This invention relates to systems for collecting the exhaust from internal combustion engines.
Eight cylinder internal combustion engines are often designed with a “V-8” configuration; i.e., two banks of four cylinders rotating a common crankshaft, where each bank is inclined so as to form a “V”. The exhaust gases from each bank of cylinders may be directed by means of an exhaust manifold for discharge to the atmosphere, either directly or through other components.
The design of the exhaust manifold can impact engine power and efficiency.
The present invention provides a novel exhaust manifold designed to improve engine performance.
In one aspect, the present invention is directed to an exhaust manifold for an internal combustion piston engine that is adapted to be mounted with a row of at least two cylinders inclined from the vertical. The exhaust manifold features plural exhaust stack assemblies and a manifold plenum with an outlet, where each of the plural exhaust stack assemblies comprises a leader pipe and an exhaust connector, and a first end of each leader pipe joins a first end of an exhaust connector, a second end of each exhaust connector joins the manifold plenum, and a second end of each leader pipe joins a manifold flange that is adapted for joining to the internal combustion engine to receive exhaust gases from the cylinders of the engine. Notably, each leader pipe is joined to the manifold flange at a first angle in a vertical plane so that the plural exhaust stack assemblies are approximately horizontally oriented when joined to the internal combustion piston engine, and each leader pipe is joined to the manifold flange at a second angle in a horizontal plane inclined toward the outlet.
In another aspect, the present invention is directed to an exhaust manifold for an internal combustion piston engine with a row of at least two cylinders, where the exhaust manifold features plural exhaust stacks and a generally cylindrical manifold plenum having a generally cylindrical wall with a closed first end and a second end having an exhaust outlet. The diameter of the generally cylindrical manifold plenum changes from the first end to the second end to provide an increasing cylindrical volume from the first end to the second end. Notably, the diameter of the generally cylindrical manifold plenum changes at a non-constant rate from the first end to the second end so that the wall of the manifold plenum generally conforms to an “S” shape in profile from the first end to the second end. A first end of each of the plural exhaust stacks is joined to the manifold plenum, and a second end of each of the plural exhaust stacks joins a manifold flange adapted for joining to the internal combustion engine to receive exhaust gases from the cylinders of the engine
These and other aspects of the present invention are described in the drawings annexed hereto, and in the description of the preferred embodiments and claims set forth below.
In the embodiment of the present invention depicted in
Exhaust manifold 10 includes four exhaust stack assemblies 20 that are joined to manifold plenum 30. Exhaust stack assemblies 20 channel exhaust gases from left cylinder bank into manifold plenum 30, which collects and channels the collected gases to exhaust outlet 40, from which the collected gases are directed to energy recovery systems, such as exhaust gas turbines for compressing the intake air, and/or to pollution and/or noise control devices.
Exhaust stack assemblies 20 each comprises a leader pipe 22 and one of exhaust connectors 23A, 23B, 23C and 23D (generically referred to as exhaust connectors 23). The portions of leader pipes 22 proximate the engine are joined to manifold flanges 24. In particular, in the embodiment shown there are two manifold flanges 24, one of which is joined to the forward two leader pipes 22 and the other of which is joined to the rearward two leader pipes 22. Alternative designs in accordance with the present invention include individual flanges 24 joining respective individual leader pipes 22, as well as a single flange 24 joining all leader pipes 22. Each leader pipe 22 has a centerline 25 (see
Manifold flanges 24 include engine-side generally planar mating surfaces 26, which form a relatively gas-tight seal when fastened to an engine, and additionally, which define a plurality of apertures 27 that permit exhaust manifold 10 to be fastened (using nuts) to threaded studs extending from the cylinder bank of the engine. The portion of each stack assembly 20 distal from the engine is joined to manifold plenum 30.
The engine-side mating surfaces of manifold flanges 24 are oriented parallel to a plane 100, shown in
In the present invention, it is preferred that the centerline 25 of each leader pipe 22, as well as the centerlines of exhaust connectors 23, be inclined upwardly at an angle A from a line 28 orthogonal to plane 100, as shown in
In the embodiment shown, the first exhaust connector 23A is a curved pipe of relatively uniform diameter, whereas the diameters of second, third and fourth exhaust connectors 23B, 23C and 23D increase with increasing distance from flanges 24, in order to permit the expansion of the exhaust gases along their length. This increase in diameter is for purposes of reducing cylinder backpressure and improving exhaust gas scavenging during the exhaust cycle. Leader pipes 22 are joined to flange fittings 24 via welding, brazing or by being integrally formed with flange fittings 24. Likewise, exhaust connectors 23 are joined to manifold plenum 30 via welding, brazing or by being integrally formed with manifold plenum 30, and leader pipes 22 are joined to exhaust connectors 23 via welding, brazing or by being integrally formed with connectors 23.
Manifold plenum 30 has a generally elongate cylindrical shape and a generally cylindrical wall 31, as shown in
It is particularly preferred that the rate of diameter growth of manifold plenum 30 not be constant along its length from forward end 34 to rearward end 35. Rather, it is particularly preferred that the growth in diameter of manifold plenum 30 start at zero at forward end 34, then grow at an increasing rate from forward end 34 up to approximately the mid-point between forward end 34 and rearward end 35, then grow at a decreasing rate from that mid-point up to rearward end 35, and again reach a zero growth rate at rear end 35. The result of changing the growth rate in this manner is to generally give an “S” shape to wall 31 in profile, from forward end 34 to rearward end 35, as can be seen in
Although described with reference to use with a V-8 engine, the present invention has more general application, and can be utilized with any internal combustion piston engine having a row of two or more cylinders inclined from the vertical at an acute angle of approximately 45° or less, such as in-line inclined four, five and six cylinder engines, as well as V-4 engines, V-6 engines, V-12 engines, V-16 engines, etc. Manifold designs generally in accordance with the embodiment of exhaust manifold 10 disclosed herein are utilizable in some of the engine configurations disclosed in U.S. Provisional Patent Application No. 62/697,072 entitled “Customizable Engine Air Intake/Exhaust Systems” and filed Jul. 12, 2018, and in U.S. patent application Ser. No. 16/168,984, entitled “Customizable Engine Air Intake/Exhaust Systems,” having the same inventors as the subject application and filed on the same date as the subject application.
As is more particularly disclosed in that provisional application and that utility patent application, an exhaust manifold having a design generally corresponding to exhaust manifold 10 as described herein can be paired with a second exhaust manifold of like design, or can be paired with a different exhaust manifold, such as one following the design disclosed in U.S. Provisional Application No. 62/678,460, entitled “Turbocharger Exhaust Manifold with Turbine Bypass Outlet,” filed May 31, 2018, according to the particular engine configuration, and disclosed in U.S. patent application Ser. No. 16/168,999, issued as U.S. Pat. No. 10,570,813, entitled “Turbocharger Exhaust Manifold with Turbine Bypass Outlet,” having the same inventors as the subject application and filed on the same date as the subject application, again according to the particular engine configuration. The contents of U.S. Provisional Application No. 62/697,072, are hereby incorporated by reference as if fully set forth herein. The contents of U.S. patent application Ser. No. 16/168,984, entitled “Customizable Engine Air Intake/Exhaust Systems,” having the same inventors as the subject application and filed on the same date as the subject application, are hereby incorporated by reference as if fully set forth herein, including, as disclosed therein, the exhaust manifold design generally corresponding to exhaust manifold 10, and the different engine configurations and components disclosed therein utilizing or functioning in conjunction with such exhaust manifold design, found for example at paragraphs 53-70, 72-108, 110-154, 156-163 and FIGS. 1-26. The contents of U.S. Provisional Application No. 62/678,460 are hereby incorporated by reference as if fully set forth herein. The contents of U.S. patent application Ser. No. 16/168,999, issued as U.S. Pat. No. 10,570,813, entitled “Turbocharger Exhaust Manifold with Turbine Bypass Outlet,” having the same inventors as the subject application and filed on the same date as the subject application, are also hereby incorporated by reference as if fully set forth herein, including, as disclosed therein, the aforementioned manifold design that can be paired with an exhaust manifold having a design generally corresponding to exhaust manifold 10, such aforementioned manifold design found for example at paragraphs 14-48 and FIGS. 1-5 thereof.
The foregoing detailed description is for illustration only and is not to be deemed as limiting the inventions, which are defined in the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/577,423, filed Oct. 26, 2017, U.S. Provisional Application No. 62/577,965, filed Oct. 27, 2017, U.S. Provisional Application No. 62/598,045, filed Dec. 13, 2017, U.S. Provisional Application No. 62/616,601 filed Jan. 12, 2018, U.S. Provisional Application No. 62/678,460, filed May 31, 2018, and U.S. Provisional Application No. 62/697,072, filed Jul. 12, 2018.
Number | Name | Date | Kind |
---|---|---|---|
4184329 | Ruesch | Jan 1980 | A |
4689952 | Arthur | Sep 1987 | A |
4924967 | Ike | May 1990 | A |
5689954 | Blocker et al. | Nov 1997 | A |
5860278 | Rodenkirch | Jan 1999 | A |
6263672 | Roby et al. | Jul 2001 | B1 |
8539768 | Hayman et al. | Sep 2013 | B2 |
9316151 | Keating et al. | Apr 2016 | B2 |
10132424 | Graichen et al. | Nov 2018 | B2 |
10151414 | Micken | Dec 2018 | B2 |
20050183414 | Bien | Aug 2005 | A1 |
20090094966 | Huslig | Apr 2009 | A1 |
20100018192 | Suschik | Jan 2010 | A1 |
20120285427 | Hayman et al. | Nov 2012 | A1 |
20180156164 | Keating et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
104279042 | Jan 2015 | CN |
2016195573 | Dec 2016 | WO |
Entry |
---|
NPL-1 https://www.holley.com/products/exhaust/headers_and_exhaust_manifolds/, accessed Jan. 8, 2018 (contents believed available by Dec. 2017). |
NPL-2 https://www.holley.com/products/exhaust/headers_and_exhaust_manifolds/exhaust_manifolds/parts/8510HKR, accessed Jan. 8, 2018 (contents believed available by Dec. 2017). |
NPL-3 International Search Report dated Jan. 17, 2019, for PCT/US2018/057218. |
NPL-4 International Search Report, dated Jan. 4, 2019, for PCT/US2018/057233. |
NPL-5 Facebook Post May 7, 2017 <https://www.facebook.com/SupercarSystem/posts/788183328008424:0>. |
NPL-6 Facebook Post May 2, 2016 <https://www.facebook.com/SupercarSystem/posts/591367204356705:0>. |
Number | Date | Country | |
---|---|---|---|
20190128170 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62697072 | Jul 2018 | US | |
62678460 | May 2018 | US | |
62616601 | Jan 2018 | US | |
62598045 | Dec 2017 | US | |
62577965 | Oct 2017 | US | |
62577423 | Oct 2017 | US |