2009 JP
2009083325 Apr 2009 JP
2009096175 May 2009 JP
2009148908 Jul 2009 JP
2009154330 Jul 2009 JP
2009154377 Jul 2009 JP
2009190375 Aug 2009 JP
2009202355 Sep 2009 JP
2009214318 Sep 2009 JP
2009214439 Sep 2009 JP
2009532240 Sep 2009 JP
2009226805 Oct 2009 JP
2009226852 Oct 2009 JP
2009226886 Oct 2009 JP
2009226890 Oct 2009 JP
2009227909 Oct 2009 JP
2009233977 Oct 2009 JP
2009234219 Oct 2009 JP
2009240925 Oct 2009 JP
2009258587 Nov 2009 JP
2009271422 Nov 2009 JP
2009279808 Dec 2009 JP
2010005815 Jan 2010 JP
2010030300 Feb 2010 JP
2010054855 Mar 2010 JP
2010076214 Apr 2010 JP
2010510357 Apr 2010 JP
2010105365 May 2010 JP
2010173201 Aug 2010 JP
2010184376 Aug 2010 JP
2010214885 Sep 2010 JP
4562388 Oct 2010 JP
2010228192 Oct 2010 JP
2010228392 Oct 2010 JP
2010234599 Oct 2010 JP
2010234681 Oct 2010 JP
2010240897 Oct 2010 JP
2010241073 Oct 2010 JP
2010247381 Nov 2010 JP
2010247528 Nov 2010 JP
2010258193 Nov 2010 JP
2010260204 Nov 2010 JP
2010260287 Nov 2010 JP
2010260302 Nov 2010 JP
2010286570 Dec 2010 JP
2011002532 Jan 2011 JP
2011025431 Feb 2011 JP
2011031619 Feb 2011 JP
2011037070 Feb 2011 JP
2011064850 Mar 2011 JP
2011067956 Apr 2011 JP
2011126031 Jun 2011 JP
2011133884 Jul 2011 JP
2011144271 Jul 2011 JP
4743502 Aug 2011 JP
2011523601 Aug 2011 JP
2011168024 Sep 2011 JP
2011173325 Sep 2011 JP
2011173326 Sep 2011 JP
2011186346 Sep 2011 JP
2011189627 Sep 2011 JP
2011201951 Oct 2011 JP
2011224032 Nov 2011 JP
2012042943 Mar 2012 JP
2012081770 Apr 2012 JP
2012086499 May 2012 JP
2012111194 Jun 2012 JP
2012126123 Jul 2012 JP
2012139905 Jul 2012 JP
2012196787 Oct 2012 JP
2012201419 Oct 2012 JP
2013001081 Jan 2013 JP
2013020170 Jan 2013 JP
2013060299 Apr 2013 JP
2013091313 May 2013 JP
2013103474 May 2013 JP
2013104044 May 2013 JP
2013121671 Jun 2013 JP
2013129158 Jul 2013 JP
2014008609 Jan 2014 JP
2014047005 Mar 2014 JP
2014073675 Apr 2014 JP
2014094827 May 2014 JP
2014131843 Jul 2014 JP
2015058709 Mar 2015 JP
2015510848 Apr 2015 JP
2015516315 Jun 2015 JP
2015517928 Jun 2015 JP
2015202616 Nov 2015 JP
2015212082 Nov 2015 JP
2016074206 May 2016 JP
2016093999 May 2016 JP
2016179678 Oct 2016 JP
2016185688 Oct 2016 JP
2016539830 Dec 2016 JP
2017093178 May 2017 JP
2018017429 Feb 2018 JP
2020014350 Jan 2020 JP
2014010683 Oct 2014 MX
2014010680 Apr 2015 MX
2180675 Mar 2002 RU
2282643 Aug 2006 RU
WO-8600327 Jan 1986 WO
WO-9307000 Apr 1993 WO
WO-9401283 Jan 1994 WO
WO-9604339 Feb 1996 WO
WO-9631809 Oct 1996 WO
WO-9707991 Mar 1997 WO
WO-9736210 Oct 1997 WO
WO-9821251 May 1998 WO
WO-9855901 Dec 1998 WO
WO-9912633 Mar 1999 WO
WO-9942509 Aug 1999 WO
WO-9943502 Sep 1999 WO
WO-0064685 Nov 2000 WO
WO-0154902 Aug 2001 WO
WO-0170512 Sep 2001 WO
WO-02068191 Sep 2002 WO
WO-02078868 Oct 2002 WO
WO-02094912 Nov 2002 WO
WO-2004113082 Dec 2004 WO
WO-2004113450 Dec 2004 WO
WO-2006051733 May 2006 WO
WO-2006069205 Jun 2006 WO
WO-2006073696 Jul 2006 WO
WO-2006091957 Aug 2006 WO
WO-2007009871 Jan 2007 WO
WO-2007145378 Dec 2007 WO
WO-2008078841 Jul 2008 WO
WO-2009025809 Feb 2009 WO
WO-2009134273 Nov 2009 WO
WO-2010042784 Jul 2010 WO
WO-2010073916 Jul 2010 WO
WO-2011142404 Nov 2011 WO
WO-2012014825 Feb 2012 WO
WO-2012148421 Nov 2012 WO
WO-2013060377 May 2013 WO
WO-2013087249 Jun 2013 WO
WO-2013132339 Sep 2013 WO
WO-2013132340 Sep 2013 WO
WO-2013132343 Sep 2013 WO
WO-2013132345 Sep 2013 WO
WO-2013132356 Sep 2013 WO
WO-2013132418 Sep 2013 WO
WO-2013132419 Sep 2013 WO
WO-2013132420 Sep 2013 WO
WO-2013132424 Sep 2013 WO
WO-2013132432 Sep 2013 WO
WO-2013132438 Sep 2013 WO
WO-2013132439 Sep 2013 WO
WO-2013136220 Sep 2013 WO
WO-2015026864 Feb 2015 WO
2015036865 Mar 2015 WO
WO-2015036864 Mar 2015 WO
WO-2015036906 Mar 2015 WO
WO-2015036960 Mar 2015 WO
WO-2016166690 Oct 2016 WO
2017208152 Dec 2017 WO
WO-2017208155 Dec 2017 WO
WO-2017208246 Dec 2017 WO
WO-2018100541 Jun 2018 WO
2019012456 Jan 2019 WO
2019111223 Jun 2019 WO
2020003088 Jan 2020 WO
2020136517 Jul 2020 WO
2020141465 Jul 2020 WO
2021105806 Jun 2021 WO
2021137063 Jul 2021 WO
Non-Patent Literature Citations (291)
Entry
“Amino Functional Silicone Polymers”, in Xiameter.Copyrgt. 2009 Dow Corning Corporation.
BASF , “JONCRYL 537”, Datasheet , Retrieved from the internet : Mar. 23, 2007 p. 1.
CLARIANT., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352DOBC052E90CEC1257479002707D9/$FILE/DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf].
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen GMBH & [DE].
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co.
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN].
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP].
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP].
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd.
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd.
CN101592896A Machine Translation (by EPO and Google)—published Dec. 2, 2009; Canon KK.
CN101820241A Machine Translation (by EPO and Google)—published Sep. 1, 2010; Canon KK.
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al.
CN102229294A Machine Translation (by EPO and Google)—published Nov. 2, 2011; Guangzhou Changcheng Ceramics Co Ltd.
CN102300932A Machine Translation (by EPO and Google)—published Dec. 28, 2011; Yoshida Hiroaki et al.
CN102529257A Machine Translation (by EPO and Google)—published Jul. 4, 2012; Nippon Synthetic Chem Ind.
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc.
CN102673209A Machine Translation (by EPO and Google)—published Sep. 19, 2012; Wistron Corp.
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al.
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17, 2013; Fuji Xerox Co Ltd.
CN103568483A Machine Translation (by EPO and Google)—published Feb. 12, 2014; Anhui Printing Mechanical & Electrical Co Ltd.
CN103627337A Machine Translation (by EPO and Google)—published Mar. 12, 2014; Suzhou Banlid New Material Co Ltd.
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al.
CN103991293B Machine Translation (by EPO and Google)—issued on Jan. 4, 2017; Miyakoshi Printing Machinery Co., Ltd, Junichi et al.
CN104015415A Machine Translation (by EPO and Google)—published Sep. 3, 2014; Avery Dennison Corp.
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen.
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd.
CN107111267A Machine Translation (by EPO and Google)—published Aug. 29, 2017; Hewlett Packard Indigo BV.
CN1121033A Machine Translation (by EPO and Google)—published Apr. 24, 1996; Kuehnle Manfred R [US].
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP].
CN1305895A Machine Translation (by EPO and Google)—published Aug. 1, 2001; Imaje SA [FR].
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD Spa, Boderi et al.
CN1543404A Machine Translation (by EPO and Google)—published Nov. 3, 2004; 3M Innovative Properties Co [US].
CN1555422A Machine Translation (by EPO and Google)—published Dec. 15, 2004; Noranda Inc.
CN1680506A Machine Translation (by EPO and Google)—published Oct. 12, 2005; Shinetsu Chemical Co [JP].
CN1703326A Machine Translation (by EPO and Google)—published Nov. 30, 2005; Nissha Printing [JP].
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK.
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd.
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019.
Co-pending U.S. Appl. No. 17/155,121, filed Jan. 22, 2021.
Co-pending U.S. Appl. No. 17/438,497, inventors Helena; Chechik et al., filed Sep. 13, 2021.
Co-pending U.S. Appl. No. 17/583,372, inventor Pomerantz; Uriel, filed Jan. 25, 2022.
Co-pending U.S. Appl. No. 17/676,398, filed Mar. 21, 2022.
Co-pending U.S. Appl. No. 17/694,702, inventor Chechik; Helena, filed Mar. 15, 2022.
Co-pending U.S. Appl. No. 17/712,198, filed Apr. 4, 2022.
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-Ing.
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014.
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages.
Furia, T.E., “Crc Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434.
Handbook of Print Media, 2000, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation.
IP.com Search, 2018, 2 pages.
IP.com Search, 2019, 1 page.
IP.com search (Year: 2021).
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd.
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd.
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd.
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd.
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink Mfg Co Ltd.
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al.
JP2000343025A Machine Translation (by EPO and Google)—published Dec. 12, 2000; Kyocera Corp.
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK.
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co.
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK.
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals.
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK.
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al.
JP2002049211A Machine Translation (by EPO and Google)—published Feb. 15, 2002; PFU Ltd.
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals.
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co.
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Ricoh KK.
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd.
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK.
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; PFU Ltd.
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp.
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc.
JP2003076159A Machine Translation (by EPO and Google)—published Mar. 14, 2003, Ricoh KK.
JP2003094795A Machine Translation (by EPO and Google)—published Apr. 3, 2003; Ricoh KK.
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al.
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind.
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions.
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting.
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al.
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp.
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind.
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK.
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc.
JP2004011263A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Sumitomo Denko Steel Wire KK.
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al.
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc.
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc.
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd.
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al.
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc.
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd.
JP2004167902A Machine Translation (by EPO and Google)—published Jun. 17, 2004; Nippon New Chrome KK.
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp.
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al.
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK.
JP2004340983A Machine Translation (by EPO and Google)—published Dec. 2, 2004; Ricoh KK.
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp.
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK.
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp.
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd.
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK.
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK.
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd.
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd.
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic.
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al.
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp.
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc.
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp.
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd.
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd.
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd.
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd.
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd.
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp.
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd.
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm.
JP2007079159A Machine Translation (by EPO and Google)—published Mar. 29, 2007; Ricoh KK.
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind.
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al.
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp.
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc.
JP2008082820A Machine Translation (by EPO and Google)—published Apr. 10, 2008; Ricoh KK.
JP2008137146A Machine Translation (by EPO and Google)—published Jun. 19, 2008; CBG Acciai SRL.
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp.
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp.
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd.
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd.
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd.
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd.
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd.
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd.
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp.
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp.
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd.
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp.
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp.
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm.
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm Corp.
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd.
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp.
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd.
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd.
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd.
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp.
JP2009226805A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd.
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp.
JP2009226890A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd.
JP2009227909A Machine Translation (EPO, PlatPat and Google) published on Oct. 8, 2009 Fujifilm Corp.
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd.
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm CORP.
JP2009240925A Machine Translation (by EPO and Google)—published Oct. 22, 2009; Fujifilm Corp.
JP2009271422A Machine Translation (by EPO and Google)—published Nov. 19, 2009; Ricoh KK.
JP2009532240A Machine Translation (by EPO and Google)—published Sep. 10, 2009; Aisapack Holding SA.
JP2010030300A Machine Translation (by EPO and Google)—published Feb. 12, 2010; Xerox Corp.
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co.
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd.
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd.
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp.
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd.
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox.
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd.
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al.
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp.
JP2010240897A Machine Translation (by EPO and Google)—published Oct. 28, 2010; Toppan Printing Co Ltd.
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc.
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd.
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp.
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK.
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK.
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp.
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jan. 6, 2011 Seiko Epson Corp.
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd.
JP2011031619A Machine Translation (by EPO and Google)—published Feb. 17, 2011; Xerox Corp.
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp.
JP2011064850A Machine Translation (by EPO and Google)—published Mar. 31, 2011; Seiko Epson Corp.
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd.
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp.
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd.
JP2011168024A Machine Translation (EPO, PlatPat and Google) published on Sep. 1, 2011 Ricoh Co Ltd.
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al.
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK.
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al.
JP2011224032 Machine Translation (by EPO & Google)—published Nov. 10, 2011, Mameita KK.
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc.
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta.
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp.
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp.
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp.
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd.
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd.
JP2013104044A Machine Translation (by EPO and Google)—published May 30, 2013; Three M Innovative Properties.
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd.
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd.
JP2014008609A Machine Translation (EPO, PlatPat and Google) published on Jan. 20, 2014 Seiko Epson Corp.
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd.
JP2014073675A Machine Translation (EPO and Google) published on Apr. 24, 2014 Ricoh Co Ltd.
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp.
JP2014131843A Machine Translation (by EPO and Google)—published Jul. 17, 2014; Ricoh Co Ltd.
JP2015202616A Machine Translation (EPO, PlatPat and Google) published on Nov. 16, 2015 Canon KK.
JP2016074206A Machine Translation (EPO and Google) published on May 12, 2016 Xerox Corp.
JP2016093999A Machine Translation (by EPO and Google)—published May 26, 2016; Canon KK.
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd.
JP2017093178A Machine Translation (EPO and Google) published on May 25, 2017 Samsung Electronics Co Ltd.
JP2529651 B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK.
JP4562388B2 Machine Translation (by EPO and Google)—published Oct. 13, 2010; SK Kaken Co Ltd.
JP4743502B2 Machine Translation (by EPO and Google)—published Aug. 10, 2011; Fujifilm Corp.
JP48043941 Machine Translation (by EPO and Google)—published Dec. 21, 1973.
JPH03248170A Machine Translation (by EPO & Google)—published Nov. 6, 1991; Fujitsu Ltd.
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993—Mita Industrial Co Ltd.
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc.
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp.
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp.
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp.
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp.
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc.
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd.
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki.
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd.
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co.
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp.
JPH09300678A Machine Translation (by EPO and Google)—published Nov. 25, 1997; Mitsubishi Electric Corp.
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp.
JPH10130597A Machine Translation (by EPO and Google)—published May 19, 1998; Sekisui Chemical Co Ltd.
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh Kk.
JPH11138740A Machine Translation (by EPO and Google)—published May 25, 1999; Nikka KK.
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp.
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd.
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo.
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982.
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK.
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries.
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK.
Larostat 264 A Quaternary Ammonium Compound, Technical Bulletin, BASF Corporation, Dec. 2002, p. 1.
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK.
Marconi Studios, Virtual SET Real Time; http://www.marconistudios.il/pages/virtualset_en.php.
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127.
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017.
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing .com/polymers/PV AC.html.
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011.
RU2180675C2 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika.
RU2282643C1Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika Aoot.
Technical Information Lupasol Types, Sep. 2010, 10 pages.
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages.
Units of Viscosity published by Hydramotion Ltd. 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017.
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic.
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1, 2010; Nihon Parkerizing [JP] et al.
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG.
XIAMETER™ “OFS-0777 Siliconate Technical Data Sheet,” Dec. 31, 2017, 5 pages. [Retrieved from the internet on Oct. 13, 2021]: < url: <a= href=>https://www.dow.com/en-us/document-viewer.html?ramdomVar=6236427586842315077docPath=/content/dam/dcc/documents/en-us/productdatasheet/95/95-4/95-435-01-xiameter-ofs-0777-siliconate.pdf.</url:>.
CN101096455A Machine Translation (EPO, PlatPat and Google) published on Jan. 2, 2008 Fujifilm Corp.
CN101248146A Machine Translation (EPO, PlatPat and Google) published on Aug. 20, 2008 Ricoh KK.
CN101433074A Machine Translation (by EPO and Google)—published May 13, 2009; Kyocera Mita Corp [JP].
CN102341249A Machine Translation (EPO, PlatPat and Google) published on Feb. 1, 2012 Eastman Kodak Co.
CN102566343A Machine Translation (by EPO and Google)—published Jul. 11, 2012; Canon KK.
CN105844621A Machine Translation (by EPO and Google)—published Aug. 10, 2016; Fuyang Feiyang Printing Co Ltd.
CN107879147A Machine Translation (by EPO and Google)—published Apr. 6, 2018; Brother Ind Ltd.
CN1961015A Machine Translation (EPO, PlatPat and Google) published on May 9, 2007 Dainippon Ink Chemicals.
Co-pending U.S. Appl. No. 18/116,668, inventor Benzion; Landa, filed Mar. 2, 2023.
DE102012011783A1 Machine Translation (by EPO, PlatPat and Google)—published Dec. 19, 2013; Heidelberger Druckmasch AG.
P.com search (Year: 2022).
JP2000094660A Machine Translation (by EPO and Google)—published Apr. 4, 2000; Brother Ind Ltd.
JP2000141883A Machine Translation (EPO, PlatPat and Google) published on May 23, 2000 Ricoh KK.
JP2000190468A Machine Translation (EPO, PlatPat and Google) published on Jul. 11, 2000 Brother Ind Ltd.
JP2000337464A Machine Translation (by EPO and Google)—published Dec. 5, 2000; Fuji Xerox Co Ltd.
JP2003107819A Machine Translation (by EPO and Google)—published Apr. 9, 2003; Kanegafuchi Chemical Ind.
JP2003227549A Machine Translation (by EPO, PlatPat and Google)—published Aug. 15, 2003; Xerox Corp.
JP2004117118A Machine Translation (by EPO and Google)—published Apr. 15, 2004; Nidec Copal Corp.
JP2005224737A Machine Translation (by EPO and Google)—published Aug. 25, 2005; Mitsubishi Paper Mills Ltd.
JP2006256087 Machine Translation (by EPO and Google)—published Sep. 28, 2006; Ricoh Printing Sys Ltd.
JP2009154377A Machine Translation (by EPO and Google)—published Jul. 16, 2009; Fujifilm Corp.
JP2009258587A Machine Translation (by EPO and Google)—published Nov. 5, 2009; Fuji Xerox Co Ltd.
JP2009279808A Machine Translation (by EPO and Google)—published Dec. 3, 2009; Fuji Xerox Co Ltd.
JP2010076214A Machine Translation (EPO, PlatPat and Google) published on Apr. 8, 2010 Fuji Xerox Co Ltd.
JP2012081770A Machine Translation (EPO, PlatPat and Google) published on Apr. 26, 2012 Komori Printing Mach.
JP2016179678A Machine Translation (EPO, PlatPat and Google) published on Oct. 13, 2016 Xerox Corp.
JP2018017429A Machine Translation (by EPO and Google)—published Feb. 1, 2018; Rinnai KK.
JP2020014350A Machine Translation (by EPO and Google)—published Jan. 23, 2020; Toshiba Mitsubishi Elec Ind.
JP3712547B2 Machine Translation (EPO, PlatPat and Google) published on Nov. 2, 2005 Sasaya Shunji.
JPH05249870A Machine Translation (by EPO, PlatPat and Google)—published Sep. 28, 1993; Matsushita Electric Ind Co Ltd.
JPH08272224A Machine Translation (by EPO, PlatPat and Google)—published Oct. 18, 1996; Ricoh KK.
JPH09174646A Machine Translation (by EPO and Google)—published Jul. 8, 1997; Kao Corp.
JPS63274572A Machine Translation (by EPO and Google)—published Nov. 11, 1988; Canon KK.
Related Publications (1)
Number Date Country
20220379598 A1 Dec 2022 US
Provisional Applications (1)
Number Date Country
62939726 Nov 2019 US