Circuit breakers, sometimes referred to as circuit interrupters, include electrical contacts that connect to each other to pass current from a source to a load. The contacts may be separated in order to interrupt the delivery of current, either in response to a command or to protect electrical systems from electrical fault conditions such as current overloads, short circuits, and high or low voltage conditions.
In certain medium voltage circuit breakers, for example medium voltage hybrid circuit breakers, it is desirable to have a vacuum interrupter in which the contacts move with a fast opening speed. Some ultra-fast switching mechanisms can open the contacts in as few as 500 microseconds, with speeds of travel approaching 4 m/s. In conditions that approach short circuit conditions, the circuit breaker must achieve a sufficiently large contact gap (typically 1.5 mm or 2 mm) in this short time frame. Traditional motor-driven and linear actuators cannot achieve such opening speeds.
To address this, some have proposed using a Thomson coil as the actuator. However, Thomson coils have a limited opening distance and cannot achieve the contact cap that is desirable in normal conditions, or to hold the circuit breaker open after interruption.
This document describes methods and systems that are intended to address some or all of the problems described above.
In various embodiments, a circuit breaker includes a pole unit that comprises a moveable electrode that leads to a moveable contact, and a fixed electrode that leads to a fixed contact. The pole unit includes a first end that is relatively proximate to the fixed electrode, and a second end that is relatively proximate to the moveable electrode. A resilient member may be operably connected to and positioned proximate to the first end of the pole unit. A linkage extends from the second end of the pole unit. A linear actuator is operably connected to the linkage and located away from the pole unit. In addition, a high-speed actuator is also operably connected to the linkage. The high-speed actuator is operable to move the linkage at a speed that is faster than a speed by which the linear actuator can move the linkage. When the resilient member is not in an extended position (i.e., when the contacts are closed), a gap will be provided between the pole unit and either the high-speed actuator or the linear actuator (whichever is closer to the pole unit). When the resilient member is in an extended position (i.e., when the contacts are open), the gap will be reduced or eliminated.
Optionally, the linear actuator may be positioned between the pole unit and the high-speed actuator, and in this case the gap will be between the pole unit and the linear actuator. Alternatively, the high-speed actuator may be positioned between the pole unit and the linear actuator, and in this case the gap will be between the pole unit and the high-speed actuator.
Optionally, the high-speed actuator may comprise a Thomson coil actuator. The Thomson coil actuator may include a first Thomson coil, a second Thomson coil, and a conductive plate positioned between the first and second Thomson coils. The linkage may pass through the first Thomson coil and be positioned to be driven by the conductive plate.
Optionally, the circuit breaker may include a stop member that is positioned at an end of the gap to limit travel of the pole unit toward the linear actuator. Optionally, the resilient member, when included, may be at least partially contained inside of the pole unit. Alternatively, the resilient member may be at least partially positioned outside of the pole unit.
Optionally, the circuit breaker may include a driver that is configured to open the circuit breaker by: (1) energizing the high-speed actuator to draw the linkage and separate the contacts by a distance; and (2) after energizing the high-speed actuator, energizing the linear actuator to apply a force to the linkage that will pull the pole unit toward the linear actuator, thus increasing the distance between the contacts, extending the resilient member, and reducing or closing the gap between the pole unit and the linear actuator.
Optionally, the pole unit also may include a vacuum chamber, and the fixed electrode and the movable electrode may be contained within the vacuum chamber.
As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used in this document have the same meanings as commonly understood by one of ordinary skill in the art. As used in this document, the term “comprising” (or “comprises”) means “including (or includes), but not limited to.” When used in this document, the term “exemplary” is intended to mean “by way of example” and is not intended to indicate that a particular exemplary item is preferred or required.
In this document, when terms such “first” and “second” are used to modify a noun, such use is simply intended to distinguish one item from another, and is not intended to require a sequential order unless specifically stated. The term “approximately,” when used in connection with a numeric value, is intended to include values that are close to, but not exactly, the number. For example, in some embodiments, the term “approximately” may include values that are within +/−10 percent of the value.
When used in this document, terms such as “top” and “bottom,” “upper” and “lower”, or “front” and “rear,” are not intended to have absolute orientations but are instead intended to describe relative positions of various components with respect to each other. For example, a first component may be an “upper” component and a second component may be a “lower” component when a device of which the components are a part is oriented in a direction in which those components are so oriented with respect to each other. The relative orientations of the components may be reversed, or the components may be on the same plane, if the orientation of the structure that contains the components is changed. The claims are intended to include all orientations of a device containing such components.
In this document, the term “electrically connected”, when referring to two electrical components, means that a conductive path exists between the two components. The path may be a direct path, or an indirect path through one or more intermediary components.
“Medium voltage” (MV) systems include electrical systems that are rated to handle voltages from about 600 V to about 1000 kV. Some standards define MV as including the voltage range of 600 V to about 69 kV. (See NECA/NEMA 600-2003). Other standards include ranges that have a lower end of 1 kV, 1.5 kV or 2.4 kV and an upper end of 35 kV, 38 kV, 65 kV or 69 kV. (See, for example, IEC 60038, ANSI/IEEE 1585-200 and IEEE Std. 1623-2004, which define MV as 1 kV-35 kV.) Except where stated otherwise, in this document the term “medium voltage” is intended to include the voltage range from approximately 1 kV to approximately 100 kV, as well as all possible sub-ranges within that range, such as approximately 1 kV to approximately 38 kV.
Referring to
The circuit breaker 10 (which may include a vacuum interrupter switch that is a component of circuit breaker 10) includes a pole unit 12 that contains a vacuum interrupter 13. Referring to the cross-sectional views of
With continued reference to
The breaker also includes a linear actuator 21 and a high-speed actuator 22 that are mechanically positioned in series so that the linear actuator 21 is positioned between the high-speed actuator 22 and the pole unit 12. A segment 14A of the linkage extends from the pole unit 12, through the linear actuator 21, to the high-speed actuator 22. Linkage segment 14A may be connected to a conductive plate in certain high-speed actuators, as will be described below in the discussion of
The breaker also includes a resilient member 20 positioned at a second end of the pole unit 12. The second end of the pole unit 12 is the end opposite the first end, and is the end that is relatively proximate to the fixed electrode 28. (In other words, the second end of the pole unit 12 is closer to the fixed electrode than it is to the moveable electrode 29.) The resilient member 20 may be, for example, a contact spring. The resilient member 20 may be at partially inside of the pole unit 12 and/or at least partially outside of the pole unit 12. The resilient member 20 is directly or indirectly connected to a mounting bracket 31, either directly or indirectly via one or more components.
The circuit breaker or a vacuum interrupter switch 10 includes mounting brackets 31, 32 or other mounting structures at each end so that the distance between the mounting brackets 31, 32 or other ending structures remains fixed when the breaker or a vacuum interrupter switch 10 is open or closed. One of the mounting structures 32 may also serve to interconnect the linear actuator 21 and the high-speed actuator 22 while maintaining a distance between the two actuators along which the conductive rod 14A of the linkage 14 may be withdrawn to open the contacts or released to close the contacts.
In normal operation, such as conditions in which the current is at or below the rated current of the circuit breaker, the linear actuator 21 may operate to open and close the vacuum interrupter 13. The linear actuator 21 may be for example, a solenoid; a magnetic actuator; or a dual coil in-line actuator. The dual coil in-line actuator will include a first coil and a second coil, one of which is wound in a clockwise direction, and the other of which is wound in a counterclockwise direction. The coils will be wound around the linkage 14 so that when one coil is energized, it will generate an electric field that operates to pull the linkage 14 in a first direction that moves the moveable electrode 29 and moveable contact 19 away from the fixed electrode 28 and fixed contact 18. When the other coil is energized, it will generate an opposite electric field that operates to push the linkage in a second direction that moves the moveable contact 19 toward the fixed contact 18. Other linear actuators may be employed, for example such as that shown and described in
The high-speed actuator 22 is operable to separate the moveable and fixed electrodes at a speed that is higher than the fastest speed that the linear actuator 21 can achieve. For example, traditional linear actuators in medium voltage applications have an operating speed that can not move and separate the electrodes at a speed of about 4 m/s. In medium voltage applications of the present disclosure, the high-speed actuator 22 may be have an operating speed that can move the linkage 14 at a faster speed such that a gap of from 1.5 mm to 2.0 mm may be opened between the electrodes in less than 0.5 milliseconds. Other gap sizes and speeds may be possible in various embodiments. Such high opening speeds are important when the breaker has to withstand the transient recovery voltage (TRV) and follow-up system voltage after overload current or short circuit current interruption. Thus, the linear actuator may have a speed sufficient for a rated voltage of the breaker (e.g., 6 KV), but a faster opening speed may be required if, for example, overload event or short circuit event occurs.
Example high-speed actuators 22 that can achieve such opening speeds include a Thomson coil actuator or a piezo-electric actuator.
The driver 120 may selectively energize either the first Thomson coil 111 or the second Thomson coil 112. When the driver 120 energizes the first Thomson coil 111, the first Thomson coil 111 will generate a magnetic force that will repel the conductive plate 133 away from the first Thomson coil 111 and toward the second Thomson coil 112. This causes the linkage 14 to move in a downward direction in the orientation shown, which moves the moveable electrode away from the fixed electrode in the vacuum interrupter and opens the circuit. In some embodiments, such as those in which a fast closing operation is desired, when the driver 120 energizes the second Thomson coil 112, the second Thomson coil 112 will generate a magnetic force that will repel the conductive plate 133 away from the second Thomson coil 112 and toward the first Thomson coil 111. This causes the linkage 14 to move in an upward direction in the orientation shown, which moves the moveable electrode toward the fixed electrode in the vacuum interrupter and closes the circuit.
The Thomson coil actuator also may include permanent magnets 34, 35 positioned proximate to each Thomson coil 111, 112, and a permanent magnet 36 on the conductive plate 133, that will latch the conductive plate 133 with the Thomson coil (111 or 112) to which it is adjacent. When a Thomson coil (111 or 112) to which the conductive plate is latched is energized, the magnetic repulsion force will push the conductive plate 133 toward the other Thomson coil and operate to de-latch the plate 133 from its current position.
The Thomson coil thus allows for fast operation when needed. However, a Thomson coil can typically open only a small gap (e.g., 2 mm) at very high opening speed, which is fine for initial operation but not necessarily for what is desired to completely open the circuit and/or maintain it in an open position. For example, in 6 kV medium voltage applications, it is desired to separate the contacts by at least 6 mm to achieve a fully-open condition so that the vacuum interrupter can have a 27 kV withstand voltage rating and 75 kV basic insulation level (BIL) rating.
The combination of a linear actuator 21 in line with a high-speed actuator 22 can help to accomplish this. In operation, one or more drivers (such as driver 120 in
Optionally, instead of the linear actuator being positioned between the high-speed actuator and the pole unit, the high-speed actuator may be positioned between the linear actuator and the pole unit. This variation will be discussed below in the context of
As with the other embodiments, in this embodiment when the high speed actuator 622 is a Thomson coil actuator, it may include permanent magnets 634, 635 positioned proximate to each Thomson coil, and a permanent magnet on a conductive plate 633, that will latch the conductive plate 633 with the Thomson coil to which it is adjacent. When a Thomson coil to which the conductive plate is latched is energized, the magnetic repulsion force will push the conductive plate 633 toward the other Thomson coil (and its corresponding permanent magnet 634 or 635 and operate to de-latch the conductive plate 633 from its current position.
The variation shown in
The illustrations shown in this document show the fixed electrode located at an upper portion of the breaker, the moveable electrode at a lower portion of the breaker, and the actuators positioned below the moveable electrode. However, the invention includes embodiments in which the arrangements are inverted, rotated to an angle (such as by 90 degrees to form a linear/horizontal arrangement), or otherwise. Embodiments also include arrangements in which a single set of actuators are connected to multiple pole units, as in a three-phase AC system. In such arrangements, the actuators may be connected to an operative arm, and the operative arm may be connected to the linkages of all three pole units.
Additionally, the embodiments described above may be used in medium voltage applications, although other applications such as low voltage or high voltage applications may be employed. The circuit breakers also may be employed in a hybrid circuit breaker that includes both solid state and vacuum interrupter components such as shown in
The features and functions described above, as well as alternatives, may be combined into many other different systems or applications. Various alternatives, modifications, variations or improvements may be made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.
This patent document is a continuation of U.S. patent application Ser. No. 16/907,609, filed Jun. 22, 2020, which in turn claims priority to U.S. Provisional Patent Application No. 62/866,774, filed Jun. 26, 2019. The disclosures of each priority application are fully incorporated into this document by reference.
Number | Name | Date | Kind |
---|---|---|---|
3026394 | Emmett | Mar 1962 | A |
3405245 | Ito | Oct 1968 | A |
3534304 | Robinson | Oct 1970 | A |
4030055 | Kotos | Jun 1977 | A |
4107496 | Clason | Aug 1978 | A |
4250363 | Heberlein et al. | Feb 1981 | A |
4281231 | Griesen et al. | Jul 1981 | A |
5912604 | Harvey | Jun 1999 | A |
6580345 | Akita et al. | Jun 2003 | B2 |
6930271 | Palmieri et al. | Aug 2005 | B1 |
7739058 | Maruyama | Jun 2010 | B2 |
7829814 | Marchand et al. | Nov 2010 | B2 |
8680956 | Kim et al. | Mar 2014 | B2 |
8912871 | Lauraire et al. | Dec 2014 | B2 |
8957748 | Tomimbang | Feb 2015 | B2 |
8982538 | Leccia et al. | Mar 2015 | B2 |
9165726 | Dohnal et al. | Oct 2015 | B2 |
9183996 | Karlstrom et al. | Nov 2015 | B2 |
9196439 | Gentsch | Nov 2015 | B2 |
9396896 | Chen et al. | Jul 2016 | B2 |
9431184 | Lee et al. | Aug 2016 | B2 |
9478383 | Lee et al. | Oct 2016 | B2 |
9508514 | Ohda et al. | Nov 2016 | B2 |
9741513 | Schmitz et al. | Aug 2017 | B2 |
9842713 | Yu et al. | Dec 2017 | B2 |
10325737 | Woo et al. | Jun 2019 | B2 |
10580599 | Wang et al. | Mar 2020 | B1 |
20120274428 | Reuber et al. | Nov 2012 | A1 |
20160351367 | Jeong | Dec 2016 | A1 |
20170154747 | Bissal et al. | Jun 2017 | A1 |
20170352507 | Kim et al. | Dec 2017 | A1 |
20200075274 | Park et al. | Mar 2020 | A1 |
Entry |
---|
U.S. Appl. No. 16/907,609, filed Jun. 22, 2020, Dual-Action Switching Mechanism and Pole Unit for Circuit Breaker. |
Bini, R. et al., “Interruption Technologies for HVDC Transmission: State-of-Art and Outlook”, 2017 4th International Conference on Electric Power Equipment—Switching Technology—Xi'an—China, downloaded May 12, 2020. |
Pei, X. et al., “Fast operating moving coil actuator for a vacuum”, IEEE Transactions on Energy Conversion, 32(3), 931-940, 2017. |
Number | Date | Country | |
---|---|---|---|
20210366675 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62866774 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16907609 | Jun 2020 | US |
Child | 17393482 | US |