Undesirable vibration energy occurs in a variety of products and devices. For example, in automotive vehicles, the engine and other automotive systems can cause vibration to permeate through the vehicle body and into the vehicle's passenger compartment. Similar undesirable vibration energy occurs in a variety of other situations, such as in household appliances and other types of transportation vehicles, to name a few.
To reduce undesirable vibration energy, vibration damping materials may be applied to the surfaces of mechanical components subjected to vibrational disturbances. Such damping materials dissipate a portion of the vibrational energy applied to them. For vehicle applications, such damping materials may be applied to a number of surfaces of the vehicle panels, floors, etc., to reduce the vibration or noise felt by the vehicle occupant.
The damping material may be formulated as a water based coating that can be sprayed onto a panel using a robotically controlled spray head. To prevent the damping material from drying on the spray head when not in use, and potentially clogging nozzle openings in the spray head, the spray head may be submerged in a liquid bath, such as deionized water. Compressed air jets may be used to blow off excess water from the spray head prior to commencing spraying. This could result in water being inadvertently blown onto nearby vehicle panels, which could cause undesirable defects in subsequently applied coatings, such as paint.
Disclosed is a drying system that utilizes a series of strategically positioned air jets for removing a liquid from a surface of an object. The drying system employs a helical-shaped manifold that generates multiple air jets directed toward a center region of the manifold that blow the liquid from the object as it passes through manifold. The manifold may be constructed from a hollow tube formed in a shape of a helix. The air jets create an air vortex that tends to entrain the liquid blown from the object and prevent it from being deposited on nearby objects.
The various features, advantages and other uses of the present apparatus will become more apparent by referring to the following detailed description and drawings, in which:
A drying system employing compressed air to remove liquid from an exterior of an object is disclosed. The drying system employs strategically positioned jets of compressed air to blow the liquid from a surface of the object while avoiding having the liquid splashed onto nearby surfaces. Previously designed systems using air jets to remove liquid from an object tend to blow the liquid onto surrounding objects. This can be particularly problematic in manufacturing operations, such as those involving application of automotive coatings, where stray liquid can cause defects in an applied spray coating. For example, automotive vehicles may have a vibration damping material sprayed onto various vehicle panels during assembly. The damping material may be formulated as a water based coating that can be sprayed onto a panel using a robotically controlled spray head. To prevent the damping material from drying on the spray head when not in use, and potentially clogging nozzle openings in the spray head, the spray head may be submerged in a liquid bath, such as deionized water. Compressed air jets may be used to blow off excess water from the spray head prior to commencing spraying. This could result in water being inadvertently blown onto nearby vehicle panels, which could cause undesirable defects in subsequently applied coatings, such as paint. To avoid this, the present drying system utilizes a series of strategically positioned air jets to remove the water from the spay head prior to spraying. The air jets may be arranged along a helix to create an air vortex that tends to entrain the liquid blown from the spray head and prevent it from being deposited on nearby objects.
Referring now to the discussion that follows and the drawings, illustrative approaches to the disclosed systems and methods are described in detail. Although the drawings represent some possible approaches, the drawings are not necessarily to scale and certain features may be exaggerated, removed, or partially sectioned to better illustrate and explain the present invention. Further, the descriptions set forth herein are not intended to be exhaustive or otherwise limit or restrict the claims to the precise forms and configurations shown in the drawings and disclosed in the following detailed description.
With reference to
In the illustrated example, helix portion 28 of manifold 22 includes five interconnected hollow tube sections. The hollow tube sections may be arranged end-to-end, and include a first hollow tube section 34 having a first end 36 and an opposite second end 38; a second hollow tube section 40 having a first end 42 fluidly connected to second end 38 of first hollow tube section 34 and an opposite second end 44; a third hollow tube section 46 having a first end 48 fluidly connected to second end 44 of second hollow tube section 40 and an opposite second end 50; a fourth hollow tube section 52 have a first end 54 fluidly connected to second end 50 of third hollow tube section 46 and an opposite second end 56; and a fifth hollow tube section 58 have a first end 60 fluidly connected to second end 56 of fourth hollow tube section 52 and an opposite second end 62. Each of the hollow tube sections 34,40,46,52,58 may be oriented substantially perpendicular to an immediately adjacent hollow tube section to form the rectangular-shaped helix.
With reference to
The five interconnected hollow tube sections 34,40,46,52,58 form one pitch of the helix portion 28 of manifold 22. The helix may be extended by adding additional straight sections of hollow tubing, which may be connected end-to-end starting with second end 62 of fifth hollow tube section 58. Each of the additional tube sections may be oriented generally perpendicular to an immediately adjacent hollow tube section, as well as being oriented at an oblique angle relative to a corresponding reference plane in the manner previously described in connection with the hollow tube sections 34,40,46,52,58.
With reference to
With reference to
Manifold 22 may be fluidly connected to a pressurized air source. In the illustrated example, a length of hollow tubing 82 is used to connect helix portion 28 of manifold 22 to the pressurized air source. Hollow tubing 82 may include various bends and turns to accommodate a particular application. A suitably configured connector 84 may be used to secure manifold 22 to the pressurized air source. It is not necessary that manifold 22 be rigidly connected to the pressurized air source, and various flexible and semi-flexible hoses and/or tubes may be used to fluidly connect manifold 22 to the pressurized air source.
With reference to
Drying system 20 may include a liquid storage container 88 located adjacent manifold 22. Liquid storage container 88 may include an opening 90 for providing access to an interior of liquid storage container 88 and any liquid 92 present within the container. The manifold may be positioned adjacent opening 90, with a longitudinal axis 94 of manifold 22 oriented to extend through opening 90. In the illustrated example, manifold 22 is located above opening 90 with longitudinal axis 94 oriented generally vertically. Manifold 22 may alternatively be positioned at a different location relative to liquid storage container 88 and opening 90.
With reference to
To commence spraying, robot 102 removes spray head 98 from liquid bath 104 and proceeds to move spray head 98 along path of travel 106 and past manifold 22 to allow air jets 24 to blow water from spray head 98. The water residue may become entrained in air vortex 86 generated by air jets 24 and transported back to liquid storage container 88 where it can be deposited for subsequent use. Spray head 98 is now in a condition to commence spraying damping material onto the vehicle panels.
Although described in connection with an automotive spray coating operation, drying system 20 may also be used to effectively remove liquids from a variety of objects. Air vortex 86 generated by air jets 24 emanating from manifold 22 tends to entrain liquid blown from the surface of the object and helps prevent the fluid from being deposited on surrounding surfaces.
In addition to being configured as a rectangular helix, the helix portion of the manifold may be alternatively configured to have a different geometric shape. For example, the manifold helix may be configured as a triangular helix, polygonal helix, a round helix, or another geometric shape. It is not necessary that the helix have a single geometric shape, and may include a combination of geometries. Depending on the geometric shape of the helix, the manifold may include a series of straight sections, curved sections, or combination thereof.
For example,
An alternately configured manifold having different geometrically-shaped helix may also be employed, provided the manifold is configured as a helix and includes apertures oriented to direct air jets toward a center region of the manifold.
It is intended that the scope of the present methods and apparatuses be defined by the following claims. However, it must be understood that the disclosed systems and methods may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope. It should be understood by those skilled in the art that various alternatives to the configurations described herein may be employed in practicing the claims without departing from the spirit and scope as defined in the following claims. The scope of the disclosed systems and methods should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future examples. Furthermore, all terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary is made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc., should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary. It is intended that the following claims define the scope of the device and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. In sum, it should be understood that the device is capable of modification and variation and is limited only by the following claims.