Dual aluminum tamper indicating tabbed sealing member

Information

  • Patent Grant
  • 10604315
  • Patent Number
    10,604,315
  • Date Filed
    Wednesday, February 4, 2015
    9 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
A tamper evident tabbed sealing member for sealing to a rim surrounding a container opening is described that includes a multi-layer laminate configured to isolate a residual ring of material that remains on a container land area upon seal removal.
Description
FIELD

The disclosure relates to sealing members for use as secondary closures on containers, and more particularly, to tamper indicating tabbed sealing members.


BACKGROUND

It is often desirable to seal the opening of a container using a removable or peelable seal, sealing member, or inner seal. Often a cap or other closure is then screwed or placed over the container opening capturing the sealing member therein. In use, a consumer typically removes the cap or other closure to gain access to the sealing member and then removes or otherwise peels the seal from the container in order to dispense or gain access to its contents.


In some cases, the inner seal provides tamper evidence whereby a portion of the seal remains on the container as evidence that the sealing member has been removed or tampered with. For instance, upon removal of the sealing member from the container, the laminate forming the sealing member is designed to rupture and leave debris on the container finish to indicate that the package has been opened. Prior examples of such tamper evidence tabbed liners resulted in a laminates that left debris on the container directly dependent on the placement of the tab. For example, if the tab was on the top of the sealing member and defined wholly within its perimeter and covering approximately 50 percent of the seal, then prior seats generally left debris on the container land area and also covering over approximately 50 percent of the container opening. The consumer would then need to remove this remaining seal portion in order to effectively use the container, which tended to serve as a nuisance to some consumers and in some applications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded cross-section view of an exemplary tabbed sealing member of the disclosure;



FIG. 2 is another exploded cross-section view of an exemplary tabbed sealing member of the disclosure; and



FIG. 3 is an image of the tabbed sealing member of the disclosure shown removed from a container with residual material left on the container rim land area.





DETAILED DESCRIPTION

The present disclosure generally relates to tabbed sealing members having a gripping tab defined wholly within a perimeter of the seal that is also configured to provide tamper evidence. The sealing members herein eliminate the excessive debris left by prior tamper evidence top-tabbed type inner seals. In one aspect, the sealing members herein are arranged and configured to isolate the residual debris, after removal of the sealing member from the container via the tab, to the land region of the container rim independent of the size or positioning of the tab on the top surface of the sealing member. In another aspect, the tabbed sealing members herein utilize a unique dual foil assembly or dual layered aluminum assembly to aid in achieving the isolated debris left as a ring of sealant and single aluminum layer on the container rim.


In a preferred approach, a dual layered aluminum sealant component or laminate is configured upon removal from the container to leave a residue of sealant and aluminum remnants isolated to the container finish, which controls the amount of residual liner remaining on the container after opening. Preferably, the isolated remnants are a thin annular ring of the sealant and aluminum layers. Reducing the land areas and also stepping in the container finish help to reduce the removal force of this design. That is, the top surface area of the container rim land area may be reduced. The separation functionality is controlled by the gauge of the aluminum in the base layer and the selection of the adhesive between the two layers.


By one approach, the tabbed seating member includes the lamination of a base foil layer and sealant component that is bonded to a secondary foil component to form a tamper evidence substructure. The bonding may be by extrusion lamination or thermal lamination. Optional layers may then be applied to the tamper evidence substructure, such as foam layers, non-foam polymer layers, and various tab components to form a tamper evidence sealing member configured to isolate the residual debris to the container rim. This laminate can be used as a single element liner system or within a two-piece assembly where the sealing member is temporarily bonded (such as by wax) to a pulp or synthetic backing material in a so-called two-piece seal and liner configuration.


For simplicity, this disclosure generally may refer to a container or bottle, but the sealing members herein may be applied to any type of container, bottle, package or other apparatus having a rim or mouth surrounding an access opening to an internal cavity. In this disclosure, reference to upper and lower surfaces and layers of the components of the sealing member refers to an orientation of the components as generally depicted in figures and when the sealing member is in use with a container in an upright position and having an opening at the top of the container. Different approaches to the sealing member will first be generally described, and then more specifics of the various constructions and materials will be explained thereafter. It will be appreciated that the sealing members described herein, in some cases, function in both a one-piece or two-piece sealing member configuration. A one-piece sealing member generally includes just the seating member bonded to a container rim. A cap or closure may be also used therewith. A two-piece sealing member includes the sealing member temporarily bonded to a liner. In this construction, the sealing member is bonded to a container's rim, and the liner is configured to separate from the sealing member during heating to be retained in a cap or other closure used on the container. In a two-piece construction, a wax layer, for example, may be used to temporarily bond the seating member to a liner. Other types of releasable layers may also be used to provide a temporary bond between the seal and liner, but the releasable layers are generally heat activated.


Turning to FIG. 1, one example of a tamper evidence tabbed sealing member 10 is shown. Seat 10 includes an upper laminate 12 partially bonded to a lower laminate 14 via a partial bond 16 to form a gripping tab 17 defined wholly within a perimeter of the seal. In this approach, the seal also includes a partial layer or tab stock 18 to aid in forming the tab 17. The tab stock 18 is bonded to layers in the upper laminate 12 but not bonded to layers in the lower laminate 14.


The upper laminate 12 may also include a polymer film support layer 20 to provide structural support and a co-polymer layer or bonding layer 22 to bond the polymer film 20 to the lower laminate 14. Here, the film 20 is partially bonded to the tab stock 18 and partially bonded to the lower laminate via the bonding layer 22.


Support film layer 20 may be may be polyethylene terephthalate (PET), nylon, polyolefin, or other structural polymer layer and may be, in some approaches, about 0.5 to about 2.5 mil thick.


When using the tab stock 18, the tab 17 is defined or formed via the tab stock 18 that extends only part way across the upper laminate 12. More specifically, the tab stock 18 forms the tab 17 because it bonds to the bonding layer 22 and generally prevents layer 20 (and any layers above) from adhering to the upper surface of the lower seal laminate 14 (or any layers therebetween) across at least a portion thereof. A bottom surface of tab stock 18 is adjacent to, but not bonded to, the upper surface of the tower laminate 14 to form the tab 17. In one aspect, the tab stock 18 is formed of polyester, such as polyethylene terephthalate (PET), or paper. By one optional approach, a lower surface of the tab stock 18 may be coated with a release material, for example silicone. The optional release coating minimizes the possibility that the tab stock 18 will become adhered to the upper surface of the lower laminate 14 during the heat seating or induction heat sealing process. The tab stock 18 permits the tab structure 17 to pivot or hinge upwardly along a boundary line to form the tab 17. By this approach, the tab stock 18 and formed tab 17 are defined wholly within a circumference or perimeter of the seal.


The bonding layer 22 may include any polymer materials that adhesively bond, are heat activated, or heated to achieve its bonding characteristics or application to the seal. By one approach, the bonding layer 22 may be selected form ethylene vinyl acetate (EVA), polyolefin, 2-component polyurethane, ethylene acrylic acid copolymers, curable two-part urethane adhesives, epoxy adhesives, ethylene methacrylate copolymers and the like bonding materials. As shown, the heat activated bonding layer 22 extends the full width of the laminate segment 12. In other approaches, the laminate 12 may only include a partial layer of adhesive and, thus, not use the tab stock layer 18 discussed above.


By one approach, the bonding layer 22 is EVA with a vinyl acetate content of about 20 to about 28 percent with the remaining monomer being ethylene in order to achieve the bond strengths to securely hold the upper laminate to the lower laminate. In some cases, a vinyl acetate content lower than 20 percent is insufficient to form the robust structures described herein. By one approach, bonding layer 22 may be about 0.5 to about 3.5 mil of EVA, in other approaches about 0.5 to about 2.5 mils of EVA, in other approaches, about 0.5 to about 1.5 mils of EVA and, in yet other approaches, about 0.5 to about 1.0 mils of EVA; however, the thickness can vary as needed for a particular application to achieve the desired bonds and internal strength.


The lower laminate 14 forms the tamper evidence substructure of the unique tamper evident sealing member 10. This substructure includes a lower sealant or heat seal layer 30 that may be composed of any material suitable for bonding to the rim of a container, such as but not limited to induction, conduction, or direct bonding methods. Suitable adhesives, hot melt adhesives, or sealants for the heat sealable layer 30 include, but are not limited to, polyesters, polyolefins, ethylene vinyl acetate, ethylene-acrylic acid copolymers, surlyn ionomers and other suitable materials. By one approach, the heat sealable layer may be a single layer or a multi-layer structure of such materials about 0.2 to about 3 mils thick. By some approaches, the heat seal layer is selected to have a composition similar to and/or include the same polymer type as the composition of the container. For instance, if the container includes polyethylene, then the heat seal layer would also contain polyethylene. If the container includes polypropylene, then the heat seal layer would also contain polypropylene. Other similar materials combinations are also possible. By one approach, the seal layer 30 is about 1 to about 2 mils thick or, in some approaches, about 1.5 mil thick medium density polyethylene film (in some cases about 0.92 to about 0.94 g/cm, but may be other density as needed).


Next, the lower laminate includes a first, base, or primary membrane layer 32. The base membrane layer 32 may be one or more layers configured to provide induction heating and/or barrier characteristics to the seal 10. A layer configured to provide induction heating is any layer capable of generating heat upon being exposed to an induction current where eddy currents in the layer generate heat. By one approach, the membrane layer may be a metal layer, such as, aluminum foil, tin, and the like. In other approaches, the membrane layer may be a polymer layer in combination with an induction heating layer. The membrane layer may also be or include an atmospheric barrier layer capable of retarding the migration of gases and moisture at least from outside to inside a sealed container and, in some cases, also provide induction heating at the same time. Thus, the membrane layer may be one or more layers configured to provide such functionalities. By one approach, the membrane layer is about 0.3 to about 2 mils of a metal foil, such as aluminum foil, which is capable of providing induction heating and to function as an atmospheric barrier. In one particular approach, the member layer 32 is a 1 mil thick aluminum foil. There is some advantage in reducing the gauge of the aluminum component in the base foil laminate or substructure. Thinner aluminum foil is easier to break and the use of thinner foil reduces the force required by the consumer to peel the liner form the container. In some approaches, the foil layer 32 is thinner than the lower heat seal layer. The combination of the seal layer 30 and base foil layer 32 forms a substructure composite laminate 34.


Next, the sealing member includes a bonding layer 36 (or hot melt adhesive) above the base foil layer 32. The correct separation of the sealing member to isolate the residue to the container land area is generally dependent on the selection of this bonding layer 36. Thickness of this layer also helps achieve the unique functionality of the seals herein. The hot melt layer may have a thickness from about 1 to about 3 mils. Layer 36 needs to maintain lamination integrity to hold the seal component together, but also remain soft enough to peel away from the foil 32 above the container land area during seal removal by a consumer. Suitable examples of materials for the bonding layer 36 include co-extruded polyethylene/EVA sealants having a high vinyl acetate composition (such as about 20 to about 40 percent). Other suitable materials for the bonding layer 36 may include EVA hot melts, EAA coatings, or PET heat seal films. In one particular form, the bonding layer 36 is EVA-based hot melt.


Above the bonding layer 36 there is a secondary foil component 38 and an upper polymer support component 40. The secondary foil component 38 may be similar to the base or primary foil (that is about 0.3 to about 2 mils thick), but in some approaches, may be equal to or thinner than the base foil component 32. The upper polymer support component 40 may be films, foams, or other support materials. For instance, component 40 may be a polymer foam or a non-foamed polymer film, such as polyolefin, polyester films or foams.


Layer 40 may be an insulation layer or a heat-redistribution layer. In one form, layer 106 may be a foamed polymer layer. Suitable foamed polymers include foamed polyolefin, foamed polypropylene, foamed polyethylene, and polyester foams. In some forms, these foams generally have an internal rupture strength of about 2000 to about 3500 g/in. In some approaches, the foamed polymer layer 106 may also have a density less than 0.6 g/cc and, in some cases, about 0.4 to less than about 0.6 g/cc. In other approaches, the density may be from about 0.4 g/cc to about 0.9 g/cc. The foamed polymer layer may be about 1 to about 5 mils thick.


In some approaches, a ratio of the base foil to the secondary foil may be about 1:1 to about 5:1. In other approaches, the break-in or rupture force of the seal layers that remain on the container is proportional to the sealant areas available on the container land region of the container.



FIG. 2 shows an alternative embodiment of the tabbed sealing members herein. Various layers in FIG. 2 are similar to FIG. 1 and will not be described further. Some of the layers in FIG. 2 may be different in thickness such as a lower foil layer that is 0.5 mils or less, but can be the same as that described above.



FIG. 2 also shows the where the laminate ruptures upon sealing member removal to isolate the residue on the container land area. The laminate separates at 50 where the bonding layer 36 peels away from the base foil layer 32 above the container rim land area (Generally shown as 51). Then, the base foil 32 and lower sealant 30 rupture internally 54 along the inner edges of the container rim all around the rim. This separation isolates the sealing member residue 60 as a ring of material on the container rim as best shown in the image of FIG. 3.


In some approaches, there is a small overhang or annular flange of the sealing member extending beyond the container rim when sealed to the container rim. In some approaches, this overhang may be about 1 to about 3 mm. In other approaches, the container finish may be stepped inwardly so that the upper land area is reduced forming the overhang of material. This overhang of material is generally illustrated in FIG. 3.


In some approaches, the following features define the sealing members herein. The various features and limitations of the sealing members described above, in the figures, and discussed below are not exclusive to the mentioned sealing member, but may be included in any combination thereof. Mention of an aspect or embodiment of the seals or container herein is not intended to imply that such aspect or embodiment is mutually exclusive of all other aspects or embodiments. In other words, the various features as set forth herein may be united in various combinations as needed for a particular application and features in one paragraph may be combined with features in other paragraphs as needed.


In one form, embodiment, or version, a tamper evident tabbed sealing member for sealing to a rim surrounding a container opening is provided that includes dual foil layers. This sealing member may include a multi-layer laminate with an upper laminate portion partially bonded to a tamper evident lower laminate substructure to form a gripping tab in the upper laminate portion defined wholly within a perimeter of the sealing member. The gripping tab for removing the sealing member from a container opening. The tamper evident lower laminate substructure below the gripping tab including at least a heat seal layer for bonding to the container rim, a primary metal layer positioned for heating the heat seal layer, a bonding layer above the primary metal layer, a secondary metal layer above the bonding layer, and an upper polymer support layer; and upon the seating member removal from a container, the primary metal layer and the heat seal layer separate from the bonding layer to isolate a residual ring of material that remains on the container land area.


The tamper evident tabbed sealing member above may also include the isolated residual ring of material being independent of the size or positioning of the tab, wherein the upper polymer support layer is a polyolefin film or polyolefin foam layer or a multi-layer laminate including both film and foam components, wherein the heat seal layer is polyester, polyolefin, ethylene vinyl acetate, ethylene-acrylic acid copolymers, inomers, medium density polyethylene, and combinations thereof, wherein the lower heat seal layer is about 0.2 to about 3 mils thick, wherein the primary metal layer is thinner than the heat seal layer, wherein the primary metal layer is about 0.3 to about 2 mils thick, wherein a bond of the bonding layer to the primary metal layer is less than a bond of the bonding layer to the upper polymer support layer in at least the portions above the container rim land area, further comprising a partial layer tabstock forming the tab due to the tabstock bonded to the upper laminate but not bonded to the tamper evident lower laminate substructure below the tabstock, and/or any combinations of the above features.


In form, embodiment, or versions, a sealed container is described with a dual foil layer tamper evidence tabbed sealing member. This sealing container may include a container defined by a wall and having an inwardly stepped finish with an upper land area surrounding a container opening, the upper land area of the inwardly stepped finish is thinner than the container wall. The container may also include a tamper evident tabbed sealing member sealed to the upper land area rim, the tamper evident tabbed sealing member including a multi-layer laminate including an upper laminate portion partially bonded to a tamper evident lower laminate substructure to form a gripping tab in the upper laminate portion defined wholly within a perimeter of the sealing member, the gripping tab for removing the seating member from a container opening; and the tamper evident lower laminate substructure below the gripping tab including at least a heat seal layer for bonding to the container rim, a primary metal layer positioned for heating the heat seal layer, a bonding layer above the primary metal layer, a secondary metal layer above the bonding layer, and an upper polymer support layer. Upon the sealing member removal from a container, the primary metal layer and the heat seal layer separate from the bonding layer to isolate a residual ring of material that remains on the container land area.


The container of claim may also include the isolated residual ring of material being independent of the size or positioning of the tab, wherein the upper polymer support layer is a polyolefin film or polyolefin foam layer or a multi-layer laminate including both film and foam components, wherein the heat seal layer is polyester, polyolefin, ethylene vinyl acetate, ethylene-acrylic acid copolymers, inomers, medium density polyethylene, and combinations thereof, wherein the lower heat seal layer is about 0.2 to about 3 mils thick, wherein the primary metal layer is thinner than the heat seal layer, wherein the primary metal layer is about 0.3 to about 2 mils thick, wherein a bond of the bonding layer to the primary metal layer is less than a bond of the bonding layer to the upper polymer support layer in at least the portions above the container rim land area. The sealed container may also include the tabstock as mentioned above.


It will be understood that various changes in the details, materials, and arrangements of the process, liner, seal, and combinations thereof, which have been herein described and illustrated in order to explain the nature of the products and methods may be made by those skilled in the art within the principle and scope of the embodied product as expressed in the appended claims. For example, the seals may include other layers within the laminate and between the various layers shown and described as needed for a particular application. Adhesive layers not shown in the Figures may also be used, if needed, to secure various layers together. Unless otherwise stated herein, all parts and percentages are by weight.

Claims
  • 1. A tamper evident tabbed sealing member for sealing to a rim surrounding a container opening including dual foil layers, the sealing member comprising: a multi-layer laminate including an upper laminate portion partially bonded to a tamper evident lower laminate substructure to form a gripping tab in the upper laminate portion defined wholly within a perimeter of the sealing member, the gripping tab for removing the sealing member from a container opening;the tamper evident lower laminate substructure below the gripping tab including at least a heat seal layer for bonding to the container rim, a primary metal layer positioned for heating the heat seal layer, a bonding layer above the primary metal layer, a secondary metal layer above the bonding layer, and an upper polymer support layer, wherein a bond of the bonding layer to the primary metal layer is less than a bond of the bonding layer to the upper polymer support layer in at least peripheral edge portions; andupon the sealing member removal from a container, a ring of the primary metal layer and the heat seal layer separate from the bonding layer to isolate a residual ring of the primary metal layer and of the heat seal layer that remains on the container land area.
  • 2. The tamper evident tabbed sealing member of claim 1, wherein the isolated residual ring of material is independent of the size or positioning of the tab.
  • 3. The tamper evident tabbed sealing member of claim 1, wherein the upper polymer support layer is a polyolefin film or polyolefin foam layer or a multi-layer laminate including both film and foam components.
  • 4. The tamper evident tabbed sealing member of claim 1, wherein the heat seal layer is polyester, polyolefin, ethylene vinyl acetate, ethylene-acrylic acid copolymers, inomers, medium density polyethylene, and combinations thereof.
  • 5. The tamper evident tabbed sealing member of claim 1, wherein the lower heat seal layer is about 0.2 to about 3 mils thick.
  • 6. The tamper evident tabbed sealing member of claim 1, wherein the primary metal layer is thinner than the heat seal layer.
  • 7. The tamper evident tabbed sealing member of claim 1, wherein the primary metal layer is about 0.3 to about 2 mils thick.
  • 8. The tamper evident tabbed sealing member of claim 1, further comprising a partial layer tabstock forming the tab due to the tabstock bonded to the upper laminate but not bonded to the tamper evident lower laminate substructure below the tabstock.
  • 9. A tamper evident tabbed sealing member for sealing to a rim surrounding a container opening, the sealing member comprising: a multi-layer laminate including an upper laminate portion partially bonded to a tamper evident lower laminate substructure to form a gripping tab defined wholly within a perimeter of the sealing member, the gripping tab for removing the sealing member from a container opening;the tamper evident lower laminate substructure below the gripping tab including at least a lowermost heat seal layer, a primary metal layer positioned for heating the heat seal layer, a bonding layer above the primary metal layer, a secondary metal layer above the bonding layer, and an upper polymer support layer; andwherein the tamper evident tabbed sealing member is configured to separate the primary metal layer and the heat seal layer from the bonding layer at a peripheral edge of the tabbed sealing member so as to form a residual ring of material separate from a remainder of the tamper evident tabbed sealing member.
  • 10. A sealed container comprising: a container defined by a wall and having an inwardly stepped finish with an upper land area surrounding a container opening, the upper land area of the inwardly stepped finish is thinner than the container wall;a tamper evident tabbed sealing member sealed to the upper land area rim, the tamper evident tabbed sealing member including a multi-layer laminate including an upper laminate portion partially bonded to a tamper evident lower laminate substructure to form a gripping tab in the upper laminate portion defined wholly within a perimeter of the sealing member, the gripping tab for removing the sealing member from a container opening; and the tamper evident lower laminate substructure below the gripping tab including at least a heat seal layer for bonding to the container rim, a primary metal layer positioned for heating the heat seal layer, a bonding layer above the primary metal layer, a secondary metal layer above the bonding layer, and an upper polymer support layer, wherein a bond of the bonding layer to the primary metal layer is less than a bond of the bonding layer to the upper polymer support layer in at least the portions above the container rim land area; andwherein upon the sealing member removal from the container, a ring of the primary metal layer and the heat seal layer separate from the bonding layer to isolate a residual ring of the primary metal layer and of the heat seal layer that remains on the container land area.
  • 11. The container of claim 10, wherein the isolated residual ring of material is independent of the size or positioning of the tab.
  • 12. The container of claim 10, wherein the upper polymer support layer is a polyolefin film or polyolefin foam layer or a multi-layer laminate including both film and foam components.
  • 13. The container of claim 10, wherein the heat seal layer is polyester, polyolefin, ethylene vinyl acetate, ethylene-acrylic acid copolymers, inomers, medium density polyethylene, and combinations thereof.
  • 14. The container of claim 10, wherein the lower heat seal layer is about 0.2 to about 3 mils thick.
  • 15. The container of claim 10, wherein the primary metal layer is thinner than the heat seal layer.
  • 16. The container of claim 10, wherein the primary metal layer is about 0.3 to about 2 mils thick.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a U.S. national phase application filed under 35 U.S.C. § 371 of International Application Number PCT/US2015/014363, filed Feb. 4, 2015, designating the United States, which claims benefit of U.S. Provisional Application No. 61/936,218, filed Feb. 5, 2014, which are hereby incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/014363 2/4/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/119988 8/13/2015 WO A
US Referenced Citations (223)
Number Name Date Kind
1818379 Cain Aug 1931 A
2768762 Eugene Oct 1956 A
3235165 Jackson Feb 1966 A
3292828 Stuart Dec 1966 A
3302818 Balocca et al. Feb 1967 A
3460310 Adcock et al. Aug 1969 A
3556816 Nughes Jan 1971 A
3964670 Amneus Jun 1976 A
3990603 Brochman Nov 1976 A
4133796 Bullman Jan 1979 A
4206165 Dukess Jun 1980 A
4266687 Cummings May 1981 A
4396655 Graham Aug 1983 A
4556590 Martin Dec 1985 A
4582735 Smith Apr 1986 A
4588099 Diez May 1986 A
4595116 Carlsson Jun 1986 A
4596338 Yousif Jun 1986 A
4636273 Wolfersperger Jan 1987 A
4666052 Ou-Yang May 1987 A
4693390 Hekal Sep 1987 A
4735335 Torterotot Apr 1988 A
4741791 Howard May 1988 A
4762246 Ashley Aug 1988 A
4770325 Gordon Sep 1988 A
4771903 Levene Sep 1988 A
4781294 Croce Nov 1988 A
4801647 Wolfe, Jr. Jan 1989 A
4811856 Fischman Mar 1989 A
4818577 Ou-Yang Apr 1989 A
4837061 Smits Jun 1989 A
4863061 Moore Sep 1989 A
4867881 Kinzer Sep 1989 A
4889731 Williams Dec 1989 A
4934544 Han Jun 1990 A
4938390 Markva Jul 1990 A
4960216 Giles Oct 1990 A
4961986 Galda Oct 1990 A
5004111 McCarthy Apr 1991 A
5015318 Smits May 1991 A
5053457 Lee Oct 1991 A
5055150 Rosenfeld Oct 1991 A
5057365 Finkelstein Oct 1991 A
5071710 Smits Dec 1991 A
5098495 Smits Mar 1992 A
RE33893 Elias Apr 1992 E
5106124 Volkman Apr 1992 A
5125529 Torterotot Jun 1992 A
5131556 Iioka Jul 1992 A
5149386 Smits Sep 1992 A
5178967 Rosenfeld Jan 1993 A
5197618 Goth Mar 1993 A
5217790 Galda Jun 1993 A
5226281 Han Jul 1993 A
5261990 Galda Nov 1993 A
5265745 Pereyra Nov 1993 A
5433992 Galda Jul 1995 A
5513781 Ullrich May 1996 A
5514442 Galada et al. May 1996 A
5560989 Han Oct 1996 A
5598940 Finkelstein Feb 1997 A
5601200 Finkelstein Feb 1997 A
5615789 Finkelstein Apr 1997 A
5618618 Murschall Apr 1997 A
5669521 Wiening Sep 1997 A
5683774 Faykish Nov 1997 A
5702015 Giles Dec 1997 A
5709310 Kretz Jan 1998 A
5776284 Sykes Jul 1998 A
5851333 Fagnant Dec 1998 A
5860544 Brucker Jan 1999 A
5871112 Giles Feb 1999 A
5887747 Burklin Mar 1999 A
5915577 Levine Jun 1999 A
5975304 Cain Nov 1999 A
5976294 Fagnant Nov 1999 A
6056141 Navarini May 2000 A
6082566 Yousif Jul 2000 A
6096358 Murdick Aug 2000 A
6131754 Smelko Oct 2000 A
6139931 Finkelstein Oct 2000 A
6158632 Ekkert Dec 2000 A
6194042 Finkelstein Feb 2001 B1
6290801 Krampe Sep 2001 B1
6312776 Finkelstein Nov 2001 B1
6378715 Finkelstein Apr 2002 B1
6458302 Shifflet Oct 2002 B1
6461714 Giles Oct 2002 B1
6544615 Otten Apr 2003 B2
6548302 Mao Apr 2003 B1
6602309 Vizulis Aug 2003 B2
6627273 Wolf Sep 2003 B2
6669046 Sawada Dec 2003 B1
6699566 Zeiter Mar 2004 B2
6705467 Kancsar Mar 2004 B1
6722272 Jud Apr 2004 B2
6767425 Meier Jul 2004 B2
6790508 Razeti Sep 2004 B2
6866926 Smelko Mar 2005 B1
6902075 OBrien Jun 2005 B2
6916516 Gerber Jul 2005 B1
6955736 Rosenberger Oct 2005 B2
6959832 Sawada Nov 2005 B1
6974045 Trombach Dec 2005 B1
7128210 Razeti Oct 2006 B2
7182475 Kramer Feb 2007 B2
7217454 Smelko May 2007 B2
RE39790 Fuchs Aug 2007 E
7316760 Nageli Jan 2008 B2
7448153 Maliner Nov 2008 B2
7531228 Perre May 2009 B2
7648764 Yousif Jan 2010 B2
7713605 Yousif May 2010 B2
7740730 Schedl Jun 2010 B2
7740927 Yousif Jun 2010 B2
7789262 Niederer Sep 2010 B2
7798359 Marsella Sep 2010 B1
7819266 Ross Oct 2010 B2
7838109 Declerck Nov 2010 B2
7850033 Thorstensen-Woll Dec 2010 B2
8025171 Cassol Sep 2011 B2
8057896 Smelko Nov 2011 B2
8129009 Morris Mar 2012 B2
8201385 McLean Jun 2012 B2
8308003 O'Brien Nov 2012 B2
8329288 Allegaert Dec 2012 B2
8348082 Cain Jan 2013 B2
8715825 Thorstensen-Woll May 2014 B2
8906185 McLean Dec 2014 B2
9028963 Thorstensen-Woll May 2015 B2
9102438 Thorstensen-Woll Aug 2015 B2
9193513 Thorstensen-Woll Nov 2015 B2
9221579 Thorstensen-Woll Dec 2015 B2
9227755 Thorstensen-Woll Jan 2016 B2
9440765 Thorstensen-Woll Sep 2016 B2
9440768 Thorstensen-Woll Sep 2016 B2
9533805 McLean Jan 2017 B2
9676513 Thorstensen-Woll Jun 2017 B2
20010023870 Mihalov Sep 2001 A1
20010031348 Jud Oct 2001 A1
20020068140 Finkelstein Jun 2002 A1
20030087057 Blemberg May 2003 A1
20030168423 Williams Sep 2003 A1
20030196418 O'Brien Oct 2003 A1
20040028851 Okhai Feb 2004 A1
20040043238 Wuest Mar 2004 A1
20040109963 Zaggia Jun 2004 A1
20040197500 Swoboda Oct 2004 A9
20040211320 Cain Oct 2004 A1
20050003155 Huffer Jan 2005 A1
20050048307 Schubert Mar 2005 A1
20050208242 Smelko Sep 2005 A1
20050208244 Delmas Sep 2005 A1
20050218143 Niederer Oct 2005 A1
20060000545 Nageli Jan 2006 A1
20060003120 Nageli Jan 2006 A1
20060003122 Nageli Jan 2006 A1
20060068163 Giles Mar 2006 A1
20060124577 Ross Jun 2006 A1
20060151415 Smelko Jul 2006 A1
20060278665 Bennett Dec 2006 A1
20070003725 Yousif Jan 2007 A1
20070007229 Yousif Jan 2007 A1
20070065609 Korson Mar 2007 A1
20070267304 Portier Nov 2007 A1
20070298273 Thies Dec 2007 A1
20080026171 Gullick Jan 2008 A1
20080073308 Yousif Mar 2008 A1
20080103262 Haschke May 2008 A1
20080145581 Tanny Jun 2008 A1
20080156443 Schaefer Jul 2008 A1
20080169286 McLean Jul 2008 A1
20080231922 Thorstensen-Woll Sep 2008 A1
20080233339 Thorstensen-Woll Sep 2008 A1
20080233424 Thorstensen-Woll Sep 2008 A1
20090078671 Triquet Mar 2009 A1
20090208729 Allegaert Aug 2009 A1
20090304964 Sachs Dec 2009 A1
20100009162 Rothweiler Jan 2010 A1
20100030180 Deckerck Feb 2010 A1
20100047552 McLean Feb 2010 A1
20100059942 Rothweiler Mar 2010 A1
20100116410 Yousif May 2010 A1
20100155288 Harper Jun 2010 A1
20100170820 Leplatois Jul 2010 A1
20100193463 O'Brien Aug 2010 A1
20100213193 Helmlinger Aug 2010 A1
20100221483 Gonzalez Carro Sep 2010 A1
20100290663 Trassl Nov 2010 A1
20100314278 Fonteyne Dec 2010 A1
20110000917 Wolters Jan 2011 A1
20110005961 Leplatois Jan 2011 A1
20110089177 Thorstensen-Woll Apr 2011 A1
20110091715 Rakutt Apr 2011 A1
20110100949 Grayer May 2011 A1
20110100989 Cain May 2011 A1
20110138742 McLean Jun 2011 A1
20110147353 Kornfeld Jun 2011 A1
20110152821 Kornfeld Jun 2011 A1
20120000910 Ekkert Jan 2012 A1
20120043330 McLean Feb 2012 A1
20120067896 Daffner Mar 2012 A1
20120070636 Thorstensen-Woll Mar 2012 A1
20120103988 Wiening May 2012 A1
20120111758 Lo May 2012 A1
20120241449 Frischmann Sep 2012 A1
20120285920 McLean Nov 2012 A1
20120312818 Ekkert Dec 2012 A1
20130020324 Thorstensen-Woll Jan 2013 A1
20130020328 Duan Jan 2013 A1
20130121623 Lyzenga May 2013 A1
20130177263 Duan Jul 2013 A1
20140001185 McLean Jan 2014 A1
20140061196 Thorstensen-Woll Mar 2014 A1
20140061197 Thorstensen-Woll Mar 2014 A1
20140186589 Chang Jul 2014 A1
20140224800 Thorstensen-Woll Aug 2014 A1
20150053680 Yuno Feb 2015 A1
20150197385 Wei Jul 2015 A1
20150225116 Thorstensen-Woll Aug 2015 A1
20150321808 Thorstensen-Woll Nov 2015 A1
20160185485 Thorstensen-Woll Jun 2016 A1
20170253373 Thorstensen-Woll Sep 2017 A1
Foreign Referenced Citations (77)
Number Date Country
501393 Aug 2006 AT
11738 Apr 2011 AT
8200231 Sep 2003 BR
0300992 Nov 2004 BR
2015992 Jan 1991 CA
2203744 Oct 1997 CA
2297840 Feb 1999 CA
1301289 Jun 2001 CN
102006030118 May 2007 DE
10204281 Aug 2007 DE
102007022935 Apr 2009 DE
202009000245 Apr 2009 DE
0135431 Mar 1985 EP
0668221 Aug 1995 EP
0826598 Mar 1998 EP
0826599 Mar 1998 EP
0905039 Mar 1999 EP
0717710 Apr 1999 EP
0915026 May 1999 EP
0706473 Aug 1999 EP
1075921 Feb 2001 EP
0803445 Nov 2003 EP
1462381 Sep 2004 EP
1199253 Mar 2005 EP
1577226 Sep 2005 EP
1814744 Aug 2007 EP
1834893 Sep 2007 EP
1837288 Sep 2007 EP
1839898 Oct 2007 EP
1839899 Oct 2007 EP
1857275 Nov 2007 EP
1873078 Jan 2008 EP
1445209 May 2008 EP
1918094 May 2008 EP
1935636 Jun 2008 EP
1968020 Sep 2008 EP
1992476 Nov 2008 EP
2014461 Jan 2009 EP
2230190 Sep 2010 EP
2292524 Mar 2011 EP
2599735 Jun 2013 EP
2916157 Nov 2008 FR
2943322 Sep 2010 FR
1216991 Dec 1970 GB
2353986 Mar 2001 GB
2501967 Nov 2013 GB
2501967 Nov 2013 GB
H09110077 Apr 1997 JP
H09110077 Apr 1997 JP
100711073 Apr 2007 KR
100840926 Jun 2008 KR
100886955 Mar 2009 KR
05002905 Feb 2006 MX
2010001867 Apr 2010 MX
201217237 May 2012 TW
9905041 Feb 1999 WO
2000066450 Nov 2000 WO
2005009868 Feb 2005 WO
2006018556 Feb 2006 WO
2006021291 Mar 2006 WO
2006073777 Jul 2006 WO
2006108853 Oct 2006 WO
2008027029 Mar 2008 WO
2008027036 Mar 2008 WO
2008039350 Apr 2008 WO
2008118569 Oct 2008 WO
2008125784 Oct 2008 WO
2008125785 Oct 2008 WO
2008148176 Dec 2008 WO
2009092066 Jul 2009 WO
2010115811 Oct 2010 WO
2011039067 Apr 2011 WO
2012079971 Jun 2012 WO
2012113530 Aug 2012 WO
2012152622 Nov 2012 WO
2012172029 Dec 2012 WO
2015119988 Aug 2015 WO
Non-Patent Literature Citations (2)
Entry
Patent Cooperation Treaty, International Search Report and Written Opinion dated May 7, 2015 for International Application No. PCT/US2015/014363, 3 pages.
European Patent Office, Communication Pursuant to Article 94(3) EPC dated Jan. 23, 2019, Examination Report for European Patent Application No. 15 746 686.3, 7 pages.
Related Publications (1)
Number Date Country
20160325896 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
61936218 Feb 2014 US