The present application relates to top drives of drill rigs. More particularly, the present application relates to the pipe handling features of a top drive of a drill rig. Still more particularly, the present application relates to a top drive having dual pipe handling tools and, in particular, a top drive with dual pipe handling elevators.
The background description provided herein is intended to generally present the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
In days of old, many drill rigs included a rotary table that functioned together with a swivel and a Kelly system. The swivel operated to hold a length of drill pipe in position above a drill string and allow the pipe to swivel. The rotary table and the Kelly system was used to rotate the drill pipe to secure it to the drill string. An alternative to this approach has been around for some time and is called a top drive. In contrast to the Kelly system, the top drive can hold a length of drill pipe or several connected segments of drill pipe while also rotating the drill pipe and, as such, does not need to rely on a Kelly system to rotate the drill pipe.
The process of tripping drill pipe into and/or out of a well involves engaging the drill string with the top drive for a period of time and holding the drill string with a rotary table while the top drive is used to fetch additional lengths of pipe. That is, for example, the top drive may hold the top of a drill string with an elevator during drilling operations or when otherwise tripping pipe into a well. When the top of the drill string approaches the drill floor, the slips may be inserted and a rotary table may engage and hold the drill string, such that the top drive elevators can release the drill string and be used to retrieve an additional length of drill pipe. The additional drill pipe may be retrieved, stabbed into the top of the drill string and secured, and then drilling operations may continue and/or the string may be inserted further into the already drilled well. The process of retrieving additional drill pipe involves releasing the drill string with the top drive elevators, swinging the elevators to a clearance position, raising the elevators to a point higher than pipe or pipe stand to be retrieved, further swinging the elevators into position above the pipe or pipe stand to be retrieved, and lowering the elevators to secure the pipe or pipe stand. Once secured, the pipe or pipe stand can be lifted to a vertical position, moved to well center, stabbed into the drill string, and connected with a roughneck. This process is relatively time consuming and cumbersome.
The following presents a simplified summary of one or more embodiments of the present disclosure in order to provide a basic understanding of such embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments, nor delineate the scope of any or all embodiments.
In one or more embodiments, a dual activity top drive may include a mechanized system configured for suspension from a traveling block of a drill rig and for engaging and rotating a drill string from the top of the drill string. The top drive may also include a primary pipe handling system suspended from the mechanized system and configured for handling a pipe string. The top drive may also include an auxiliary pipe handling system suspended from the mechanized system and configured for handling a segment of pipe to be added or removed from the pipe string.
In one or more other embodiments, a method of tripping drill pipe may include using a top drive on a drill rig and advancing a drill string into a well bore while securing the drill string with a primary pipe handling system. The method may further include, while advancing the drill string, pivoting an auxiliary pipe handling system into position for retrieving an additional pipe to be added to the drill string.
In one or more embodiments, a drill rig may include a top drive suspended from a travelling block of the drill rig. The top drive may include a mechanized system configured for engaging and rotating a drill string from the top of the drill string. The top drive may also include a primary pipe handling system suspended from the mechanized system and configured for handling a pipe string. The top drive may also include an auxiliary pipe handling system suspended from the mechanized system and configured for handling a segment of pipe to be added or removed from the pipe string.
While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the various embodiments of the present disclosure are capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the various embodiments of the present disclosure, it is believed that the invention will be better understood from the following description taken in conjunction with the accompanying Figures, in which:
The present application, in one or more embodiments, includes a drill rig with a dual activity top drive. That is, the top drive may include a primary elevator and an auxiliary elevator for streamlining tripping operations. The primary elevator may be used to hold the drill string when the drill string is being run into the well. The auxiliary elevator may be used to approach and retrieve a new drill pipe or pipe stand as the top drive is approaching the drill floor. In particular, the auxiliary elevator may be used to retrieve single pipes, double stands, or triple stands from a pipe cat. The pipe cat or other pipe delivery system may include pipe that is arranged generally horizontally and/or with some slope. The auxiliary elevator may help to allow engagement with additional drill pipe prior to securing the drill string with the drill floor, whereas the primary elevator may not be able to do so because it may avoid releasing the drill string until it is secured at the drill floor. This type of top drive may allow the new drill pipe or pipe stand to be immediately lifted to a vertical position and brought to well center when the primary elevator releases the drill string. In particular, the top drive herein may avoid the process relating to repositioning the primary elevator to retrieve additional drill pipe. This approach to tripping drill pipe may increase the efficiency of tripping operations. For example, making and/or breaking connections between drill pipe and the drill string may be performed approximately 30 seconds faster each time. Over the course of thousands of feet of drill pipe, with connections every 30 to 90 feet, this saves large amounts of time.
Referring now to
Turning now to
As shown in
The primary system 136 may include a pair of links or bails 140, an elevator 142, and a bail positioning device 144. The pair of links MO may be pivotally supported on the top drive and may hang generally vertically on each side of the pipe engagement portion 128. The top of each link may be pivotally secured to a shoulder 146 at or above the pipe engaging portion, such that the links may pivot about a substantially horizontal axis 148 extending through the top drive. The axis 148 may be in a plane offset from, but generally parallel to, the guide beam such that pivoting motion of the links causes the bottom end of the links to move toward and/or away from the plane of the guide beam. The links 140 may, thus, be adapted to swing or pivot out of alignment of the top drive in a direction toward or away from plane of the guide beam allowing the primary system to access pipes that are arranged adjacent and/or to the side of well center. The links may include substantially solid rods configured for managing relatively high tensile loads from the pipe string. Each link may include an eye or eyelit at the top for pivotally engaging top drive and an additional eye or eyelit at the bottom for pivotally supporting the elevator.
A pipe elevator 142 may be arranged at a bottom end of the links or bails 140. The pipe elevator 142 may be adapted to grasp drill pipe or pipe stands. In particular, the pipe elevator 142 may include a jaw-like mechanism configured to pivotally open allowing the elevator to be placed around a drill pipe or stand and closed around the pipe or stand to grasp the pipe or stand. Each jaw of the pipe elevator may include a semi-circular surface for engaging the outside curved surface of the drill pipe. In one or more embodiments, the open end of the pipe elevator may include a lever or clamping mechanism 150 for pulling the open ends of the elevator together to tightly grasp the pipe. In one or more embodiments, the closing of the elevator may include hydraulics for hydraulically clamping the two jaws closed around the pipe. The pipe elevator may be pivotally engaged with the links or bails allowing the pipe elevator to pivot about a substantially horizontal axis. The pipe elevator may be pivotally engaged by way of loops or other mechanisms engaging the bottom eye or eyelit of the links.
The bail positioning device 144 may be adapted to pivot the links 140 about the pivot axis and, as such, allow the handling system to swing the pipe elevator front to back relative to the guide assembly via the links/bails. The bail positioning device 144 may include an inverted U-shaped plate, bracket, or arm as shown. The bracket may be adapted to pivot about its top end such that the legs of the bracket swing front to back alongside the top drive. The bail positioning device 144 may include a push/pull linkage 152 extending generally rearwardly from the end of each leg of the bracket. The push/pull linkage 152 may be pivotally secured to a respective bracket leg and a link. The bracket legs may be substantially shorter than the length of the links and, as such, may have a much shorter radius of swing. The push/pull linkage may, thus, engage the link below the top of the link, but substantially toward the top end where very little motion forward or backward induces much more motion at the bottom end of the links. The bracket may be wide enough to allow the legs of the bracket to clear the sides of the top drive allowing for a relatively large range of motion of the bracket. The bracket may be hydraulically driven or another mode of mechanical movement such as a drive gear or other mechanism may be used.
As mentioned, the top drive may also include an auxiliary pipe handling system 138. The auxiliary pipe handling system 138 may include the same or similar features as the primary handling system 136. That is, the auxiliary system 138 may include a pair of links or bails 154, an elevator 156, and a bail positioning device 158. The auxiliary system may be arranged on the top drive to supplement the primary system 136 and to avoid interfering with the primary system 136. In one or more embodiments, the auxiliary system 138 may be nested within the primary system where the elevator of the auxiliary system is above the elevator of the primary system. Alternatively, the auxiliary system may be arranged around or outside the primary system where the elevator of the auxiliary system is below the elevator of the primary system.
In the nested configuration, the auxiliary pipe handling system 138 may include a pair of links or bails 154 arranged toward an inboard side of the links/bails of the primary system. That is, the link/bails 154 of the auxiliary system may be secured to the shoulder at a position closer to the center of the top drive and, as such, the links/bails of the auxiliary system may hang vertically within the links/bails of the primary system. The elevator 156 of the auxiliary system may be slightly smaller than the elevator of the primary system and may, thus, fit within the links/bails of the primary system. The elevator 156 of the auxiliary system may be secured to the bottom end of the links/bails of the auxiliary system and such links may be shorter than the link/bails of the primary system such that the auxiliary elevator is arranged above the primary system elevator. It may be appreciated that where the auxiliary system is used for additional pipes or pipe stands rather than the full drill string, the loading demands of the auxiliary system may be much less than that of the primary system and smaller components may be used. The bail positioning device 158 of the auxiliary system 138 may be arranged below the bail positioning device 144 of the primary system 136 and may have a bracket that is narrower to avoid interfering with the bail positioning system of the primary system. In one or more other embodiments, the bail positioning 158 system may be arranged on an opposing side of the top drive. In still other embodiments, the bail positioning system of the auxiliary system may be arranged above the bail positioning system of the primary system.
Where the auxiliary system 138 is arranged around or outside the primary system 136, the links/bails 154 may be outboard the links/bails 140 of the primary system 136. The links/bails 154 of the auxiliary system 138 may be longer than the links/bails 140 of the primary system 136 and, as such, the elevator 156 of the auxiliary system may be arranged below the elevator 142 of the primary system 136. A bail positioning device may be provided that straddles the primary system.
The presence of an auxiliary pipe handling system 138 may allow for new and improved approaches to drilling and to tripping drill pipe into and out of a well. As shown in
It is to be appreciated that drill pipe is commonly delivered to a drill rig using a pipe rack and a V-door 160. That is as shown in
Referring now to the various stages of a process shown in
Various embodiments of the present disclosure may be described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products. Although a flowchart or block diagram may illustrate a method as comprising sequential steps or a process as having a particular order of operations, many of the steps or operations in the flowchart(s) or block diagram(s) illustrated herein can be performed in parallel or concurrently, and the flowchart(s) or block diagram(s) should be read in the context of the various embodiments of the present disclosure. In addition, the order of the method steps or process operations illustrated in a flowchart or block diagram may be rearranged for some embodiments. Similarly, a method or process illustrated in a flow chart or block diagram could have additional steps or operations not included therein or fewer steps or operations than those shown. Moreover, a method step may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc.
As used herein, the terms “substantially” or “generally” refer to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” or “generally” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking, the nearness of completion will be so as to have generally the same overall result as if absolute and total completion were obtained. The use of “substantially” or “generally” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, an element, combination, embodiment, or composition that is “substantially free of” or “generally free of” an element may still actually contain such element as long as there is generally no significant effect thereof.
To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
Additionally, as used herein, the phrase “at least one of [X] and [Y],” where X and Y are different components that may be included in an embodiment of the present disclosure, means that the embodiment could include component X without component Y, the embodiment could include the component Y without component X, or the embodiment could include both components X and Y. Similarly, when used with respect to three or more components, such as “at least one of [X], [Y], and [Z],” the phrase means that the embodiment could include any one of the three or more components, any combination or sub-combination of any of the components, or all of the components.
In the foregoing description various embodiments of the present disclosure have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The various embodiments were chosen and described to provide the best illustration of the principals of the disclosure and their practical application, and to enable one of ordinary skill in the art to utilize the various embodiments with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the present disclosure as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.
This patent application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Application No. PCT/US2020/019039 filed on Feb. 20, 2020, which claims the benefit of priority to U.S. Provisional Application Ser. No. 62/809,093, filed Feb. 22, 2019, each of which are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/019039 | 2/20/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/172407 | 8/27/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
600988 | Hayes | Mar 1898 | A |
1386210 | Thomas | Aug 1921 | A |
1494524 | Adamson | May 1924 | A |
1589781 | Anderson | Jun 1926 | A |
1818278 | Siler | Aug 1931 | A |
2109344 | Selger | Feb 1938 | A |
2314867 | Alexander | Mar 1943 | A |
2531930 | Woolslayer et al. | Nov 1950 | A |
2613051 | Joseph | Oct 1952 | A |
2615681 | True | Oct 1952 | A |
2616646 | Frederick | Nov 1952 | A |
2735556 | Stone | Feb 1956 | A |
2885096 | De | May 1959 | A |
2946464 | Guier | Jul 1960 | A |
3154275 | Stewart | Oct 1964 | A |
3225949 | Erickson et al. | Dec 1965 | A |
3272365 | Stevens | Sep 1966 | A |
3361453 | Brown et al. | Jan 1968 | A |
3533516 | Guier | Oct 1970 | A |
3615027 | Ham | Oct 1971 | A |
3623753 | Henry | Nov 1971 | A |
3651845 | Propst | Mar 1972 | A |
3747789 | Shipley et al. | Jul 1973 | A |
3768663 | Turner et al. | Oct 1973 | A |
3840128 | Swoboda et al. | Oct 1974 | A |
3877583 | Bokenkamp | Apr 1975 | A |
3921823 | Bourree et al. | Nov 1975 | A |
3976207 | Schultz | Aug 1976 | A |
3994350 | Smith et al. | Nov 1976 | A |
4039744 | Seaquist | Aug 1977 | A |
4042123 | Sheldon et al. | Aug 1977 | A |
4117941 | Mccleskey, Jr. et al. | Oct 1978 | A |
4126348 | Palmer | Nov 1978 | A |
4269554 | Jackson | May 1981 | A |
4274778 | Putnam et al. | Jun 1981 | A |
4289442 | Stevens | Sep 1981 | A |
4345864 | Smith, Jr. et al. | Aug 1982 | A |
4348920 | Boyadjieff | Sep 1982 | A |
4397605 | Cowgill et al. | Aug 1983 | A |
4531875 | Krueger | Jul 1985 | A |
4591006 | Hutchison et al. | May 1986 | A |
4621974 | Krueger | Nov 1986 | A |
4680519 | Chand et al. | Jul 1987 | A |
4715761 | Berry et al. | Dec 1987 | A |
4738321 | Olivier | Apr 1988 | A |
4846357 | Sholl et al. | Jul 1989 | A |
4861081 | Satoh | Aug 1989 | A |
4899095 | Kishi et al. | Feb 1990 | A |
5038871 | Dinsdale | Aug 1991 | A |
5211251 | Woolslayer | May 1993 | A |
5494320 | Cerruti | Feb 1996 | A |
5813286 | Hansen | Sep 1998 | A |
5921329 | Armstrong | Jul 1999 | A |
6047771 | Roeynestad | Apr 2000 | A |
6260646 | Fernandez et al. | Jul 2001 | B1 |
6412576 | Meiners | Jul 2002 | B1 |
6460900 | Bakke | Oct 2002 | B1 |
7137616 | Kysely | Nov 2006 | B2 |
7219744 | Pietras | May 2007 | B2 |
7249639 | Belik | Jul 2007 | B2 |
7341281 | Guesnon et al. | Mar 2008 | B2 |
7370707 | Mcdaniel et al. | May 2008 | B2 |
7390032 | Hughes | Jun 2008 | B2 |
7493960 | Leising et al. | Feb 2009 | B2 |
7726929 | Orgeron | Jun 2010 | B1 |
7905311 | Brown | Mar 2011 | B2 |
7946795 | Orgeron | May 2011 | B2 |
7984757 | Keast et al. | Jul 2011 | B1 |
8074484 | Denkmeier et al. | Dec 2011 | B2 |
8191637 | Havinga | Jun 2012 | B2 |
8210269 | Hudson et al. | Jul 2012 | B2 |
8317448 | Hankins et al. | Nov 2012 | B2 |
8504206 | Fudaba et al. | Aug 2013 | B2 |
8550761 | Belik et al. | Oct 2013 | B2 |
8690508 | Orgeron | Apr 2014 | B1 |
8936424 | Barnes et al. | Jan 2015 | B1 |
9133968 | Elrick et al. | Sep 2015 | B2 |
9157286 | Richardson et al. | Oct 2015 | B2 |
9291010 | Barnes | Mar 2016 | B1 |
9388923 | Romano | Jul 2016 | B2 |
9706185 | Ellis | Jul 2017 | B2 |
9845645 | Hughes et al. | Dec 2017 | B2 |
10047908 | Bohle, II et al. | Aug 2018 | B1 |
10053934 | Keogh et al. | Aug 2018 | B2 |
10190374 | Bowley et al. | Jan 2019 | B2 |
10246952 | Trydal et al. | Apr 2019 | B2 |
10384907 | Upmeier et al. | Aug 2019 | B2 |
10612322 | Doyon | Apr 2020 | B2 |
10794126 | Magnuson | Oct 2020 | B2 |
10988994 | Clarke et al. | Apr 2021 | B2 |
10995564 | Miller et al. | May 2021 | B2 |
11035183 | Donnally et al. | Jun 2021 | B2 |
11220888 | Ocegueda-Hernandez et al. | Jan 2022 | B2 |
11274508 | Mckenzie et al. | Mar 2022 | B2 |
11352843 | Callaghan | Jun 2022 | B2 |
11365592 | Moon et al. | Jun 2022 | B1 |
11613932 | Saebo et al. | Mar 2023 | B2 |
11613940 | Mckenzie et al. | Mar 2023 | B2 |
11834914 | Mckenzie et al. | Dec 2023 | B2 |
20020175519 | Mack et al. | Nov 2002 | A1 |
20030159854 | Simpson et al. | Aug 2003 | A1 |
20040057815 | Woolslayer et al. | Mar 2004 | A1 |
20050055132 | Matsumoto et al. | Mar 2005 | A1 |
20050113971 | Zhang et al. | May 2005 | A1 |
20050126792 | Berry | Jun 2005 | A1 |
20060081379 | Fehres et al. | Apr 2006 | A1 |
20060104747 | Zahn et al. | May 2006 | A1 |
20060124316 | Pietras | Jun 2006 | A1 |
20060231344 | Drzewiecki | Oct 2006 | A1 |
20060249292 | Guidry | Nov 2006 | A1 |
20070062705 | Schats et al. | Mar 2007 | A1 |
20070114069 | Hooper et al. | May 2007 | A1 |
20070228671 | Norton | Oct 2007 | A1 |
20080136203 | Krijnen et al. | Jun 2008 | A1 |
20080202812 | Childers et al. | Aug 2008 | A1 |
20080238095 | Yater et al. | Oct 2008 | A1 |
20080296065 | Standal | Dec 2008 | A1 |
20090283324 | Konduc et al. | Nov 2009 | A1 |
20100163247 | Wright et al. | Jul 2010 | A1 |
20100193198 | Murray et al. | Aug 2010 | A1 |
20100303586 | Hankins et al. | Dec 2010 | A1 |
20110079434 | Belik et al. | Apr 2011 | A1 |
20110120730 | Clasen et al. | May 2011 | A1 |
20110147009 | Dupal et al. | Jun 2011 | A1 |
20110226485 | Seneviratne et al. | Sep 2011 | A1 |
20120000671 | Krohn et al. | Jan 2012 | A1 |
20120018222 | Hankins et al. | Jan 2012 | A1 |
20120259337 | Del Rio et al. | Oct 2012 | A1 |
20130075114 | Dekker et al. | Mar 2013 | A1 |
20130142607 | Ditzler | Jun 2013 | A1 |
20130146305 | Dupal et al. | Jun 2013 | A1 |
20130192817 | Fournier, Jr. et al. | Aug 2013 | A1 |
20130206478 | Selzer et al. | Aug 2013 | A1 |
20140050522 | Slaughter, Jr. et al. | Feb 2014 | A1 |
20140054089 | Sondervik | Feb 2014 | A1 |
20140090856 | Pratt | Apr 2014 | A1 |
20140097027 | Marica et al. | Apr 2014 | A1 |
20140133939 | Richardson et al. | May 2014 | A1 |
20140145408 | Midas et al. | May 2014 | A1 |
20140202769 | Magnuson | Jul 2014 | A1 |
20140352978 | Eilertsen et al. | Dec 2014 | A1 |
20150016925 | Larkin | Jan 2015 | A1 |
20150053424 | Wiens et al. | Feb 2015 | A1 |
20150127152 | Nammoto et al. | May 2015 | A1 |
20150148952 | Shiratsuchi | May 2015 | A1 |
20150232272 | Magnuson | Aug 2015 | A1 |
20150272579 | Leimbach et al. | Oct 2015 | A1 |
20150273688 | Harada et al. | Oct 2015 | A1 |
20150275596 | Hickie | Oct 2015 | A1 |
20150283704 | Watanabe | Oct 2015 | A1 |
20150330162 | Magnuson et al. | Nov 2015 | A1 |
20160024852 | Kannegaard et al. | Jan 2016 | A1 |
20160060979 | Magnuson | Mar 2016 | A1 |
20160090786 | Roodenburg | Mar 2016 | A1 |
20160102508 | Fox et al. | Apr 2016 | A1 |
20160115745 | Bisel | Apr 2016 | A1 |
20160145954 | Helms et al. | May 2016 | A1 |
20160160586 | Keogh et al. | Jun 2016 | A1 |
20160168929 | Magnuson et al. | Jun 2016 | A1 |
20160201408 | Little et al. | Jul 2016 | A1 |
20170067303 | Thiemann | Mar 2017 | A1 |
20170172295 | Tropper | Jun 2017 | A1 |
20170204687 | Yorga et al. | Jul 2017 | A1 |
20170232620 | Kalb et al. | Aug 2017 | A1 |
20170234088 | Orr et al. | Aug 2017 | A1 |
20170268302 | Orr et al. | Sep 2017 | A1 |
20180002987 | Kannegaard et al. | Jan 2018 | A1 |
20180171724 | Daigle et al. | Jun 2018 | A1 |
20180216405 | De Mul et al. | Aug 2018 | A1 |
20180238120 | Patterson et al. | Aug 2018 | A1 |
20180245408 | Keogh et al. | Aug 2018 | A1 |
20180328112 | Berry et al. | Nov 2018 | A1 |
20180334865 | Miller et al. | Nov 2018 | A1 |
20190017334 | Loeyning et al. | Jan 2019 | A1 |
20190063168 | Reddy et al. | Feb 2019 | A1 |
20190063649 | Snyder, II | Feb 2019 | A1 |
20190143532 | Cutkosky et al. | May 2019 | A1 |
20190145197 | Callaghan | May 2019 | A1 |
20190309585 | Miller et al. | Oct 2019 | A1 |
20190352982 | Arefi et al. | Nov 2019 | A1 |
20200032597 | Jorgic et al. | Jan 2020 | A1 |
20200040673 | Donnally et al. | Feb 2020 | A1 |
20200040674 | Mckenzie et al. | Feb 2020 | A1 |
20200115969 | De Mul et al. | Apr 2020 | A1 |
20210246738 | Mckenzie et al. | Aug 2021 | A1 |
20210293099 | Carnegie et al. | Sep 2021 | A1 |
20210301602 | Mckenzie et al. | Sep 2021 | A1 |
20220178215 | Donnally et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2911388 | Nov 2014 | CA |
2855105 | Dec 2015 | CA |
202064839 | Dec 2011 | CN |
102979465 | Mar 2013 | CN |
103410458 | Nov 2013 | CN |
104976322 | Oct 2015 | CN |
105113983 | Dec 2015 | CN |
108266139 | Jul 2018 | CN |
110792399 | Feb 2020 | CN |
1510302 | Mar 2005 | EP |
1953334 | Aug 2008 | EP |
3829823 | Sep 2023 | EP |
2091788 | Aug 1982 | GB |
2532267 | May 2016 | GB |
H09137689 | May 1997 | JP |
20151648 | Dec 2015 | NO |
13499 | Aug 2023 | SA |
WO-8800274 | Jan 1988 | WO |
WO-9958811 | Nov 1999 | WO |
WO-0123701 | Apr 2001 | WO |
WO-2004018829 | Mar 2004 | WO |
2007143842 | Dec 2007 | WO |
WO-2013082172 | Jun 2013 | WO |
WO-2014179730 | Nov 2014 | WO |
WO-2015043740 | Apr 2015 | WO |
WO-2016024859 | Feb 2016 | WO |
WO-2016197255 | Dec 2016 | WO |
WO-2017039996 | Mar 2017 | WO |
2017087200 | May 2017 | WO |
WO-2017087595 | May 2017 | WO |
WO-2017190120 | Nov 2017 | WO |
WO-2017193204 | Nov 2017 | WO |
WO-2019195651 | Oct 2019 | WO |
WO-2020028852 | Feb 2020 | WO |
WO-2020028853 | Feb 2020 | WO |
WO-2020028853 | Feb 2020 | WO |
WO-2020028856 | Feb 2020 | WO |
WO-2020028858 | Feb 2020 | WO |
2020123399 | Jun 2020 | WO |
WO-2020151386 | Jul 2020 | WO |
2020160440 | Aug 2020 | WO |
WO-2020172407 | Aug 2020 | WO |
WO-2021203122 | Oct 2021 | WO |
WO-2021226622 | Nov 2021 | WO |
WO-2022016168 | Jan 2022 | WO |
2022170302 | Aug 2022 | WO |
Entry |
---|
“U.S. Appl. No. 16/431,533, Final Office Action dated Jul. 21, 2022”, 13 pgs. |
“U.S. Appl. No. 16/786,345, Final Office Action dated Jul. 28, 2022”, 9 pgs. |
“European Application Serial No. 19758551.6, Response filed Aug. 25, 2022 to Communication Pursuant to Article 94(3) EPC dated Apr. 28, 2022”, 73 pgs. |
“European Application Serial No. 19752902.7, Response filed Aug. 26, 2022 to Communication Pursuant to Article 94(3) EPC dated May 3, 2022”, 70 pgs. |
“U.S. Appl. No. 16/431,533, Examiner Interview Summary dated Sep. 14, 2022”, 3 pgs. |
“Saudi Arabia Application No. 521421154, Office Action dated Aug. 31, 2022”, w o English translation, 10 pgs. |
“U.S. Appl. No. 16/786,345, Response filed Sep. 27, 2022 to Final Office Action dated Jul. 28, 2022”, 6 pgs. |
“U.S. Appl. No. 16/098,160, Advisory Action dated Jul. 22, 2020”, 5 pgs. |
“U.S. Appl. No. 16/098,160, Advisory Action dated Aug. 10, 2021”, 4 pgs. |
“U.S. Appl. No. 16/098,160, Examiner Interview Summary dated Jun. 23, 2020”, 3 pgs. |
“U.S. Appl. No. 16/098,160, Final Office Action dated Apr. 30, 2020”, 7 pgs. |
“U.S. Appl. No. 16/098,160, Final Office Action dated May 27, 2021”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Non Final Office Action dated Sep. 30, 2019”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Non Final Office Action dated Oct. 6, 2020”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Preliminary Amendment filed Nov. 1, 2018”, 5 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Jan. 6, 2021 to Non Final Office Action dated Oct. 6, 2020”, 7 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Jan. 30, 2020 to Non Final Office Action dated Sep. 30, 2019”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Jun. 30, 2020 to Final Office Action dated Apr. 30, 2020”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Jul. 27, 2021 to Final Office Action dated May 27, 2021”, 9 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Aug. 24, 2020 to Advisory Action dated Jul. 22, 2020”, 9 pgs. |
“U.S. Appl. No. 16/375,927, Advisory Action dated Aug. 11, 2020”, 6 pgs. |
“U.S. Appl. No. 16/375,927, Corrected Notice of Allowability dated Jan. 26, 2021”, 2 pgs. |
“U.S. Appl. No. 16/375,927, Examiner Interview Summary dated Apr. 24, 2020”, 3 pgs. |
“U.S. Appl. No. 16/375,927, Examiner Interview Summary dated Dec. 7, 2020”, 7 pgs. |
“U.S. Appl. No. 16/375,927, Final Office Action dated Jun. 5, 2020”, 10 pgs. |
“U.S. Appl. No. 16/375,927, Non Final Office Action dated Feb. 28, 2020”, 9 pgs. |
“U.S. Appl. No. 16/375,927, Non Final Office Action dated Sep. 24, 2020”, 10 pgs. |
“U.S. Appl. No. 16/375,927, Notice of Allowance dated Jan. 1, 2021”, 8 pgs. |
“U.S. Appl. No. 16/375,927, Response filed May 27, 2020 to Non Final Office Action dated Feb. 28, 2020”, 10 pgs. |
“U.S. Appl. No. 16/375,927, Response filed Aug. 3, 2020 to Final Office Action dated Jun. 5, 2020”, 11 pgs. |
“U.S. Appl. No. 16/375,927, Response filed Sep. 8, 2020 to Advisory Action dated Aug. 11, 2020”, 10 pgs. |
“U.S. Appl. No. 16/375,927, Response filed Dec. 16, 2020 to Non Final Office Action dated Sep. 24, 2020”, 8 pgs. |
“U.S. Appl. No. 16/431,540, Examiner Interview Summary dated Jan. 19, 2021”, 3 pgs. |
“U.S. Appl. No. 16/431,540, Final Office Action dated Nov. 19, 2020”, 10 pgs. |
“U.S. Appl. No. 16/431,540, Non Final Office Action dated Jun. 10, 2020”, 13 pgs. |
“U.S. Appl. No. 16/431,540, Notice of Allowance dated Feb. 11, 2021”, 5 pgs. |
“U.S. Appl. No. 16/431,540, Response filed Jan. 19, 2021 to Final Office Action dated Nov. 19, 2020”, 11 pgs. |
“U.S. Appl. No. 16/431,540, Response Filed Sep. 10, 2020 to Non Final Office Action dated Jun. 10, 2020”, 24 pgs. |
“U.S. Appl. No. 16/431,540, Supplemental Notice of Allowability dated Mar. 11, 2021”, 2 pgs. |
“U.S. Appl. No. 16/836,365, Final Office Action dated May 4, 2021”, 7 pgs. |
“U.S. Appl. No. 16/836,365, Non Final Office Action dated Jan. 25, 2021”, 8 pgs. |
“U.S. Appl. No. 16/836,365, Notice of Allowance dated Jul. 27, 2021”, 7 pgs. |
“U.S. Appl. No. 16/836,365, Response filed Apr. 22, 2021 to Non Final Office Action dated Jan. 25, 2021”, 8 pgs. |
“U.S. Appl. No. 16/836,365, Response filed Jul. 2, 2021 to Final Office Action dated May 4, 2021”, 7 pgs. |
“Canadian Application Serial No. 3,022,888, Voluntary Amendment filed Jul. 12, 2019”, 10 pgs. |
“International Application Serial No. PCT/CA2017/000125, International Preliminary Report on Patentability dated Nov. 22, 2018”, 6 pgs. |
“International Application Serial No. PCT/CA2017/000125, International Search Report dated Aug. 14, 2017”, 3 pgs. |
“International Application Serial No. PCT/CA2017/000125, Written Opinion dated Aug. 14, 2017”, 4 pgs. |
“International Application Serial No. PCT/CN2019/124443, International Preliminary Report on Patentability dated May 26, 2021”, 4 pgs. |
“International Application Serial No. PCT/CN2019/124443, International Search Report dated Mar. 5, 2020”, 4 pgs. |
“International Application Serial No. PCT/CN2019/124443, Written Opinion dated Mar. 5, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2019/025942, International Preliminary Report on Patentability dated Oct. 30, 2020”, 7 pgs. |
“International Application Serial No. PCT/US2019/025942, International Search Report dated Jun. 27, 2019”, 4 pgs. |
“International Application Serial No. PCT/US2019/025942, Response filed Feb. 5, 2020 to Written Opinion dated Feb. 27, 2019”, 14 pgs. |
“International Application Serial No. PCT/US2019/025942, Response filed Apr. 23, 2020 to Written Opinion dated Apr. 23, 2020”, 14 pgs. |
“International Application Serial No. PCT/US2019/025942, Response filed Sep. 22, 2020 to Written Opinion dated Jul. 23, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2019/025942, Written Opinion dated Feb. 24, 2020”, 8 pgs. |
“International Application Serial No. PCT/US2019/025942, Written Opinion dated Jun. 27, 2019”, 9 pgs. |
“International Application Serial No. PCT/US2019/025942, Written Opinion dated Jul. 23, 2020”, 5 pgs. |
“International Application Serial No. PCT/US2019/044974, International Preliminary Report on Patentability dated Nov. 11, 2020”, 7 pgs. |
“International Application Serial No. PCT/US2019/044974, International Search Report dated Oct. 24, 2019”, 6 pgs. |
“International Application Serial No. PCT/US2019/044974, Response filed Jun. 2, 2020 to Written Opinion dated Oct. 24, 2019”, 13 pgs. |
“International Application Serial No. PCT/US2019/044974, Response filed Aug. 18, 2020 to Written Opinion dated Jun. 19, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2019/044974, Written Opinion dated Jun. 19, 2020”, 7 pgs. |
“International Application Serial No. PCT/US2019/044974, Written Opinion dated Oct. 24, 2019”, 6 pgs. |
“International Application Serial No. PCT/US2019/044976, International Preliminary Report on Patentability dated Mar. 9, 2021”, 7 pgs. |
“International Application Serial No. PCT/US2019/044976, International Search Report dated Oct. 18, 2019”, 5 pgs. |
“International Application Serial No. PCT/US2019/044976, Response filed Jun. 3, 2020 to Written Opinion dated Oct. 18, 2019”, 11 pgs. |
“International Application Serial No. PCT/US2019/044976, Response filed Aug. 25, 2020 to Written Opinion dated Jun. 26, 2020”, 3 pgs. |
“International Application Serial No. PCT/US2019/044976, Written Opinion dated Jun. 26, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2019/044976, Written Opinion dated Oct. 18, 2019”, 8 pgs. |
“International Application Serial No. PCT/US2019/044976, Written Opinion dated Nov. 6, 2020”, 6 pgs. |
“International Application Serial No. PCT/US2019/044979, International Preliminary Report on Patentability dated Nov. 18, 2020”, 7 pgs. |
“International Application Serial No. PCT/US2019/044979, International Search Report dated Oct. 22, 2019”, 6 pgs. |
“International Application Serial No. PCT/US2019/044979, Response filed Jun. 3, 2020 to Written Opinion dated Oct. 22, 2019”, 12 pgs. |
“International Application Serial No. PCT/US2019/044979, Response filed Aug. 25, 2020 to Written Opinion dated Jun. 26, 2020”, 3 pgs. |
“International Application Serial No. PCT/US2019/044979, Written Opinion dated Jun. 26, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2019/044979, Written Opinion dated Oct. 22, 2019”, 7 pgs. |
“International Application Serial No. PCT/US2019/044983, International Preliminary Report on Patentability dated Feb. 18, 2021”, 8 pgs. |
“International Application Serial No. PCT/US2019/044983, International Search Report dated Oct. 22, 2019”, 5 pgs. |
“International Application Serial No. PCT/US2019/044983, Written Opinion dated Oct. 22, 2019”, 6 pgs. |
“International Application Serial No. PCT/US2019/124443, Response filed Nov. 24, 2020 to Written Opinion dated Mar. 5, 2020”, 10 pgs. |
“International Application Serial No. PCT/US2020/019039, International Search Report dated May 15, 2020”, 2 pgs. |
“International Application Serial No. PCT/US2020/019039, Written Opinion dated May 15, 2020”, 4 pgs. |
“International Application Serial No. PCT/US2021/070319, International Search Report dated May 31, 2021”, 5 pgs. |
“International Application Serial No. PCT/US2021/070319, Written Opinion dated May 31, 2021”, 6 pgs. |
“International Application Serial No. PCT/US2021/070488, Invitation to Pay Additional Fees dated Jun. 28, 2021”, 2 pgs. |
“Moveit—Kinematic constraints: Visibility Constraint Class Reference”, [online]. [retrieved Apr. 21, 2021]. Retrieved from the Internet: <URL: http://docs.ros.org/en/hydro/api/moveit_core/html/classkinematic_constraints_1_1VisibilityConstraint.html>, (2021), 8 pgs. |
“Moveit-Moving robots into the future”, [online]. [archived Dec. 4, 2020]. Retrieved from the Internet: < URL: https://web.archive.org/web/20201204224545/https://moveit.ros.org/>, (2020), 7 pgs. |
“International Application Serial No. PCT US2022 070377, International Search Report dated Mar. 25, 2022”, 5 pgs. |
“International Application Serial No. PCT US2022 070377, Written Opinion dated Mar. 25, 2022”, 7 pgs. |
“Saudia Arabian Application No. 521421161, Office Action dated Mar. 31, 2022”, (w English Summary), 6 pgs. |
“U.S. Appl. No. 16/431,533, Response Filed May 16, 2022 to Non Final Office Action dated Feb. 14, 2022”, 11 pgs. |
“U.S. Appl. No. 17/248,669, Corrected Notice of Allowability dated May 18, 2022”, 3 pgs. |
“European Application Serial No. 19758551.6, Communication Pursuant to Article 94(3) EPC dated Apr. 28, 2022”, 4 pgs. |
“European Application Serial No. 19752902.7, Communication Pursuant to Article 94(3) EPC dated May 3, 2022”, 5 pgs. |
“International Application Serial No. PCT US2021 070319, International Preliminary Report on Patentability dated May 10, 2022”, 7 pgs. |
“U.S. Appl. No. 16/786,345, Response filed Jun. 15, 2022 to Non Final Office Action dated Mar. 28, 2022”, 12 pgs. |
“U.S. Appl. No. 16/098,160, Non-Final Office Action dated Sep. 15, 2021”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Aug. 27, 2021 to Advisory Action dated Aug. 10, 2021”, 8 pgs. |
“U.S. Appl. No. 16/098,160, Response filed Dec. 14, 2021 to Non-Final Office Action dated Sep. 15, 2021”, 8 pgs. |
“U.S. Appl. No. 16/836,365, Notice of Allowance dated Nov. 3, 2021”, 7 pgs. |
“U.S. Appl. No. 17/248,669, Examiner Interview Summary dated Dec. 17, 2021”, 2 pgs. |
“U.S. Appl. No. 17/248,669, Non-Final Office Action dated Oct. 5, 2021”, 8 pgs. |
“International Application Serial No. PCT/US2020/019039, International Preliminary Report on Patentability dated Sep. 2, 2021”, 6 pgs. |
“International Application Serial No. PCT/US2021/070488, International Search Report dated Sep. 8, 2021”, 4 pgs. |
“International Application Serial No. PCT/US2021/070488, Written Opinion dated Sep. 8, 2021”, 6 pgs. |
“International Application Serial No. PCT/US2021/070786, International Search Report dated Nov. 9, 2021”, 4 pgs. |
“International Application Serial No. PCT/US2021/070786, Invitation to Pay Additional Fees dated Sep. 1, 2021”, 2 pgs. |
“International Application Serial No. PCT/US2021/070786, Written Opinion dated Nov. 9, 2021”, 7 pgs. |
“U.S. Appl. No. 16/786,345, Corrected Notice of Allowability dated Sep. 20, 2023”, 3 pgs. |
“U.S. Appl. No. 16/786,345, Notice of Allowance dated Aug. 31, 2023”, 6 pgs. |
“U.S. Appl. No. 16/786,345, Response filed Aug. 23, 2023 to Final Office Action dated May 30, 2023”, 7 pgs. |
“U.S. Appl. No. 17/250,548, Restriction Requirement dated Aug. 21, 2023”, 6 pgs. |
“U.S. Appl. No. 17/310,188, Non Final Office Action dated Sep. 11, 2023”, 14 pgs. |
“U.S. Appl. No. 16/786,345, Final Office Action dated Oct. 24, 2022”, 8 pgs. |
“U.S. Appl. No. 16/431,533, Response filed Oct. 21, 2022 to Final Office Action dated Jul. 21, 2022”, 9 pgs. |
“U.S. Appl. No. 16/431,533, Notice of Allowance dated Nov. 7, 2022”, 8 pgs. |
“U.S. Appl. No. 16/431,533, Corrected Notice of Allowability dated Nov. 16, 2022”, 2 pgs. |
“U.S. Appl. No. 16/786,345, Advisory Action dated Dec. 30, 2022”, 3 pgs. |
“U.S. Appl. No. 16/786,345, Non Final Office Action dated Jan. 19, 2023”, 7 pgs. |
“International Application Serial No. PCT US2022 070377, Written Opinion of the International Preliminary Search Authority dated Jan. 12, 2023”, 8 pgs. |
“U.S. Appl. No. 16/786,345, Response filed Apr. 19, 2023 to Non Final Office Action dated Jan. 19, 2023”, 8 pgs. |
“International Application Serial No. PCT US2022 070377, International Preliminary Report on Patentability dated Apr. 4, 2023”, 8 pgs. |
“U.S. Appl. No. 16/786,345, Final Office Action dated May 30, 2023”, 7 pgs. |
“European Application Serial No. 21719521.3, Communication Pursuant to Article 94(3) EPC dated Jul. 17, 2023” 3 pgs. |
“U.S. Appl. No. 17/250,548, Response filed Oct. 4, 2023 to Restriction Requirement dated Aug. 21, 2023”, 6 pgs. |
“U.S. Appl. No. 17/310,188, Response filed Oct. 17, 2023 to Non Final Office Action dated Sep. 11, 2023”, 9 pgs. |
“U.S. Appl. No. 17/250,548, Non Final Office Action dated Oct. 20, 2023”, 9 pgs. |
“U.S. Appl. No. 17/310,188, Notice of Allowance dated Nov. 1, 2023”, 7 pgs. |
“U.S. Appl. No. 16/098,160, Corrected Notice of Allowability dated Mar. 25, 2022”, 4 pgs. |
“U.S. Appl. No. 16/098,160, Notice of Allowance dated Feb. 3, 2022”, 7 pgs. |
“U.S. Appl. No. 16/431,533, Non Final Office Action dated Feb. 14, 2022”, 15 pgs. |
“U.S. Appl. No. 16/786,345, Non Final Office Action dated Mar. 28, 2022”, 13 pgs. |
“U.S. Appl. No. 17/248,669, 312 Amendment filed Mar. 2, 2022”, 3 pgs. |
“U.S. Appl. No. 17/248,669, Notice of Allowability dated Feb. 3, 2022”, 5 pgs. |
“U.S. Appl. No. 17/248,669, Notice of Allowance dated Jan. 25, 2022”, 8 pgs. |
“U.S. Appl. No. 17/248,669, PTO Response to Rule 312 Communication dated Mar. 9, 2022”, 2 pgs. |
“U.S. Appl. No. 17/248,669, Response filed Jan. 5, 2022 to Non-Final Office Action dated Oct. 5, 2021”, 8 pgs. |
“U.S. Appl. No. 17/250,548, Final Office Action dated Jan. 12, 2024”, 9 pgs. |
“U.S. Appl. No. 17/250,548, Response filed Jan. 3, 2024 to Non Final Office Action dated Oct. 20, 2023”, 10 pgs. |
“U.S. Appl. No. 17/310,188, Corrected Notice of Allowability dated Dec. 6, 2023”, 3 pgs. |
“European Application Serial No. 21719521.3, Communication Pursuant to Article 94(3) EPC dated Nov. 21, 2023”, 4 pgs. |
“European Application Serial No. 21719521.3, Response filed Oct. 29, 2023 to Communication Pursuant to Article 94(3) EPC dated Jul. 17, 2023”, 74 pgs. |
Number | Date | Country | |
---|---|---|---|
20220145704 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62809093 | Feb 2019 | US |