This application relates to a dual action check valve associated with a selectively driven fan having a bypass flow.
In modern aircraft, air for use in the cabin, the cockpit and for other uses on the aircraft typically requires conditioning. In one known system, an air cycle machine provides air to locations on the aircraft. The air comes from a source of relatively hot air and is desirably cooled. The air being delivered into the aircraft passes through a heat exchanger pack, and ram air from outside of the aircraft is brought across the heat exchangers to cool the air to be used on the aircraft.
Typically, a ram air fan is provided in the heat exchanger pack and draws air across the heat exchangers when the aircraft is on the ground. When the aircraft is in flight, the movement of the aircraft may provide a power source for moving the air across the heat exchanger pack.
In the air, or at altitude, the fan capacity is limited. Thus, a check valve typically opens that allows the ram air to bypass the fan.
The fan is positioned downstream of the heat exchangers in the heat exchanger pack. On some occasions, the flow passages for the ram air through the heat exchangers may become clogged due to the impurities in the air. When this occurs, the flow of air to the fan may be less than desirable. The insufficient air can cause a condition called “surge” which can be detrimental to the fan.
A combination includes a selectively driven fan and a bypass flow passage for bypassing the fan. The bypass flow passage communicates with a first check valve to allow air to flow from the bypass passage to a downstream location. A second check valve allows air driven by the fan to pass into a return passage and return to an inlet of the fan in the event that the discharge pressure from the fan overcomes a spring force associated with the second check valve.
A heat exchanger pack and an environmental control system for use on an aircraft, and a method are all also disclosed.
These and other features may be best understood from the following drawings and specification.
An environmental control system 18 for use on an aircraft includes a heat exchanger pack 20. A primary heat exchanger 22 receives a supply S of the air, such as from a compressor, and delivers that air to a portion of an air cycle machine 24. The air cycle machine 24 sends the air to another portion 27 of the air cycle machine, which circulates this air through a secondary heat exchanger 26. A liquid heat exchanger 30 for cooling liquids, such as liquids utilized to cool electronic components, is also positioned within the heat exchanger pack 20, as is a ram insert 28. Downstream of the portion 27 of the air cycle machine, the air is delivered to uses 32 on the aircraft, such as the cabin, the cockpit or any other number of uses.
An inlet 40 for ram air passing across the heat exchanger 22, 26 and 30 extends to receive air from a location X, which is outside the aircraft body 19. Doors 42 and 44 may isolate the heat exchanger pack 20 when no air flow is desired. However, when the aircraft is on the ground, a fan 46 pulls the air across the heat exchangers to cool the air and liquid within the heat exchangers 22, 26 and 30. It should be understood that the air flow being drawn by the fan 46 is maintained separate from the air within the heat exchangers 22 and 26 and the liquid within heat exchanger 30.
A chamber 49 is downstream of the heat exchangers (here heat exchanger 22). An area 48 downstream of the fan 46 receives air flow after it has passed through the heat exchanger pack 20.
When the aircraft is at altitude in the air, the fan 46 capacity is limited. At this point, the movement of the airplane will drive the air flow across the heat exchanger pack 30. A check valve 50 operates to allow air to pass from chamber 49 to the chamber 48 bypassing the fan 46.
The ground-based operation is shown in
Notably, the second valve plate 60 is not part of the prior art. When the fan 46 begins to surge or see too little air flow, the discharge pressure of the air leaving the fan 46 increases. At some point, this discharge pressure will overcome the spring force 58, and the air flow will cause the valve plate 60 to open as shown in
The second check valve may be located at other locations, of course, and serves to address the surge concern for a fan and, particularly, one associated with a heat exchanger pack.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4403659 | Upchurch | Sep 1983 | A |
5133194 | Army, Jr. et al. | Jul 1992 | A |
6520257 | Allamon et al. | Feb 2003 | B2 |
6942183 | Zywiak | Sep 2005 | B2 |
7299880 | Logiudice et al. | Nov 2007 | B2 |
7334422 | Zywiak | Feb 2008 | B2 |
7757502 | Merritt et al. | Jul 2010 | B2 |
8075274 | Carvalho | Dec 2011 | B2 |
20030136563 | Allamon et al. | Jul 2003 | A1 |
20040000406 | Allamon et al. | Jan 2004 | A1 |
20040000407 | Hernandez et al. | Jan 2004 | A1 |
20060059941 | Merritt et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
4304649 | Sep 1994 | DE |
1790568 | May 2007 | EP |
08658 | Aug 1912 | GB |
2077354 | Dec 1981 | GB |
8658 | Aug 1992 | GB |
Entry |
---|
European Search Report for European Patent Application No. 14151052.9 dated May 16, 2014. |
Number | Date | Country | |
---|---|---|---|
20140199931 A1 | Jul 2014 | US |