DSP block for implementing large multiplier on a programmable integrated circuit device

Information

  • Patent Grant
  • 8307023
  • Patent Number
    8,307,023
  • Date Filed
    Friday, October 10, 2008
    16 years ago
  • Date Issued
    Tuesday, November 6, 2012
    12 years ago
Abstract
A programmable integrated circuit device includes a plurality of specialized processing blocks. Each specialized processing block may be small enough to occupy a single row of logic blocks. The specialized processing blocks may be located adjacent one another in different logic block rows, forming a column of adjacent specialized processing blocks. Each specialized processing block includes one or more multipliers based on carry-save adders whose outputs are combined using compressors. Chain-in and chain-out connections to the compressors allow adjacent specialized processing blocks to be cascaded to form arbitrarily large multipliers. Each specialized processing block also includes a carry-propagate adder, and the carry-propagate added in the final specialized processing block of the chain provides the final result. The size of the multiplication that may be performed is limited only by the number of specialized processing blocks in the programmable integrated circuit device.
Description
BACKGROUND OF THE INVENTION

This invention relates to programmable integrated circuit devices—e.g., programmable logic devices (PLDs), and, more particularly, to the use of specialized processing blocks which may be included in such devices to perform large multiplications.


As applications for which PLDs are used increase in complexity, it has become more common to design PLDs to include specialized processing blocks in addition to blocks of generic programmable logic resources. Such specialized processing blocks may include a concentration of circuitry on a PLD that has been partly or fully hardwired to perform one or more specific tasks, such as a logical or a mathematical operation. A specialized processing block may also contain one or more specialized structures, such as an array of configurable memory elements. Examples of structures that are commonly implemented in such specialized processing blocks include: multipliers, arithmetic logic units (ALUs), barrel-shifters, various memory elements (such as FIFO/LIFO/SIPO/RAM/ROM/CAM blocks and register files), AND/NAND/OR/NOR arrays, etc., or combinations thereof.


One particularly useful type of specialized processing block that has been provided on PLDs is a digital signal processing (DSP) block, which may be used to process, e.g., audio signals. Such blocks are frequently also referred to as multiply-accumulate (“MAC”) blocks, because they include structures to perform multiplication operations, and sums and/or accumulations of multiplication operations.


For example, the STRATIX® III PLD sold by Altera Corporation, of San Jose, Calif., includes DSP blocks, each of which includes the equivalent of four 18-bit-by-18-bit multipliers. Each of those DSP blocks also includes adders and registers, as well as programmable connectors (e.g., multiplexers) that allow the various components to be configured in different ways. In each such block, the multipliers can be configured as two operations each involving two 18-bit-by-18-bit multipliers, or as one larger (36-bit-by 36-bit) multiplier. In addition, one 18-bit-by-18-bit complex multiplication (which decomposes into two 18-bit-by-18-bit multiplication operations for each of the real and imaginary parts) can be performed. Also, up to two individual 18-bit-by-18-bit multiplications can be performed. Moreover, the two members of any pair of multipliers can be configured for multiplications smaller than 18-bit-by-18-bit.


Although such a DSP block may be configured as a multiplier as large as 36-bit-by-36-bit, a user may want to create a larger multiplier. For example, while a 36-bit-by-36-bit multiplier will support 25-bit-by-25-bit single-precision multiplication under the IEEE 754-1985 standard, it is too small for double-precision multiplication, or for 36-bit-by-36-bit complex multiplication. While the multipliers from several DSP blocks can be used together to implement double-precision multiplication, or larger complex multiplication, the logic needed to interconnect the multipliers has heretofore been programmed by the user in the general-purpose programmable logic outside the DSP block, making it slow and less efficient, and consuming general-purpose resources that might be put to other uses. Moreover, such architectures have relied on two or more carry-propagate operations to arrive at the final product, and a carry-propagate adder is a relatively slow adder configuration.


SUMMARY OF THE INVENTION

The present invention relates to specialized processing blocks for programmable integrated circuit devices such as PLDs, which are provided with links to adjacent blocks, allowing multiple blocks to be combined for larger operations than can be performed within any single specialized processing block, reducing or eliminating reliance on general-purpose programmable resources of the device.


In accordance with this invention, large multipliers may be implemented by connecting or chaining multiple fine-grained DSP blocks—i.e., DSP blocks that individually perform relatively small multiplications, but not smaller than might be useful by itself. Preferably, the DSP blocks to be connected are physically adjacent to one another to minimize propagation delay. Within the DSP blocks, most multiplication and addition operations are performed with carry-save adders. The connections between adjacent DSP blocks preferably also make use of the carry-save adder signal bus. A carry-propagate adder, which is slower, may be used for generating the final output of the chain of DSP blocks.


Thus, in accordance with the present invention, there is provided a specialized processing block for a programmable integrated circuit device having a plurality of specialized processing blocks. The specialized processing block includes multiplier circuitry that performs at least one multiplication and provides partial sum/carry signals for each of the at least one multiplication, a chain output for propagating partial sum/carry signals to another specialized processing block, a chain input for receiving partial sum/carry signals propagated from another specialized processing block, and combining circuitry that combines the partial sum/carry signals for each multiplication and any partial sum/carry signals propagated from another specialized processing block, for propagation to the output.


A programmable logic device incorporating such specialized processing blocks also is provided.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature and various advantages, will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is schematic representation of a DSP block according to a preferred embodiment of the present invention;



FIG. 2 is a representation of the decomposition of a 54-bit-by-54-bit multiplication into 18-bit-by-18-bit multiplications;



FIGS. 3
a and 3b, hereinafter referred to collectively as FIG. 3, are a schematic representation of the concatenation of a plurality of DSP blocks in accordance with an embodiment of the present invention to perform the decomposed multiplications of FIG. 2;



FIG. 4 is a representation of the decomposition of a 36-bit-by-18-bit multiplication into 18-bit-by-18-bit multiplications;



FIG. 5 is a representation of the decomposition of the addition of two 36-bit-by-36-bit multiplications into 18-bit-by-18-bit multiplications; and



FIG. 6 is a simplified block diagram of an illustrative system employing a programmable logic device incorporating the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A DSP block in accordance with the present invention may include one or more N-bit-by-N-bit multipliers. Such a DSP block may include the following functional blocks:

    • 1. Partial product generation, preferably based on Booth recoding;
    • 2. A respective carry-save adder for partial products from each multiplier;
    • 3. A further carry-save adder for partial sum/carry from all multipliers within the DSP block, as well as the chained-in partial sum/carry from any adjacent DSP block; and
    • 4. A carry-propagate adder for the final output.


Such a DSP architecture provides the logic to generate partial sum/carry from multipliers of the aforementioned relatively small operand sizes, and to add the partial sum/carry from the current DSP block and an adjacent DSP block. Because the chain-in from any adjacent DSP block is based on partial sum/carry signals from a carry-save adder, the propagation delay to add the chain-in results is that contributed by one 4-to-2 compressor (or about 1.5 times of the delay of a full adder). In contrast, previous blocks relied on output signals from a carry-propagate adder, or possibly a carry-lookahead adder, for the chain-in results. In the case of a carry-propagate adder, the delay includes the combined delay of a full adder in every block in the chain, and while the delay for a carry-lookahead adder is smaller, it is still much larger than the delay of a full adder.


The trade-off for the reduction in delay using a carry-save adder is that the overall area of a DSP block based on carry-save adders for chaining is about slightly larger than previous DSP blocks relying on carry-propagate adders for chaining. For example, in the case of the STRATIX® family of programmable logic devices available from Altera Corporation, of San Jose, Calif., the increase in area is about 1.5%.


The fast interconnection based on the partial sum/carry signals allows the creation of very large multipliers with high performance from multiple DSP blocks. In accordance with the invention, a 54-bit-by-54-bit multiplier implemented using 18-bit-by-18-bit multiplier modules may be significantly faster than a comparable multiplier created from DSP blocks based on carry-propagate adders. Moreover, compared with other previously-known architectures in which the final adder is implemented in programmable logic of the PLD core, the present invention may provide a substantial fmax improvement, in addition to saving substantial programmable logic resources and interconnection resources in the PLD core.


Performing multiplication operations without utilizing the PLD core fabric can save a significant amount of power. In one example of a 54-bit-by-54-bit multiplier, assuming that power consumption is proportional to block area for the same power density, and even assuming the power density of a DSP block is four times that of programmable logic in the PLD core, and that the DSP block area according to the present invention increases by about 10% over the area of the previously-known DSP blocks (including the area added by the carry-save adders as well as additional area added by other circuitry such as shifters and multiplexers), then the power consumption of a 54-bit-by-54-bit multiplier configured according to the present invention may nevertheless be reduced by about 50% by the elimination of the use of programmable logic.


In a fine-grained DSP architecture according to the invention, each DSP block may be small enough to fit into a single row of logic blocks in the PLD floorplan. That enables row-redundancy support of more of the DSP blocks than in devices with multi-row DSP blocks, enabling an improvement in yield. In addition, bypass multiplexers used to turn off row redundancy for rows where there are multi-row DSP blocks can be eliminated, reducing delay in a critical path of DSP system. This can enhance fmax of the DSP system.


A fine-grained DSP architecture better reflects that not all PLD users require large multiplying operations. According to some estimates, 90% of existing DSP designs utilize operands of 18-bit-by-18-bit or smaller, while 27% utilize operands of 9-bit-by-9-bit or smaller. That means that in a large DSP module with a 36-bit-by-36-bit multiplier, the DSP utilization rate is only about 29%. According to the present invention, assuming a fine-grained multiplier size of 18-bit-by 18, the DSP utilization rate can be close to 80% while still supporting 36-bit-by-36-bit and even larger multiplications. In terms of die area, implementing 18-bit-by-18-bit multipliers in a coarse-grained 36-bit-by-36-bit architecture may consume about four times as much area as implementing the same multipliers in a fine-grained 18-bit-by-18-bit architecture.


A fine-grained architecture also allows an increase in the DSP density by eliminating odd remaining rows that cannot fit a large DSP block. For example, in some large PLD devices, using single-row DSP blocks can improve the DSP block count by up to 9% (depending on the total number of rows) as compared to using DSP blocks that span four rows.


Because no core logic circuits or interconnection routings are needed in the construction of large multipliers using the present invention, more PLD fabric resources are available for other uses, and congestion may be reduced leading to better fitting of user logic designs. The architecture according to the invention is fully scalable and therefore applicable to PLDs regardless of density. In fact, higher-density devices would have more adjacent DSP modules, and therefore would support even larger multipliers.


There is no theoretical limit on chaining, and therefore the only physical limit is the number of adjacent DSP blocks in one column. For example, in the largest model of the PLD product sold by Altera Corporation, of San Jose, Calif., under the name STRATIX® IV, which has 138 rows of logic blocks, there are 138 adjacent DSP blocks in a column. In accordance with the present invention, such a device, which has 276 adjacent 18-bit-by-18-bit multipliers per DSP block column, could support a multiplier as large as 272×18×18, broken down to (17×18)-by-(16×18) or 306-bits-by-288-bits.


A DSP block according to the present invention includes at least one N-bit-by-N-bit multiplier. A preferred embodiment of a DSP block 100, shown in FIG. 1, includes two N-bit-by-N-bit multipliers, each implemented using a respective carry-save adder 101, 102. The choice of N should be large enough to be useful but small enough to allow DSP block 100 to fit into one row of PLD logic blocks. If, as estimated above, about 90% of DSP designs use multiplications of size 18-bit-by-18-bit or smaller, and about 27% are 9-bit-by-9-bit or smaller, then 18-bit-by-18-bit multipliers, which can be configured as smaller multipliers as well (in addition to being combined for larger multiplications) are a reasonable selection, and therefore in this example N=18.


The operands 103 can be entered asynchronously, or can be registered in registers 104, under control of multiplexers 105. If each multiplier is to be used independently, the respective output of respective CSA 101, 102 can be selected by a respective one of multiplexers 111, 112. Compressor 106 is provided to allow the two multiplications to be combined. Compressor 106 may include shifting, multiplexing and inverting inputs 116, as shown. If compressor 106 is used, it may be selected by multiplexers 111, 112. An additional compressor 107 is provided in accordance with the invention to allow chain-in input 108 from an adjacent one of DSP blocks 100 to be combined with the output of the current operations as processed through compressor 106. Again, if compressor 107 is used, it may be selected by multiplexers 111, 112. The outputs of compressors 106, 107 also may be selected by multiplexer 121 as chain-out output 122.


Carry-propagate adders 109, 110 are provided to combine the current carry-save output with carry-in input 113 from a previous one (if any) of DSP blocks 100, to provide partial final output 114, and, unless this is the final DSP block 100 in the chain, a carry-out output 115 which will serve as a carry-in input 113 to a subsequent one of DSP blocks 100. This allows the carry-propagate adders from the various DSP blocks 100 in the chain to be used as a single larger carry-propagate adder while propagating only carry-out 115, rather than both carry-out 15 and sum 114, to subsequent DSP blocks 100.


Both chain-in input 108 and carry-in input 113 may bypass DSP block 100 completely, and be output directly to chain-out output 122 and carry-out output 115, respectively, under control of respective multiplexers 123, 124. This allows for redundancy in the event that DSP block 100 is defective and must be completely bypassed, allowing the chain and carry signals to propagate to the next one of DSP blocks 100.


Registered output 130 may routed back to compressor 107, where it may be selected by multiplexer 131 to enable an accumulator function. Signal 130 also may be routed to multiplexer 121 to enable pipeline operation in large multipliers. This allows the output register 132 to serve as a pipeline register when pipelining is used, rather than adding an additional register for that purpose downstream of multiplexer 121 (whether inside or outside of DSP block 100).


In this configuration, the two N-bit-by-N-bit multipliers may be implemented in one DSP block, and they can be programmed as two independent multipliers. They also can work together to maximize the performance of two-multiplier operations, and provide a high degree of flexibility in building larger multipliers. The partial sum and partial carry vectors from the compressor blocks may be chosen for the chain-out signals to minimize the use of the carry-propagate adders and the associated impacts on delay and power. Output registers may be provided after the compressors to improve performance for large multipliers, and to assist in the construction of filters, such as a finite impulse response (FIR) filter. The user can trade output latency with higher clock frequency by using the registers to create pipeline stages.


For a multiplication operation, SxT, where one or both of the operands (S and/or T) are wider than N bits, the operands can be extended at the most significant bit position to a multiple of N, and divided in segments of N bits each. The product can be written as the sum of outputs of a plurality of N-bit-by-N-bit multipliers. For example, where S and T are both 54 bits wide (as in the case of double-precision floating point operations), each of S and T can be broken into three respective 18-bit segments A3|A2|A1 and B3|B2|B1.


The multiplication operation can be decomposed as shown in FIG. 2 into nine partial products A1×B1, A2×B1, etc., which can be performed by nine 18-bit-by-18-bit multipliers and combined, after appropriate left-shifting by appropriate multiples of 18 bits (representing corresponding powers of 218), to form 108-bit product 200. The operation can be written as:










P


[

107
:
0

]


=




{


A





3

|

A





2

|

A





1


}

×

{


B





3




B





2



B





1



}








=




A





3
×
B





3
×

2
72


+


(


A





3
×
B





2

+

A





2
×
B





3


)

×

2
54


+

(


A





3
×
B





1

+















A





2
×
B2

+

A





1
×
B





3


)

×

2
36


+


(


A





2
×
B





1

+

A





1
×
B





2


)

×

2
18


+









A





1
×
B





1








Using DSP block 100 of FIG. 1 with N=18, which includes two 18-bit-by-18-bit multipliers, the nine multiplications can be performed using five DSP blocks 100 (with one multiplier left over) as shown schematically in FIG. 3. FIG. 2 is annotated to show which of the DSP blocks 100 in FIG. 3 (identified as DSP #1, DSP #2, etc.) is used for which partial products. In each of DSP #1 through DSP #4, the least significant 18 bits go through the carry-propagate adder stage 300 to generate part of the final product while the rest of the partial sum and partial carry vectors are sent to the next DSP block 100 through the chain-out/chain-in bus, as follows:

















DSP #1:
add [(A1 × B2) << 18] and (A1 × B1),




generate P[17:0] and carry-out signal,




send the remaining upper partial sum/carry through




chain-out to DSP #2.



DSP #2:
add [(A1 × B3) << 18] and (A2 × B1) and chain-in




from DSP #1,




generate P[35:18] and carry-out signal,




send the remaining upper partial sum/carry through




chain-out to DSP #3.



DSP #3:
add (A3 × B1) and (A2 × B2) and chain-in from DSP #2,




generate P[53:36] and carry-out signal,




send the remaining upper partial sum/carry through




chain-out to DSP #4.



DSP #4:
add (A3 × B2) and (A2 × B3) and chain-in from DSP #3,




generate P[71:54] and carry-out signal,




send the remaining upper partial sum/carry through




chain-out to DSP #5.



DSP #5:
add (A3 × B3) and chain-in from DSP #5,




generate P[107:72].









Throughout the operation of the foregoing 54-bit-by-54-bit multiplier, carry-save signal buses are used, and there is only one carry-propagate operation for the final outputs, through 18 bits in each of DSP #1, #2, #3 and #4, and 36 bits in DSP #5. This does not need logic or routing resources in PLD logic core.


It should be noted that other operations also may be performed. For example, 36-bit-by 18, 36-bit-by 36, 54-bit-by-18-bit and 54-bit-by-36-bit multiplications, as well as a sum of four 18-bit-by-18-bit multiplications or two 36-bit-by-36-bit multiplications, all can be performed in a single column of chained DSP blocks 100.


Thus it is seen that the present invention provides a generalized way to build large multipliers from a basic DSP block, with only one carry-propagate-adder operation is required for any size of operands. In the embodiment shown, all operations involving two multipliers may be performed efficiently within a single DSP block, such as addition or subtraction of two N-bit-by-N-bit multiplications, or a 2N-bit-by-N-bit multiplication. The latter is diagrammed in FIG. 4, which shows the decomposition of such an operation into two N-bit-by-N-bit multiplications. Other mixtures of multiplications and additions may be performed when multiple DSP blocks are concatenated together through the chain and carry connections, such as addition or subtraction of three or more N-bit-by-N-bit multiplications, addition or subtraction of two 2N-bit-by-2N-bit multiplications. FIG. 5 shows how the addition of two 2N-bit-by-2N-bit multiplications may be decomposed into eight N-bit-by-N-bit multiplications, which can be performed in four DSP blocks.


The invention eliminates the need to use logic circuitry or routing in the PLD logic core in the construction of large multipliers. This reduces power dissipation in the PLD, avoids routing congestion in the logic core, and maintains the maximum speed allowed within the DSP block. The modular construction of large multipliers also is more amenable to row-based redundancy protection in the PLD, and avoids the overhead of providing dedicated multipliers for large operand width in an PLD, as the width of operands is limited only by the number of adjacent DSP blocks with chain and carry connections.


Thus it is seen that a large multiplication that requires more than one specialized processing block of a PLD can be performed using fewer or no general-purpose programmable resources of the PLD.


A PLD 280 incorporating such circuitry according to the present invention may be used in many kinds of electronic devices. One possible use is in a data processing system 900 shown in FIG. 6. Data processing system 900 may include one or more of the following components: a processor 281; memory 282; I/O circuitry 283; and peripheral devices 284. These components are coupled together by a system bus 285 and are populated on a circuit board 286 which is contained in an end-user system 287.


System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 280 can be used to perform a variety of different logic functions. For example, PLD 280 can be configured as a processor or controller that works in cooperation with processor 281. PLD 280 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 280 can be configured as an interface between processor 281 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.


Various technologies can be used to implement PLDs 280 as described above and incorporating this invention.


It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.

Claims
  • 1. A specialized processing block for a programmable integrated circuit device having a plurality of instances of said specialized processing block, each instance of said specialized processing block comprising: multiplier circuitry that performs at least one multiplication and provides partial sum/carry signals for each said at least one multiplication;a chain output for propagating partial sum/carry signals to any other of said instances of said specialized processing block;a chain input for receiving partial sum/carry signals propagated from any other of said instances of said specialized processing block;combining circuitry that combines said partial sum/carry signals for each said at least one multiplication and any said partial sum/carry signals propagated from any other of said instances of said specialized processing block, for propagation to said chain output; andcircuitry for programmably routing signals within said specialized processing block.
  • 2. The specialized processing block of claim 1, wherein each of said instances of said specialized processing block further comprises: carry-propagate adder circuitry for adding output of said combining circuitry and generating a carry-out signal;a carry output for propagating said carry-out signal to other of said instances of said specialized processing block; anda carry input for receiving a carry-out signal from any other of said instances of said specialized processing block as a carry-in signal to said carry-propagate adder circuitry.
  • 3. The specialized processing block of claim 2 wherein said circuitry for programmably routing signals within said specialized processing block comprises carry bypass circuitry for directly connecting said carry input to said carry output.
  • 4. The specialized processing block of claim 3 wherein said circuitry for programmably routing signals within said specialized processing block further comprises chain bypass circuitry for directly connecting said chain input to said chain output.
  • 5. The specialized processing block of claim 2 wherein said circuitry for programmably routing signals within said specialized processing block comprises chain bypass circuitry for directly connecting said chain input to said chain output.
  • 6. The specialized processing block of claim 1 wherein said multiplication circuitry performs a plurality of multiplications.
  • 7. The specialized processing block of claim 6 wherein said multiplication circuitry performs two multiplications.
  • 8. The specialized processing block of claim 1 wherein said multiplication circuitry comprises at least one carry-save adder.
  • 9. The specialized processing block of claim 1 wherein said combining circuitry comprises at least one compressor.
  • 10. The specialized processing block of claim 1 wherein: said multiplier circuitry performs a plurality of multiplications; andsaid combining circuitry comprises:a first compressor for combining outputs of said plurality of multiplications, anda second compressor for combining output of said first compressor with said partial sum/carry signals propagated from any other of said instances of said specialized processing block on said chain input.
  • 11. The specialized processing block of claim 1 wherein said circuitry for programmably routing signals within said specialized processing block comprises chain bypass circuitry for directly connecting said chain input to said chain output.
  • 12. A programmable integrated circuit device comprising a plurality of specialized processing blocks, each of said specialized processing blocks comprising: multiplier circuitry that performs at least one multiplication of a first size and provides partial sum/carry signals for each said at least one multiplication;a chain output for propagating partial sum/carry signals to another said specialized processing block;a chain input for receiving partial sum/carry signals propagated from another said specialized processing block;combining circuitry that combines said partial sum/carry signals for each said at least one multiplication and any said partial sum/carry signals propagated from another said specialized processing block, for propagation to said chain output; andcircuitry for programmably routing signals within said specialized processing block; wherein:a number of said specialized processing blocks are chained together to perform a multiplication larger than said first size.
  • 13. The programmable integrated circuit device of claim 12 wherein said plurality of specialized processing blocks are adjacent one another.
  • 14. The programmable integrated circuit device of claim 12 wherein each said specialized processing block further comprises: carry-propagate adder circuitry for adding output of said combining circuitry and generating a carry-out signal;a carry output for propagating said carry-out signal to another said specialized processing block; anda carry input for receiving a carry-out signal from a different said specialized processing block as a carry-in signal to said carry-propagate adder circuitry.
  • 15. The programmable integrated circuit device of claim 14 wherein said circuitry for programmably routing signals within said specialized processing block comprises chain bypass circuitry for directly connecting said chain input to said chain output.
  • 16. The programmable integrated circuit device of claim 15 wherein said circuitry for programmably routing signals within said specialized processing block comprises carry bypass circuitry for directly connecting said carry input to said carry output.
  • 17. The programmable integrated circuit device of claim 14 wherein said circuitry for programmably routing signals within said specialized processing block comprises carry bypass circuitry for directly connecting said carry input to said carry output.
  • 18. The programmable integrated circuit device of claim 12 wherein, in each said specialized processing block, said multiplication circuitry performs a plurality of multiplications.
  • 19. The programmable integrated circuit device of claim 18 wherein, in each said specialized processing block, said multiplication circuitry performs two multiplications.
  • 20. The programmable integrated circuit device of claim 12 wherein, in each said specialized processing block, said multiplication circuitry comprises at least one carry-save adder.
  • 21. The programmable integrated circuit device of claim 12 wherein, in each said specialized processing block, said combining circuitry comprises at least one compressor.
  • 22. The programmable integrated circuit device of claim 12 wherein, in each said specialized processing block: said multiplication circuitry performs a plurality of multiplications; andsaid combining circuitry comprises:a first compressor for combining outputs of said plurality of multiplications, anda second compressor for combining output of said first compressor with said partial sum/carry signals propagated from another said specialized processing block on said chain input.
  • 23. The programmable integrated circuit device of claim 12 wherein said circuitry for programmably routing signals within said specialized processing block comprises chain bypass circuitry for directly connecting said chain input to said chain output.
  • 24. A programmable integrated circuit device comprising: a plurality of specialized processing blocks programmably chained together to perform a multiplication of a first size; wherein:each said specialized processing block is programmably operable to independently perform a multiplication of a second size; andsaid first size is larger than said second size.
  • 25. The programmable integrated circuit device of claim 24 wherein each said specialized processing block comprises: multiplier circuitry that performs at least one multiplication and provides partial sum/carry signals for each said at least one multiplication; andcombining circuitry that combines said partial sum/carry signals for each said at least one multiplication and any partial sum/carry signals propagated from another said specialized processing block.
  • 26. The programmable integrated circuit device of claim 25 wherein each said specialized processing block further comprises: carry-propagate adder circuitry for adding output of said combining circuitry and generating a carry-out signal;a carry output for propagating said carry-out signal to another said specialized processing block; anda carry input for receiving a carry-out signal from a different said specialized processing block as a carry-in signal to said carry-propagate adder circuitry.
  • 27. The programmable integrated circuit device of claim 25 wherein, in each said specialized processing block, said multiplier circuitry comprises at least one carry-save adder.
  • 28. The programmable integrated circuit device of claim 25 wherein each said specialized processing block further comprises: a chain output for propagating partial sum/carry signals to another said specialized processing block; anda chain input for receiving partial sum/carry signals propagated from another said specialized processing block.
  • 29. The programmable integrated circuit device of claim 28 wherein, in each said specialized processing block: said multiplier circuitry performs a plurality of multiplications; andsaid combining circuitry comprises:a first compressor for combining outputs of said plurality of multiplications, anda second compressor for combining output of said first compressor with said partial sum/carry signals propagated from another said specialized processing block on said chain input.
US Referenced Citations (329)
Number Name Date Kind
3473160 Wahlstrom Oct 1969 A
4156927 McElroy et al. May 1979 A
4179746 Tubbs Dec 1979 A
4212076 Conners Jul 1980 A
4215406 Gomola et al. Jul 1980 A
4215407 Gomola et al. Jul 1980 A
4422155 Amir et al. Dec 1983 A
4484259 Palmer et al. Nov 1984 A
4521907 Amir et al. Jun 1985 A
4575812 Kloker et al. Mar 1986 A
4597053 Chamberlin Jun 1986 A
4616330 Betz Oct 1986 A
4623961 Mackiewicz Nov 1986 A
4682302 Williams Jul 1987 A
4718057 Venkitakrishnan et al. Jan 1988 A
4727508 Williams Feb 1988 A
4736335 Barkan Apr 1988 A
4791590 Ku et al. Dec 1988 A
4799004 Mori Jan 1989 A
4823295 Mader Apr 1989 A
4839847 Laprade Jun 1989 A
4871930 Wong et al. Oct 1989 A
4912345 Steele et al. Mar 1990 A
4918637 Morton Apr 1990 A
4967160 Quievy et al. Oct 1990 A
4982354 Takeuchi et al. Jan 1991 A
4991010 Hailey et al. Feb 1991 A
4994997 Martin et al. Feb 1991 A
5073863 Zhang Dec 1991 A
5081604 Tanaka Jan 1992 A
5122685 Chan et al. Jun 1992 A
5128559 Steele Jul 1992 A
5175702 Beraud et al. Dec 1992 A
5208491 Ebeling et al. May 1993 A
RE34363 Freeman Aug 1993 E
5267187 Hsieh et al. Nov 1993 A
5296759 Sutherland et al. Mar 1994 A
5338983 Agarwala Aug 1994 A
5339263 White Aug 1994 A
5349250 New Sep 1994 A
5357152 Jennings, III et al. Oct 1994 A
5371422 Patel et al. Dec 1994 A
5375079 Uramoto et al. Dec 1994 A
5381357 Wedgwood et al. Jan 1995 A
5404324 Colon-Bonet Apr 1995 A
5424589 Dobbelaere et al. Jun 1995 A
5446651 Moyse et al. Aug 1995 A
5451948 Jekel Sep 1995 A
5452231 Butts et al. Sep 1995 A
5452375 Rousseau et al. Sep 1995 A
5457644 McCollum Oct 1995 A
5465226 Goto Nov 1995 A
5465375 Thepaut et al. Nov 1995 A
5483178 Costello et al. Jan 1996 A
5497498 Taylor Mar 1996 A
5500812 Saishi et al. Mar 1996 A
5500828 Doddington et al. Mar 1996 A
5523963 Hsieh et al. Jun 1996 A
5528550 Pawate et al. Jun 1996 A
5537601 Kimura et al. Jul 1996 A
5541864 Van Bavel et al. Jul 1996 A
5546018 New et al. Aug 1996 A
5550993 Ehlig et al. Aug 1996 A
5559450 Ngai et al. Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563819 Nelson Oct 1996 A
5570039 Oswald et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5581501 Sansbury et al. Dec 1996 A
5590350 Guttag et al. Dec 1996 A
5594366 Khong et al. Jan 1997 A
5594912 Brueckmann et al. Jan 1997 A
5596763 Guttag et al. Jan 1997 A
5606266 Pedersen Feb 1997 A
5617058 Adrian et al. Apr 1997 A
5631848 Laczko et al. May 1997 A
5633601 Nagaraj May 1997 A
5636150 Okamoto Jun 1997 A
5636368 Harrison et al. Jun 1997 A
5640578 Balmer et al. Jun 1997 A
5644519 Yatim Jul 1997 A
5644522 Moyse et al. Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5646875 Taborn et al. Jul 1997 A
5648732 Duncan Jul 1997 A
5652903 Weng et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5664192 Lloyd et al. Sep 1997 A
5689195 Cliff et al. Nov 1997 A
5696708 Leung Dec 1997 A
5729495 Madurawe Mar 1998 A
5740404 Baji Apr 1998 A
5744980 McGowan et al. Apr 1998 A
5744991 Jefferson et al. Apr 1998 A
5754459 Telikepalli May 1998 A
5761483 Trimberger Jun 1998 A
5764555 McPherson et al. Jun 1998 A
5768613 Asghar Jun 1998 A
5771186 Kodali et al. Jun 1998 A
5777912 Leung et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5790446 Yu et al. Aug 1998 A
5794067 Kadowaki Aug 1998 A
5801546 Pierce et al. Sep 1998 A
5805477 Perner Sep 1998 A
5805913 Guttag et al. Sep 1998 A
5808926 Gorshtein et al. Sep 1998 A
5812479 Cliff et al. Sep 1998 A
5812562 Baeg Sep 1998 A
5815422 Dockser Sep 1998 A
5821776 McGowan Oct 1998 A
5825202 Tavana et al. Oct 1998 A
5838165 Chatter Nov 1998 A
5841684 Dockser Nov 1998 A
5847579 Trimberger Dec 1998 A
5847978 Ogura et al. Dec 1998 A
5847981 Kelley et al. Dec 1998 A
5859878 Phillips et al. Jan 1999 A
5869979 Bocchino Feb 1999 A
5872380 Rostoker et al. Feb 1999 A
5874834 New Feb 1999 A
5878250 LeBlanc Mar 1999 A
5880981 Kojima et al. Mar 1999 A
5892962 Cloutier Apr 1999 A
5894228 Reddy et al. Apr 1999 A
5898602 Rothman et al. Apr 1999 A
5931898 Khoury Aug 1999 A
5942914 Reddy et al. Aug 1999 A
5944774 Dent Aug 1999 A
5949710 Pass et al. Sep 1999 A
5951673 Miyata Sep 1999 A
5956265 Lewis Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5961635 Guttag et al. Oct 1999 A
5963048 Harrison et al. Oct 1999 A
5963050 Young et al. Oct 1999 A
5968196 Ramamurthy et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5982195 Cliff et al. Nov 1999 A
5986465 Mendel Nov 1999 A
5991788 Mintzer Nov 1999 A
5991898 Rajski et al. Nov 1999 A
5995748 Guttag et al. Nov 1999 A
5999015 Cliff et al. Dec 1999 A
5999990 Sharrit et al. Dec 1999 A
6005806 Madurawe et al. Dec 1999 A
6006321 Abbott Dec 1999 A
6009451 Burns Dec 1999 A
6018755 Gonikberg et al. Jan 2000 A
6020759 Heile Feb 2000 A
6021423 Nag et al. Feb 2000 A
6029187 Verbauwhede Feb 2000 A
6031763 Sansbury Feb 2000 A
6041339 Yu et al. Mar 2000 A
6041340 Mintzer Mar 2000 A
6052327 Reddy et al. Apr 2000 A
6052755 Terrill et al. Apr 2000 A
6055555 Boswell et al. Apr 2000 A
6064614 Khoury May 2000 A
6065131 Andrews et al. May 2000 A
6066960 Pedersen May 2000 A
6069487 Lane et al. May 2000 A
6072994 Phillips et al. Jun 2000 A
6073154 Dick Jun 2000 A
6075381 LaBerge Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6091261 DeLange Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6097988 Tobias Aug 2000 A
6098163 Guttag et al. Aug 2000 A
6107820 Jefferson et al. Aug 2000 A
6107821 Kelem et al. Aug 2000 A
6107824 Reddy et al. Aug 2000 A
6130554 Kolze et al. Oct 2000 A
6140839 Kaviani et al. Oct 2000 A
6144980 Oberman Nov 2000 A
6154049 New Nov 2000 A
6157210 Zaveri et al. Dec 2000 A
6163788 Chen et al. Dec 2000 A
6167415 Fischer et al. Dec 2000 A
6175849 Smith Jan 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6226735 Mirsky May 2001 B1
6242947 Trimberger Jun 2001 B1
6243729 Staszewski Jun 2001 B1
6246258 Lesea Jun 2001 B1
6260053 Maulik et al. Jul 2001 B1
6279021 Takano et al. Aug 2001 B1
6286024 Yano et al. Sep 2001 B1
6314442 Suzuki Nov 2001 B1
6314551 Borland Nov 2001 B1
6321246 Page et al. Nov 2001 B1
6323680 Pedersen et al. Nov 2001 B1
6327605 Arakawa et al. Dec 2001 B2
6351142 Abbott Feb 2002 B1
6353843 Chehrazi et al. Mar 2002 B1
6359468 Park et al. Mar 2002 B1
6360240 Takano et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6366944 Hossain et al. Apr 2002 B1
6367003 Davis Apr 2002 B1
6369610 Cheung et al. Apr 2002 B1
6377970 Abdallah et al. Apr 2002 B1
6407576 Ngai et al. Jun 2002 B1
6407694 Cox et al. Jun 2002 B1
6427157 Webb Jul 2002 B1
6434587 Liao et al. Aug 2002 B1
6438569 Abbott Aug 2002 B1
6438570 Miller Aug 2002 B1
6446107 Knowles Sep 2002 B1
6453382 Heile Sep 2002 B1
6467017 Ngai et al. Oct 2002 B1
6480980 Koe Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487575 Oberman Nov 2002 B1
6523055 Yu et al. Feb 2003 B1
6523057 Savo et al. Feb 2003 B1
6531888 Abbott Mar 2003 B2
6538470 Langhammer et al. Mar 2003 B1
6542000 Black et al. Apr 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6557092 Callen Apr 2003 B1
6571268 Giacalone et al. May 2003 B1
6573749 New et al. Jun 2003 B2
6574762 Karimi et al. Jun 2003 B1
6591283 Conway et al. Jul 2003 B1
6591357 Mirsky Jul 2003 B2
6600495 Boland et al. Jul 2003 B1
6600788 Dick et al. Jul 2003 B1
6628140 Langhammer et al. Sep 2003 B2
6687722 Larsson et al. Feb 2004 B1
6692534 Wang et al. Feb 2004 B1
6700581 Baldwin et al. Mar 2004 B2
6725441 Keller et al. Apr 2004 B1
6728901 Rajski et al. Apr 2004 B1
6731133 Feng et al. May 2004 B1
6732134 Rosenberg et al. May 2004 B1
6744278 Liu et al. Jun 2004 B1
6745254 Boggs et al. Jun 2004 B2
6763367 Kwon et al. Jul 2004 B2
6771094 Langhammer et al. Aug 2004 B1
6774669 Liu et al. Aug 2004 B1
6781408 Langhammer Aug 2004 B1
6781410 Pani et al. Aug 2004 B2
6788104 Singh et al. Sep 2004 B2
6801924 Green et al. Oct 2004 B1
6801925 Pether et al. Oct 2004 B2
6836839 Master et al. Dec 2004 B2
6874079 Hogenauer Mar 2005 B2
6889238 Johnson May 2005 B2
6904471 Boggs et al. Jun 2005 B2
6924663 Masui et al. Aug 2005 B2
6963890 Dutta et al. Nov 2005 B2
6971083 Farrugia et al. Nov 2005 B1
6978287 Langhammer Dec 2005 B1
6983300 Ferroussat Jan 2006 B2
7020673 Ozawa Mar 2006 B2
7047272 Giacalone et al. May 2006 B2
7062526 Hoyle Jun 2006 B1
7093204 Oktem et al. Aug 2006 B2
7107305 Deng et al. Sep 2006 B2
7113969 Green et al. Sep 2006 B1
7181484 Stribaek et al. Feb 2007 B2
7313585 Winterrowd Dec 2007 B2
7395298 Debes et al. Jul 2008 B2
7401109 Koc et al. Jul 2008 B2
7409417 Lou Aug 2008 B2
7415542 Hennedy et al. Aug 2008 B2
7421465 Rarick et al. Sep 2008 B1
7428565 Fujimori Sep 2008 B2
7428566 Siu et al. Sep 2008 B2
7430578 Debes et al. Sep 2008 B2
7430656 Sperber et al. Sep 2008 B2
7447310 Koc et al. Nov 2008 B2
7472155 Simkins et al. Dec 2008 B2
7508936 Eberle et al. Mar 2009 B2
7536430 Guevokian et al. May 2009 B2
7567997 Simkins et al. Jul 2009 B2
7590676 Langhammer Sep 2009 B1
7646430 Brown Elliott et al. Jan 2010 B2
7668896 Lutz et al. Feb 2010 B2
7719446 Rosenthal et al. May 2010 B2
7769797 Cho et al. Aug 2010 B2
7930335 Gura et al. Apr 2011 B2
7930336 Langhammer et al. Apr 2011 B2
20010023425 Oberman et al. Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20010037352 Hong Nov 2001 A1
20020002573 Landers et al. Jan 2002 A1
20020038324 Page et al. Mar 2002 A1
20020049798 Wang et al. Apr 2002 A1
20020078114 Wang et al. Jun 2002 A1
20020089348 Langhammer Jul 2002 A1
20020116434 Nancekievill Aug 2002 A1
20030088757 Lindner et al. May 2003 A1
20040064770 Xin Apr 2004 A1
20040083412 Corbin et al. Apr 2004 A1
20040103133 Gurney May 2004 A1
20040122882 Zakharov et al. Jun 2004 A1
20040148321 Guevorkian et al. Jul 2004 A1
20040172439 Lin Sep 2004 A1
20040178818 Crotty et al. Sep 2004 A1
20040193981 Clark et al. Sep 2004 A1
20040267857 Abel et al. Dec 2004 A1
20040267863 Bhushan et al. Dec 2004 A1
20050038842 Stoye Feb 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20050144216 Simkins et al. Jun 2005 A1
20050166038 Wang et al. Jul 2005 A1
20050187997 Zheng et al. Aug 2005 A1
20050187999 Zheng et al. Aug 2005 A1
20050262175 Iino et al. Nov 2005 A1
20060020655 Lin Jan 2006 A1
20070083585 St. Denis et al. Apr 2007 A1
20070185951 Lee et al. Aug 2007 A1
20070185952 Langhammer et al. Aug 2007 A1
20070241773 Hutchings et al. Oct 2007 A1
20080133627 Langhammer et al. Jun 2008 A1
20080183783 Tubbs Jul 2008 A1
20090172052 DeLaquil et al. Jul 2009 A1
20090187615 Abe et al. Jul 2009 A1
20090300088 Michaels et al. Dec 2009 A1
20100098189 Oketani Apr 2010 A1
Foreign Referenced Citations (45)
Number Date Country
0 158 430 Oct 1985 EP
0 380 456 Aug 1990 EP
0 411 491 Feb 1991 EP
0 461 798 Dec 1991 EP
0 498 066 Aug 1992 EP
0 555 092 Aug 1993 EP
0 606 653 Jul 1994 EP
0 657 803 Jun 1995 EP
0 660 227 Jun 1995 EP
0 668 659 Aug 1995 EP
0 721 159 Jul 1996 EP
0 905 906 Mar 1999 EP
0 909 028 Apr 1999 EP
0 927 393 Jul 1999 EP
0 992 885 Apr 2000 EP
1 031 934 Aug 2000 EP
1 058 185 Dec 2000 EP
1 220 108 Jul 2002 EP
2 283 602 May 1995 GB
2 286 737 Aug 1995 GB
2 318 198 Apr 1998 GB
61-237133 Oct 1986 JP
63-216131 Aug 1988 JP
4-332036 Nov 1992 JP
5-134851 Jun 1993 JP
06-187129 Jul 1994 JP
7-135447 May 1995 JP
11-296345 Oct 1999 JP
2000-259394 Sep 2000 JP
2002-108606 Apr 2002 JP
2002-251281 Sep 2002 JP
WO9527243 Oct 1995 WO
WO9628774 Sep 1996 WO
WO9708606 Mar 1997 WO
WO9812629 Mar 1998 WO
WO9832071 Jul 1998 WO
WO9838741 Sep 1998 WO
WO9922292 May 1999 WO
WO9931574 Jun 1999 WO
WO9956394 Nov 1999 WO
WO0051239 Aug 2000 WO
WO0052824 Sep 2000 WO
WO0113562 Feb 2001 WO
WO 2005066832 Jul 2005 WO
WO2005101190 Oct 2005 WO