Dual action weightlifting machine with selectorized resistance

Information

  • Patent Grant
  • 12296217
  • Patent Number
    12,296,217
  • Date Filed
    Thursday, July 27, 2023
    a year ago
  • Date Issued
    Tuesday, May 13, 2025
    29 days ago
  • Inventors
    • Meredith; Jeffrey O. (Del Mar, CA, US)
  • Original Assignees
  • Examiners
    • Urbiel Goldner; Gary D
    Agents
    • Heckadon; David R.
    • Gordon Rees Scully Mansukhani LLP
Abstract
An exercise machine, having: (a) a frame; (b) a pair of weight stacks connected to opposite sides of the frame; (c) a pair of vertically moveable pulley carriages connected to front portions of the frame; (d) a lifting bar assembly connected to a rear portion of the frame; (e) a pair of arm cables, wherein each of the arm cables are connected to one of the pulley carriages and pass around a first series of pulleys such that the weight stacks are lifted when the arm cables are pulled by a user through the pulley carriages; and (f) a pair of lifting bar cables respectively connected to a pair of vertically moveable bar mounts of the lifting bar assembly that pass around a second series of pulleys such that the weight stacks are lifted when a lifting bar of the lifting bar assembly is raised by the user.
Description
TECHNICAL FIELD

The present invention relates to exercise machines in general and to exercise machines of the type which have an exercise bar that is guided in two directions to simulate free-weight barbell exercise movements. The present application also relates to cable pull exercise machines.


SUMMARY OF THE INVENTION

The present system combines a guided-bar exercise machine, hereafter referred to as a “2D Smith Machine” together with a dual cable pull exercise machine, providing the advantages of both machines in a single exercise machine frame. One advantage of the present system is that it is selectorized (i.e.: it uses weight stacks as opposed to free weights) for both the 2D Smith Machine and for the two cable pull exercise assemblies. A particular advantage of the present system is that both the cable pull exercise machine and the 2D Smith exercise machine portions of the present device share the same weight stacks.


In optional embodiments, the present system is provided solely as a 2D Smith machine with the arm cable exercise portions removed. Different cabling systems for these embodiments are illustrated.


In one preferred aspect, the present pulley assemblies are configured such that the lifting bar lifts 100% of the selected weight in the weight stack(s) whereas the cable pulleys only lift 50% of the selected weight in the weight stack(s). In alternate embodiments, the lifting bar lifts 50% of the selected weight in the weight stack. It is to be understood, however, that other configurations and weight percentages are also encompassed within the scope of the present system. Specifically, different weight resistances can be provided to the lifting bar and to the cable pulleys based solely on the arrangement of the various pulleys within the present system.


2D Smith machines such as taught by Randall Webber in U.S. Pat. No. 7,713,179, have stationary racking positions for the lifting bar and adjustable “safety tiers” that insure that a lifting bar cannot accidently fall on a user by providing a bottom height below which the lifting bar is not able to fall. Accordingly, 2D Smith machines are popular both for doing squats and for doing bench presses. Typically, a 2D Smith machine provides a frame with guard rails or latches that prevent the lifting bar from falling below the pre-set bottom height. This has the benefit of providing a more natural lifting experience. As will be shown, the present exercise device offers all of these advantages. Specifically, with the present system, the user is able to move the lifting bar back and forth (horizontally) while also lifting the bar (vertically). This assists the user in developing balance while simultaneously developing their strength working different muscle groups.


In preferred aspects, the present system comprises an exercise machine, comprising: (a) a frame; (b) a pair of weight stacks connected to opposite sides of the frame; (c) a pair of vertically moveable pulley carriages connected to front portions of the frame; (d) a lifting bar assembly connected to a rear portion of the frame, wherein the lifting bar assembly comprises: (i) a lifting bar, (ii) a vertically moveable bar mount supporting each end of the lifting bar, and (iii) a vertically moveable locking mechanism for setting a bottom height for each of the vertically moveable bar mounts; (e) a pair of arm cables, wherein each of the arm cables are connected to one of the pulley carriages and pass around a first series of pulleys such that the weight stacks are lifted when a free end of the arm cables are pulled by a user through the pulley carriages; and (f) a pair of lifting bar cables, wherein a free end of each of the lifting bar cables are connected to one of the vertically moveable bar mounts and pass around a second series of pulleys such that the weight stacks are lifted when the lifting bar is raised by the user.


Preferably, the vertically moveable locking mechanism comprises: a vertically moveable lower stop on which the bar mount rests, a pull pin assembly connected to the lower stop, and a frame member having a series of vertical holes dimensioned to receive the pull pin therein. In operation, the user rotates the lifting bar to release a pull pin, thereby permitting adjustment of the vertical height of the lower stop (which sets the bottom height below which the lifting bar cannot fall). Preferably as well, the lifting bar can be moved in a horizontal direction on the frame during a vertical lift. This provides the benefit of a more natural workout (as opposed to a more traditional Smith machine which just permits straight up and down movement of the lifting bar in a constrained, typically vertical, plane).


Preferably, the vertically moveable pulley carriages are each mounted to a vertically extending carriage support that is independently rotatable about a vertical axis. The benefit of such rotation is that it permits the user to pull the arm cables from a wide variety of directions, thereby providing exercises to more of the user's muscles.


In preferred aspects, the arm cables and lifting bar cables can both be passed around a transfer pulley assembly which moves in a manner such that pulling on either of the arm cable or the lift bar cable results in the weight stack being lifted to a different height. This gearing-style use of the transfer pulley assembly has the advantage of using the same weight stack for two very different exercises (in which a user typically lifts two different amounts of weight). In one specific embodiment, the placement of the transfer pulley assembly results in the user lifting half the load when performing cable arm pulls as compared to when performing lifting bar raises. It is to be understood, however, that other geometries and percentages could instead be used, all keeping within the scope of the present invention.


In optional aspects where the arm cable exercise portion of the device is removed, the present system comprises an exercise machine, comprising: (a) a frame; (b) a pair of weight stacks connected to opposite sides of the frame; (c) a lifting bar assembly connected to a rear portion of the frame, the lifting bar assembly comprising: (i) a lifting bar, (ii) a vertically moveable bar mount supporting each end of the lifting bar, and (iii) a vertically moveable locking mechanism for setting a bottom height for each of the vertically moveable bar mounts; and (d) a pair of lifting bar cables, wherein each of the lifting bar cables are connected to one of the vertically moveable bar mounts and pass around a second series of pulleys such that the weight stacks are lifted when the lifting bar is raised by the user.


In further optional embodiments, a pull-up assembly can be mounted onto the front of the frame and may include a pair of flip-and-grip handles. As such, the user is able to do lifting bar exercises, cable arm pull exercises and pull-up exercises on the same exercise machine frame.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of the present 2D Smith-type exercise machine having forwardly facing dual cable columns exercise carriages.



FIG. 2 is a side elevation view of the exercise machine corresponding to FIG. 1.



FIG. 3 is a front elevation view of the exercise machine corresponding to FIG. 1.



FIG. 4 is a rear elevation view of the exercise machine corresponding to FIG. 1.



FIG. 5 is a top plan view of the exercise machine corresponding to FIG. 1.



FIG. 6 is a front perspective view of the exercise machine of FIG. 1 with elements of the device removed to show operation and layout of the cables.



FIG. 7 is a front perspective view of the left side of the exercise machine corresponding to FIG. 6.



FIG. 8 is a side elevation view of the left side of the exercise machine corresponding to FIG. 6.



FIG. 9 is a close up perspective view of the locking mechanism for the lifting bar.



FIG. 10 is a view similar to FIG. 9, but taken from the other side of the device.



FIG. 11 is a simplified illustration of the cabling of the exercise machine of FIGS. 1 to 10.



FIG. 12 is a side elevation view of a first embodiment of the present exercise machine where the arm cable exercise portion of the machine has been removed.



FIG. 13 is a front perspective view of the exercise machine of FIG. 12.



FIG. 14 is a front perspective view of the exercise machine of FIG. 12 with elements of the device removed to show operation and layout of the cables.



FIG. 15 is a side elevation view of a second embodiment of the present exercise machine where the arm cable exercise portion of the machine has been removed.



FIG. 16 is a front perspective view of the exercise machine of FIG. 15.



FIG. 17 is a front perspective view of the exercise machine of FIG. 15 with elements of the device removed to show operation and layout of the cables.



FIG. 18 is a simplified illustration of the cabling of the exercise machine of FIGS. 15 to 17.



FIG. 19 is a simplified illustration of an alternate cabling system in which the lifting bar lifts 50% of the selected weight in the weight stack.





DETAILED DESCRIPTION OF THE DRAWINGS


FIGS. 1 to 5 show various views of the present combined Smith-type exercise and arm pull exercise machine. FIGS. 6 to 8 show details of the preferred cabling systems (with various system components removed for clarity of illustration). FIGS. 9 and 10 illustrate a preferred embodiment of the locking mechanism used to pre-set the lowest vertical point of travel of the lifting bar. FIG. 11 explains the cabling layout in the exercise machine of FIGS. 1 to 10. FIGS. 12 to 17 illustrate optional preferred embodiments of the present system having only a Smith-style exercise machine with no arm pull exercise machine. FIG. 18 explains the cabling layout in the exercise machine when the arm pull portion of the machine has been omitted. Lastly, FIG. 19 shows an alternate cabling approach in which the lifting bar instead only lifts 50% of the selected weight in the weight stack.


Referring to the attached FIGS. 1 to 10, the present system provides a combined Smith-type exercise machine, cable arm pull exercise machine and pull-up exercise machine all within a single integrated frame, as follows.


Exercise machine 10 comprises a frame 20, a pair of weight stacks 30 on opposite sides of the frame 10, and a pair of vertically moveable pulley carriages 40 mounted to the front of frame 10 as shown. Also included is a lifting bar assembly 50 comprising a lifting bar 52, a vertically moveable bar mount 54 supporting each end of lifting bar 52, and a vertically moveable locking mechanism 56 for setting a bottom height of travel for each of the vertically moveable bar mounts 54. Also included are a pair of arm cables 60, wherein each of the arm cables are connected to one of the pulley carriages 40 and pass around a first series of pulleys 70 such that the weight stacks 30 are lifted when the free end of arm cables 40 are pulled by a user through the pulley carriages 40. In addition, a pair of lifting bar cables 80 are also provided. A free end of each of the lifting bar cables are connected to one of the vertically moveable bar mounts 54 and pass around a second series of pulleys 90 such that the weight stacks 30 are lifted when lifting bar 52 is raised by the user.


In preferred aspects, the vertically moveable locking mechanism 56 comprises: a vertically moveable lower stop 57 on which bar mount 54 rests, a pull pin assembly 58 connected to lower stop 57, and a frame member 59 having a series of vertical holes dimensioned to receive the pull pin therein. In operation, rotation of lifting bar 52 releases a pull pin 53 in the pull pin assembly 58, thereby permitting vertical adjustment of the height of the lower stop. This may be accomplished by a flange 51 on lifting bar 52 engaging with pull pin assembly 58 when the lifting bar 52 is rotated.


As can also be seen, one end 81 of the lifting bar cables 80 is connected to one of the bar mounts 54. Another free end 83 is connected to lower stop 57. As such, when the user raises lifting bar 52, the free end 81 of cable 80 is raised, and cable 80 is thereby tightened, in turn lowering transfer pulley assembly 100. This in turn has the effect of pulling on cable 60 which in turn raises weight stack 30. As can be seen, one of each of arm cables 60 and lifting bar cables 80 are disposed on either side of the frame. In the present system, no cables are required to pass from one side of the frame to the other. This has the beneficial effect of keeping the center space of frame 10 open for the user to perform exercises in.


Preferably, the vertically moveable pulley carriages 40 are each mounted to a vertically extending carriage support 42 that is rotatable about a vertical axis. This permits the user to pull on cables 60 from a wide variety of angles, thereby exercising different parts of the user's arms and back.


In preferred aspects, the lifting bar 52 and lifting bar assemblies 50 are moveable in a horizontal direction on the frame. This is best seen in FIGS. 1, 5 and 9 where lifting bar 52 and lifting bar assemblies 50 are supported on a vertical member 110 which in turn is moveable back and forth in a horizontal direction along horizontal member 120.


One of each of the arm cables 60 and the lifting bar cables 80 pass around transfer pulley assemblies 100, as shown. In preferred aspects, the positioning of pulleys 70 and and transfer pulley assemblies 100 is configured such that the vertical height of transfer pulley assemblies 100 remains constant when the arm cable 60 is pulled to raise the weight stack 30, but the vertical height of the transfer pulley assemblies 100 changes when the lifting bar cable 80 is pulled to raise weight stack 30. As a result, pulling the arm cable 60 and the lifting bar cable 80 an equal distance results in weight stack 30 moving different distances. For example, pulling the arm cable 60 a distance of X inches lifts the weight stack a distance ½ X inches, whereas pulling the lifting arm cable 80 the same distance of X inches lifts the weight stack by distance X inches.



FIG. 11 is a simplified illustration of the cabling of the exercise machine of FIGS. 1 to 10.


In further preferred aspects, a pull-up assembly 150 is mounted to the front of frame 10. Pull-up assembly 150 may optionally comprise a pair of flip-and-grip handles 152.



FIGS. 12 to 17 show embodiments of the present exercise machine, but with the optional cable arm exerciser portion removed. FIGS. 12 to 14 show a first embodiment having the option to add a cable arm exerciser thereto (by later replacing the cables shown with longer ones), and FIGS. 15 to 17 show a second embodiment in which a cable arm exerciser cannot be added thereto. FIGS. 15 to 17 illustrate the simplicity in cabling the 2D Smith-type portion of the exercise device in this particular embodiment. FIG. 18 is a simplified illustration of the cabling of the exercise machine of FIGS. 15 to 17.


Lastly, FIG. 19 is an alternate cabling system similar to FIG. 18, but in which the lifting bar instead lifts only 50% of the selected weight in the weight stack.

Claims
  • 1. An exercise machine, comprising: a frame;a pair of weight stacks connected to opposite sides of the frame;a pair of vertically moveable pulley carriages connected to front portions of the frame;a lifting bar assembly connected to a rear portion of the frame, the lifting bar assembly comprising: a lifting bar,a vertically moveable bar mount supporting each end of the lifting bar, anda vertically moveable locking mechanism for setting a bottom height for each of the vertically moveable bar mounts;a pair of arm cables, wherein each of the pair of arm cables is connected to a respective one of the pair of vertically moveable pulley carriages and passes around a first series of pulleys such that the pair of weight stacks are respectively lifted when the pair of arm cables are pulled by a user through the pair of vertically moveable pulley carriages; anda pair of lifting bar cables, wherein each of the pair of lifting bar cables is connected to a respective one of the vertically moveable bar mounts and passes around a second series of pulleys such that the pair of weight stacks are respectively lifted when the lifting bar is raised by the user.
  • 2. The exercise machine of claim 1, wherein the vertically moveable locking mechanism comprises: a vertically moveable lower stop on which the corresponding vertically moveable bar mount rests,a pull pin assembly connected to the vertically moveable lower stop, anda frame member having a series of vertical holes dimensioned to receive a pull pin of the pull pin assembly therein.
  • 3. The exercise machine of claim 2, wherein rotation of the lifting bar releases the pull pin in the pull pin assembly, thereby permitting adjustment of a vertical height of the vertically moveable lower stop.
  • 4. The exercise machine of claim 3, further comprising a flange on the lifting bar that engages the pull pin assembly when the lifting bar is rotated.
  • 5. The exercise machine of claim 2, wherein one end of each of the pair of lifting bar cables is respectively connected to one of the vertically moveable bar mounts.
  • 6. The exercise machine of claim 1, wherein the pair of vertically moveable pulley carriages are mounted to a pair of vertically extending carriage supports that are rotatable about a vertical axis, respectively.
  • 7. The exercise machine of claim 1, wherein the lifting bar assembly, including the lifting bar, is moveable in a horizontal direction on the frame.
  • 8. The exercise machine of claim 1, wherein the pair of arm cables and the pair of lifting bar cables are respectively disposed on the opposite sides of the frame.
  • 9. The exercise machine of claim 1, further comprising a pair of transfer pulley assemblies, wherein the pair of arm cables and the pair of lifting bar cables respectively pass around the pair of transfer pulley assemblies.
  • 10. The exercise machine of claim 9, wherein a vertical height of the pair of transfer pulley assemblies remains constant when the pair of arm cables are pulled to raise the pair of weight stacks, respectively.
  • 11. The exercise machine of claim 9, wherein a vertical height of the pair of transfer pulley assemblies changes when the pair of lifting bar cables are pulled to raise the pair of weight stacks, respectively.
  • 12. The exercise machine of claim 1, wherein pulling one of the pair of arm cables and a corresponding one of the pair of lifting bar cables an equal distance results in the corresponding weight stack moving different distances.
  • 13. The exercise machine of claim 12, wherein: pulling the one of the pair of arm cables a distance X lifts the corresponding weight stack a distance ½ X, andpulling the corresponding one of the pair of lifting bar cables the distance X lifts the corresponding weight stack the distance X.
  • 14. The exercise machine of claim 1, further comprising: a pull-up assembly mounted to a front of the frame.
  • 15. The exercise machine of claim 14, wherein the pull-up assembly comprises a pair of flip-and-grip handles.
  • 16. The exercise machine of claim 1, wherein movement of the pair of arm cables through the pair of vertically moveable pulley carriages lifts the pair of weight stacks, respectively.
RELATED APPLICATION

The present application claims priority to U.S. Provisional Patent Application Ser. No. 63/395,112, filed Aug. 4, 2022, of same title, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (29)
Number Name Date Kind
5184992 Banks Feb 1993 A
5725459 Rexach Mar 1998 A
6527683 Tolles Mar 2003 B2
7374516 Lundquist May 2008 B2
7713179 Webber May 2010 B2
8444537 Santoro May 2013 B1
9302139 Habing Apr 2016 B2
10245461 Bruni et al. Apr 2019 B2
10556144 Habing Feb 2020 B2
10646740 Lee May 2020 B2
11389690 Valdez et al. Jul 2022 B2
11565144 Habing Jan 2023 B2
11712593 Kilby Aug 2023 B2
20020091043 Rexach Jul 2002 A1
20090143203 Knapp Jun 2009 A1
20090170668 Giannelli et al. Jul 2009 A1
20100022363 Fenster et al. Jan 2010 A1
20140087928 Luedeka Mar 2014 A1
20160213967 Habing et al. Jul 2016 A1
20170266480 Bruni et al. Sep 2017 A1
20190217148 Bruni et al. Jul 2019 A1
20190240525 Leipheimer Aug 2019 A1
20190336812 Leipheimer Nov 2019 A1
20200069988 Gore Mar 2020 A1
20200316426 Gore Oct 2020 A1
20220096891 Yang Mar 2022 A1
20220219033 Lee Jul 2022 A1
20230001253 Kilby Jan 2023 A1
20240157186 Meredith May 2024 A1
Foreign Referenced Citations (3)
Number Date Country
106110566 Nov 2016 CN
217511067 Sep 2022 CN
101394856 May 2014 KR
Non-Patent Literature Citations (4)
Entry
United States International Searching Authority, International Search Report and Written Opinion for corresponding International Application No. PCT/US2023/028791, mailed Oct. 24, 2023, 8 pages.
GFS Smith Machine with Linear Bearings with 7° Angle Free-Weight Barbell , Home and Semi—Commercial Gym Workout Center Designed for Upper and Lower Body Exercise, G Fashion Style, Mar. 20, 2022, 8 pages, https://www.amazon.com/Machine-Linear-Bearings_Freeweight-Barbell/dp/B09W11KQ1G?ref _=ast_sto_dp.
United States International Searching Authority, International Search Report and Written Opinion for corresponding International Application No. PCT/US2023/084885, mailed May 17, 2024, 11 pages.
Alpha Smith Machine (0 or 7 Degree), Arsenal Strength Equipment, myarsenalstrength.com website, 2023, 5 pages.
Related Publications (1)
Number Date Country
20240042262 A1 Feb 2024 US
Provisional Applications (1)
Number Date Country
63395112 Aug 2022 US