Embodiments disclosed herein relate in general to digital cameras and in particular to thin zoom digital cameras with both still image and video capabilities
Digital camera modules are currently being incorporated into a variety of host devices. Such host devices include cellular telephones, personal data assistants (PDAs), computers, and so forth. Consumer demand for digital camera modules in host devices continues to grow. Host device manufacturers prefer digital camera modules to be small, so that they can be incorporated into the host device without increasing its overall size. Further, there is an increasing demand for such cameras to have higher-performance characteristics. One such characteristic possessed by many higher-performance cameras (e.g., standalone digital still cameras) is the ability to vary the focal length of the camera to increase and decrease the magnification of the image. This ability, typically accomplished with a zoom lens, is known as optical zooming. “Zoom” is commonly understood as a capability to provide different magnifications of the same scene and/or object by changing the focal length of an optical system, with a higher level of zoom associated with greater magnification and a lower level of zoom associated with lower magnification. Optical zooming is typically accomplished by mechanically moving lens elements relative to each other. Such zoom lenses are typically more expensive, larger and less reliable than fixed focal length lenses. An alternative approach for approximating the zoom effect is achieved with what is known as digital zooming. With digital zooming, instead of varying the focal length of the lens, a processor in the camera crops the image and interpolates between the pixels of the captured image to create a magnified but lower-resolution image.
Attempts to use multi-aperture imaging systems to approximate the effect of a zoom lens are known. A multi-aperture imaging system (implemented for example in a digital camera) includes a plurality of optical sub-systems (also referred to as “sub-cameras”). Each sub-camera includes one or more lenses and/or other optical elements which define an aperture such that received electro-magnetic radiation is imaged by the optical sub-system and a resulting image is directed towards a two-dimensional (2D) pixelated image sensor region. The image sensor (or simply “sensor”) region is configured to receive the image and to generate a set of image data based on the image. The digital camera may be aligned to receive zo electromagnetic radiation associated with scenery having a given set of one or more objects. The set of image data may be represented as digital image data, as well known in the art. Hereinafter in this description, “image” “image data” and “digital image data” may be used interchangeably. Also, “object” and “scene” may be used interchangeably.
Multi-aperture imaging systems and associated methods are described for example in U.S. Patent Publications No. 2008/0030592, 2010/0277619 and 2011/0064327. In U.S. 2008/0030592, two sensors are operated simultaneously to capture an image imaged through an associated lens. A sensor and its associated lens form a lens/sensor combination. The two lenses have different focal lengths. Thus, even though each lens/sensor combination is aligned to look in the same direction, each captures an image of the same subject but with two different fields of view (FOVs). One sensor is commonly called “Wide” and the other “Tele”. Each sensor provides a separate image, referred to respectively as “Wide” (or “W”) and “Tele” (or “T”) images. A W-image reflects a wider FOV and has lower resolution than the T-image. The images are then stitched (fused) together to form a composite (“fused”) image. In the composite image, the central portion is formed by the relatively higher-resolution image taken by the lens/sensor combination with the longer focal length, and the peripheral portion is formed by a peripheral portion of the relatively lower-resolution image taken by the lens/sensor combination with the shorter focal length. The user selects a desired amount of zoom and the composite image is used to interpolate values from the chosen amount of zoom to provide a respective zoom image. The solution offered by U.S. 2008/0030592 requires, in video mode, very large processing resources in addition to high frame rate requirements and high power consumption (since both cameras are fully operational).
U.S. 2010/0277619 teaches a camera with two lens/sensor combinations, the two lenses having different focal lengths, so that the image from one of the combinations has a FOV approximately 2-3 times greater than the image from the other combination. As a user of the camera requests a given amount of zoom, the zoomed image is provided from the lens/sensor combination having a FOV that is next larger than the requested FOV. Thus, if the requested FOV is less than the smaller FOV combination, the zoomed image is created from the image captured by that combination, using cropping and interpolation if necessary. Similarly, if the requested FOV is greater than the smaller FOV combination, the zoomed image is created from the image captured by the other combination, using cropping and interpolation if necessary. The solution offered by U.S. 2010/0277619 leads to parallax artifacts when moving to the Tele camera in video mode.
In both U.S. 2008/0030592 and U.S. 2010/0277619, different focal length systems cause zo Tele and Wide matching FOVs to be exposed at different times using CMOS sensors. This degrades the overall image quality. Different optical F numbers (“F#”) cause image intensity differences. Working with such a dual sensor system requires double bandwidth support, i.e. additional wires from the sensors to the following HW component. Neither U.S. 2008/0030592 nor U.S. 2010/0277619 deal with registration errors. Neither U.S. 2008/000592 nor U.S. 2010/0277619 refer to partial fusion, i.e. fusion of less than all the pixels of both Wide and Tele images in still mode.
U.S. 2011/0064327 discloses multi-aperture imaging systems and methods for image data fusion that include providing first and second sets of image data corresponding to an imaged first and second scene respectively. The scenes overlap at least partially in an overlap region, defining a first collection of overlap image data as part of the first set of image data, and a second collection of overlap image data as part of the second set of image data. The second collection of overlap image data is represented as a plurality of image data sub-cameras such that each of the sub-cameras is based on at least one characteristic of the second collection, and each sub-camera spans the overlap region. A fused set of image data is produced by an image processor, by modifying the first collection of overlap image data based on at least a selected one of, but less than all of, the image data sub-cameras. The systems and methods disclosed in this application deal solely with fused still images.
None of the known art references provide a thin (e.g. fitting in a cell-phone) dual-aperture zoom digital camera with fixed focal length lenses, the camera configured to operate in both still mode and video mode to provide still and video images, wherein the camera configuration uses partial or full fusion to provide a fused image in still mode and does not use any fusion to provide a continuous, smooth zoom in video mode.
Therefore there is a need for, and it would be advantageous to have thin digital cameras with optical zoom operating in both video and still mode that do not suffer from commonly encountered problems and disadvantages, some of which are listed above.
Embodiments disclosed herein teach the use of dual-aperture (also referred to as dual-lens or two-sensor) optical zoom digital cameras. The cameras include two sub-cameras, a Wide sub-camera and a Tele sub-camera, each sub-camera including a fixed focal length lens, an image sensor and an image signal processor (ISP). The Tele sub-camera is the higher zoom sub-camera and the Wide sub-camera is the lower zoom sub-camera. In some embodiments, the lenses are thin lenses with short optical paths of less than about 9 mm. In some embodiments, the thickness/effective focal length (EFL) ratio of the Tele lens is smaller than about 1. The image sensor may include two separate 2D pixelated sensors or a single pixelated sensor divided into at least two areas. The digital camera can be operated in both still and video modes. In still mode, zoom is achieved “with fusion” (full or partial), by fusing W and T images, with the resulting fused image including always information from both W and T images. Partial fusion may be achieved by not using fusion in image areas where the Tele image is not focused. This advantageously reduces computational requirements (e.g. time).
In video mode, optical zoom is achieved “without fusion”, by switching between the W and T images to shorten computational time requirements, thus enabling high video rate. To avoid discontinuities in video mode, the switching includes applying additional processing blocks, which include image scaling and shifting.
In order to reach optical zoom capabilities, a different magnification image of the same scene is captured (grabbed) by each camera sub-camera, resulting in FOV overlap between the two sub-cameras. Processing is applied on the two images to fuse and output one fused image in still mode. The fused image is processed according to a user zoom factor request. As part of the fusion procedure, up-sampling may be applied on one or both of the grabbed images to scale it to the image grabbed by the Tele sub-camera or to a scale defined by the user. The fusion or up-sampling may be applied to only some of the pixels of a sensor. Down-sampling can be performed as well if the output resolution is smaller than the sensor resolution.
The cameras and associated methods disclosed herein address and correct many of the problems and disadvantages of known dual-aperture optical zoom digital cameras. They provide an overall zoom solution that refers to all aspects: optics, algorithmic processing and system hardware (HW). The proposed solution distinguishes between video and still mode in the processing flow and specifies the optical requirements and HW requirements. In addition, it provides an innovative optical design that enables a low TTL/EFL ratio using a specific lens curvature order.
Due to the large focal length, objects that are in front or behind the plane of focus appear very blurry, and a nice foreground-to-background contrast is achieved. However, it is difficult to create such a blur using a compact camera with a relatively short focal length and small aperture size, such as a cell-phone camera. In some embodiments, a dual-aperture zoom system disclosed herein can be used to capture a shallow DOF photo (shallow compared with a DOF of a Wide camera alone), by taking advantage of the longer focal length of the Tele lens. The reduced DOF effect provided by the longer Tele focal length can be further enhanced in the final image by fusing data from an image captured simultaneously with the Wide lens. Depending on the distance to the object, with the Tele lens focused on a subject of the photo, the Wide lens can be focused to a closer distance than the subject so that objects behind the subject appear very blurry. Once the two images are captured, information from the out-of-focus blurred background in the Wide image is fused with the original Tele image background information, providing a blurrier background and even shallower DOF.
In an embodiment there is provided a zoom digital camera comprising a Wide imaging section that includes a fixed focal length Wide lens with a Wide FOV, a Wide sensor and a Wide image signal processor (ISP), the Wide imaging section operative to provide Wide image data of an object or scene; a Tele imaging section that includes a fixed focal length Tele lens with a Tele FOV that is narrower than the Wide FOV, a Tele sensor and a Tele ISP, the Tele imaging section operative to provide Tele image data of the object or scene; and a camera controller operatively coupled to the Wide and Tele imaging sections, the camera controller configured to combine in still mode at least some of the Wide and Tele image data to provide a fused output image of the object or scene from a particular point of view (POV), and to provide without fusion continuous zoom video mode output images of the object or scene, a camera controller operatively coupled to the Wide and Tele imaging sections, the camera controller configured to combine in still mode at least some of the Wide and Tele image data to provide a fused output image of the object or scene from a particular point of view and to provide without fusion continuous zoom video mode output images of the object or scene, each output image having a respective output resolution, wherein the video output images are provided with a smooth transition when switching between a lower zoom factor (ZF) value and a higher ZF value or vice versa, wherein at the lower ZF value the output resolution is determined by the Wide sensor, and wherein at the higher ZF value the output resolution is determined by the Tele sensor.
In an embodiment, the camera controller configuration to provide video output images with a smooth transition when switching between a lower ZF value and a higher ZF value or vice versa includes a configuration that uses at high ZF secondary information from the Wide camera and uses at low ZF secondary information from the Tele camera. As used herein, “secondary information” refers to white balance gain, exposure time, analog gain and color correction matrix.
In a dual-aperture camera image plane, as seen by each sub-camera (and respective image sensor), a given object will be shifted and have different perspective (shape). This is referred to as point-of-view (POV). The system output image can have the shape and position of either sub-camera image or the shape or position of a combination thereof. If the output image retains the Wide image shape then it has the Wide perspective POV. If it retains the Wide camera position then it has the Wide position POV. The same applies for Tele images position and perspective. As used in this description, the perspective POV may be of the Wide or Tele sub-cameras, while the position POV may shift continuously between the Wide and Tele sub-cameras. In fused images, it is possible to register Tele image pixels to a matching pixel set within the Wide image pixels, in which case the output image will retain the Wide POV (“Wide fusion”). Alternatively, it is possible to register Wide image pixels to a matching pixel set within the Tele image pixels, in which case the output image will retain the Tele POV (“Tele fusion”). It is also possible to perform the registration after either sub-camera image is shifted, in which case the output image will retain the respective Wide or Tele perspective POV.
In an embodiment there is provided a method for obtaining zoom images of an object or scene in both still and video modes using a digital camera, the method comprising the steps of providing in the digital camera a Wide imaging section having a Wide lens with a Wide FOV, a Wide sensor and a Wide image signal processor (ISP), a Tele imaging section having a Tele lens with a Tele FOV that is narrower than the Wide FOV, a Tele sensor and a Tele ISP, and a camera controller operatively coupled to the Wide and Tele imaging sections; and configuring the camera controller to combine in still mode at least some of the Wide and Tele image data to provide a fused output image of the object or scene from a particular point of view, and to provide without fusion continuous zoom video mode output images of the object or scene, each output image having a respective output resolution, wherein the video mode output images are provided with a smooth transition when switching between a lower ZF value and a higher ZF value or vice versa, and wherein at the lower ZF value the output resolution is determined by the Wide sensor while at the higher ZF value the output resolution is determined by the Tele sensor.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.
Sensor control module 116 is connected to the two sub-cameras and to the user control module 118 and used to choose, according to the zoom factor, which of the sensors is zo operational and to control the exposure mechanism and the sensor readout. Mode choice function 120 is used for choosing capture/video modes. ROI function 122 is used to choose a region of interest. As used herein, “ROI” is a user defined as a sub-region of the image that may be exemplarily 4% or less of the image area. The ROI is the region on which both sub-cameras are focused on. Zoom factor function 124 is used to choose a zoom factor. Video processing module 126 is connected to mode choice function 120 and used for video processing. Still processing module 128 is connected to the mode choice function 120 and used for high image quality still mode images. The video processing module is applied when the user desires to shoot in video mode. The capture processing module is applied when the user wishes to shoot still pictures.
Following is a detailed description and examples of different methods of use of camera 100.
Design for Continuous and Smooth Zoom in Video Mode
In an embodiment, in order to reach high quality continuous and smooth optical zooming in video camera mode while reaching real optical zoom using fixed focal length sub-cameras, the system is designed according to the following rules (Equations 1-3):
Tan(FOVWide)/Tan(FOVTele)=PLWide/PLvideo (1)
where Tan refers to “tangent”, while FOVwide and FOVTele refer respectively to the Wide and Tele lens fields of view (in degrees). As used herein, the FOV is measured from the center axis to the corner of the sensor (i.e. half the angle of the normal definition). PLWide and PLvideo refer respectively to the “in-line” (i.e. in a line) number of Wide sensor pixels and in-line number of output video format pixels. The ratio PLwide/PLvideo is called an “oversampling ratio”. For example, in order to get full and continuous optical zoom experience with a 12 Mp sensor (sensor dimensions 4000×3000) and a required 1080 p (dimension 1920×1080) video format, the FOV ratio should be 4000/1920=2.083. Moreover, if the Wide lens FOV is given as FOVWide=37.5°, the required Tele lens FOV is 20.2° The zoom switching point is set according to the ratio between sensor pixels in-line and the number of pixels in-line in the video format and defined as:
Zswitch=PLWide/PLvideo (2)
Maximum optical zoom is reached according to the following formula:
Zmax=Tan(FOVWide)/Tan(FOVTele)*PLTele/PLvideo (3)
For example: for the configuration defined above and assuming PLTele=4000 and PLvideo=1920, Zmax=4.35.
In an embodiment, the sensor control module has a setting that depends on the Wide and Tele FOVs and on a sensor oversampling ratio, the setting used in the configuration of each sensor. For example, when using a 4000×3000 sensor and when outputting a 1920×1080 image, the oversampling ratio is 4000/1920=2.0833.
In an embodiment, the Wide and Tele FOVs and the oversampling ratio satisfy the condition
0.8*PLWide/PLvideo<Tan(FOVWide)/Tan(FOVTele)<1.2*PLWide/PLvideo. (4)
Still Mode Operation/Function
In still camera mode, the obtained image is fused from information obtained by both sub-cameras at all zoom levels, see
Specifically with reference to
In another embodiment, the camera controller synchronizes the Wide and Tele sensors so that for both sensors the rolling shutter starts at the same time.
The exposure times applied to the two sensors could be different, for example in order to reach same image intensity using different F# and different pixel size for the Tele and Wide systems. In this case, the relative exposure time may be configured according to the formula below:
ETTele=ETWide·(F#Tele/F#Wide)2·(Pixel sizeWide/Pixel sizeTele)2 (5)
Other exposure time ratios may be applied to achieve wide dynamic range and improved SNR. Fusing two images with different intensities will result in wide dynamic range image.
In more detail with reference to
1) Cropping index Wide sensor:
YWide start=½·PCWide(1−1/ZF)
YWide end=½·PCWide(1+1/ZF)
where PC is the number of pixels in a column, and Y is the row number
2) Cropping index Tele sensor:
If ZF>Tan(FOVWide)/Tan(FOVTele), then
YTele star t=½·PCTele(1−(1/ZF)·Tan(FOVTele)/Tan(FOVWide))
YTele end=½·PCTele(1+(1/ZF)·Tan(FOVTele)/Tan(FOVWide))
If ZF<Tan(FOVWide)/Tan(FOVTele), then
YTele start-=0
YTele end=PCTele
This will result in an exposure start time of the Tele sensor with a delay of (in numbers of lines, relative to the Wide sensor start time):
(1−ZF/((Tan(FOVWide)/Tan(FOVTele)))·1/(2·FPS) (6)
where FPS is the sensor's frame per second configuration. In cases where ZF>Tan (FOVWide)/Tan(FOVTele), no delay will be introduced between Tele and Wide exposure starting point. For example, for a case where Tan(FOVWide)/Tan(FOVTele)=2 and ZF=1, the Tele image first pixel is exposed ¼·(1/FPS) second after the Wide image first pixel was exposed.
After applying the cropping according to the required zoom factor, the sensor rolling shutter time and the vertical blank should be configured in order to satisfy the equation to keep the same frame rate:
VBWide+RSTWide=VBTele+RSTTele (7)
Generally, working with a dual-sensor system requires multiplying the bandwidth to the following block, for example the ISP. For example, using 12 Mp working at 30 fps, 10 bit per pixel requires working at 3.6 Gbit/sec. In this example, supporting this bandwidth requires 4 lanes from each sensor to the respective following ISP in the processing chain. Therefore, working with two sensors requires double bandwidth (7.2 Gbit/sec) and 8 lanes connected to the respective following blocks. The bandwidth can be reduced by configuring and synchronizing the two sensors. Consequently, the number of lanes can be half that of a conventional configuration (3.6 Gbit/sec).
To reduce processing time and power, steps 506, 508, 510, 512 could be bypassed by not fusing the images in non-focused areas. In this case, all steps specified above should be applied on focused areas only. Since the Tele optical system will introduce shallower depth of field than the Wide optical system, defocused areas will suffer from lower contrast in the Tele system.
We define the following: TFOV=tan(camera FOV/2). “Low ZF” refers to all ZF that comply with ZF<Wide TFOV/Tele TFOV. “High ZF” refers to all ZF that comply with ZF>Wide TFOV/Tele TFOV. “ZFT” refers to a ZF that complies with ZF=Wide TFOV/Tele TFOV. In one embodiment, zoom-in and zoom-out in still mode is performed as follows:
Zoom-in: at low ZF up to slightly above ZFT, the output image is a digitally zoomed, Wide fusion output. For the up-transfer ZF, the Tele image is shifted and corrected by global registration (GR) to achieve smooth transition. Then, the output is transformed to a Tele fusion output. For higher (than the up-transfer) ZF, the output is the Tele fusion output digitally zoomed.
Zoom-out: at high ZF down to slightly below ZFT, the output image is a digitally zoomed, Tele fusion output. For the down-transfer ZF, the Wide image is shifted and corrected by GR to achieve smooth transition. Then, the output is transformed to a Wide fusion output. For lower (than the down-transfer) ZF, the output is basically the down-transfer ZF output digitally zoomed but with gradually smaller Wide shift correction, until for ZF=1 the output is the unchanged Wide camera output.
In another embodiment, zoom-in and zoom-out in still mode is performed as follows:
Zoom-in: at low ZF up to slightly above ZFT, the output image is a digitally zoomed, Wide fusion output. For the up-transfer ZF and above, the output image is the Tele fusion output.
Zoom-out: at high ZF down to slightly below ZFT, the output image is a digitally zoomed, Tele fusion output. For the down-transfer ZF and below, the output image is the Wide fusion output.
Video Mode Operation/Function
Smooth Transition
When a dual-aperture camera switches the camera output between sub-cameras or points of view, a user will normally see a “jump” (discontinuous) image change. However, a change in the zoom factor for the same camera and POV is viewed as a continuous change. A “smooth transition” is a transition between cameras or POVs that minimizes the jump effect. This may include matching the position, scale, brightness and color of the output image before and after the transition. However, an entire image position matching between the sub-camera outputs is in many cases impossible, because parallax causes the position shift to be dependent on the object distance. Therefore, in a smooth transition as disclosed herein, the zo position matching is achieved only in the ROI region while scale brightness and color are matched for the entire output image area.
Zoom-In and Zoom-Out in Video Mode
In video mode, sensor oversampling is used to enable continuous and smooth zoom experience. Processing is applied to eliminate the changes in the image during crossover from one sub-camera to the other. Zoom from 1 to Zswitch is performed using the Wide sensor only. From Zswitch and on, it is performed mainly by the Tele sensor. To prevent “jumps” (roughness in the image), switching to the Tele image is done using a zoom factor which is a bit higher (Zswitch+ΔZoom) than Zswitch. ΔZoom is determined according to the system's properties and is different for cases where zoom-in is applied and cases where zoom-out is applied (ΔZoomin≢ΔZoomout). This is done to prevent residual jumps artifacts to be visible at a certain zoom factor. The switching between sensors, for an increasing zoom and for decreasing zoom, is done on a different zoom factor.
The zoom video mode operation includes two stages: (1) sensor control and configuration, and (2) image processing. In the range from 1 to Zswitch, only the Wide sensor is operational, hence, power can be supplied only to this sensor. Similar conditions hold for a Wide AF mechanism. From Zswitch+ΔZoom to Zmax only the Tele sensor is operational, hence, power is supplied only to this sensor. Similarly, only the Tele sensor is operational and power is supplied only to it for a Tele AF mechanism. Another option is that the Tele sensor is operational and the Wide sensor is working in low frame rate. From Zswitch to Zswitch+ΔZoom, both sensors are operational.
Zoom-in: at low ZF up to slightly above ZFT, the output image is the digitally zoomed, unchanged Wide camera output. For the up-transfer ZF, the output is a transformed Tele sub-camera output, where the transformation is performed by a global registration (GR) algorithm to achieve smooth transition. For higher (than the up-transfer), the output is the transfer ZF output digitally zoomed.
Zoom-out: at high ZF down to slightly below ZFT, the output image is the digitally zoomed transformed Tele camera output. For the down-transfer ZF, the output is a shifted Wide camera output, where the Wide shift correction is performed by the GR algorithm to achieve smooth transition, i.e. with no jump in the ROI region. For lower (than the down-transfer) ZF, the output is basically the down-transfer ZF output digitally zoomed but with gradually smaller Wide shift correction, until for ZF=1 the output is the unchanged Wide camera output.
In more detail, for ZF range 1: Zswitch, for ZF<Zswitch, the Wide image data is transferred to the ISP in step 612 and resampled in step 614. For ZF range=Zswitch: Zswitch+ΔZoomin, both sensors are operational and the zoom image is generated from the Wide sensor. The color balance is calculated for both images according to a given ROI. In addition, for a given ROI, registration is performed between the Wide and Tele images to output a transformation coefficient. The transformation coefficient is used to set an AF position. The transformation coefficient includes the translation between matching points in the two images. This translation can be measured in a number of pixels. Different translations will result in a different number of pixel movements between matching points in the images. This movement can be translated into depth and the depth can be translated into an AF position. This enables to set the AF position by only analyzing two images (Wide & Tele). The result is fast focusing.
Both color balance ratios and transformation coefficient are used in the ISP step. In parallel, the Wide image is processed to provide a processed image, followed by resampling. For ZF range=Zswitch+ΔZoomin: Zmax and for Zoom factor>Zswitch,+ΔZoomin, the color balance calculated previously is now applied on the Tele image. The Tele image data is transferred to the ISP in step 612 and resampled in step 614. To eliminate crossover artifacts and to enable smooth transition to the Tele image, the processed Tele image is resampled according to the transformation coefficient, the requested ZF (obtained from zoom function 124) and the output video resolution (for example 1080p).
Optical Design
Additional optical design considerations were taken into account to enable reaching optical zoom resolution using small total track length (TTL). These considerations refer to the Tele lens. In an embodiment, the camera is “thin” (see also
In another embodiment of a lens block in a thin camera, shown in
In conclusion, dual aperture optical zoom digital cameras and associate methods disclosed herein reduce the amount of processing resources, lower frame rate requirements, reduce power consumption, remove parallax artifacts and provide continuous focus (or provide loss of focus) when changing from Wide to Tele in video mode. They provide a dramatic reduction of the disparity range and avoid false registration in capture mode. They reduce image intensity differences and enable work with a single sensor bandwidth instead of two, as in known cameras.
All patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclosure.
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
This is a continuation application of U.S. patent application Ser. No. 17/126,202 filed Dec. 18, 2020 (now allowed), which was a continuation application of U.S. patent application Ser. No. 16/198,181 filed Nov. 21, 2018 (issued as U.S. Pat. No. 10,904,444), which was a continuation application of U.S. patent application Ser. No. 16/048,242 filed Jul. 28, 2018 (issued as U.S. Pat. No. 10,225,479), which was a continuation application of U.S. patent application Ser. No. 15/865,869, filed Jan. 9, 2018 (issued as U.S. Pat. No. 10,326,942), which was a continuation application of U.S. patent application Ser. No. 15/424,853 filed Feb. 5, 2017 (issued as U.S. Pat. No. 10,015,408), which was a continuation application of U.S. patent application Ser. No. 14/880,251 filed Oct. 11, 2015 (issued as U.S. Pat. No. 9,661,233), which was a Continuation application of U.S. patent application Ser. No. 14/365,711 filed Jun. 16, 2014 (issued as U.S. Pat. No. 9,185,291), which was a 371 application from international patent application PCT/IB2014/062180 filed Jun. 12, 2014, and is related to and claims priority from U.S. Provisional Patent Application No. 61/834,486 having the same title and filed Jun. 13, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2106752 | Land | Feb 1938 | A |
2354503 | Arthur | Jul 1944 | A |
2378170 | Aklin | Jun 1945 | A |
2441093 | Aklin | May 1948 | A |
3388956 | Eggert et al. | Jun 1968 | A |
3524700 | Eggert et al. | Aug 1970 | A |
3558218 | Grey | Jan 1971 | A |
3864027 | Harada | Feb 1975 | A |
3942876 | Betensky | Mar 1976 | A |
4134645 | Sugiyama et al. | Jan 1979 | A |
4199785 | McCullough et al. | Apr 1980 | A |
4338001 | Matsui | Jul 1982 | A |
4465345 | Yazawa | Aug 1984 | A |
5000551 | Shibayama | Mar 1991 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5969869 | Hirai et al. | Oct 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6014266 | Obama et al. | Jan 2000 | A |
6035136 | Hayashi et al. | Mar 2000 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6147702 | Smith | Nov 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6169636 | Kreitzer | Jan 2001 | B1 |
6208765 | Bergen | Mar 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6654180 | Ori | Nov 2003 | B2 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7187504 | Horiuchi | Mar 2007 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7515351 | Chen et al. | Apr 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7564635 | Tang | Jul 2009 | B1 |
7619683 | Davis | Nov 2009 | B2 |
7643225 | Tsai | Jan 2010 | B1 |
7660049 | Tang | Feb 2010 | B2 |
7684128 | Tang | Mar 2010 | B2 |
7688523 | Sano | Mar 2010 | B2 |
7692877 | Tang et al. | Apr 2010 | B2 |
7697220 | Iyama | Apr 2010 | B2 |
7724300 | Misawa | May 2010 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7738186 | Chen et al. | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7777972 | Chen et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7813057 | Lin | Oct 2010 | B2 |
7821724 | Tang et al. | Oct 2010 | B2 |
7826149 | Tang et al. | Nov 2010 | B2 |
7826151 | Tsai | Nov 2010 | B2 |
7869142 | Chen et al. | Jan 2011 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7898747 | Tang | Mar 2011 | B2 |
7916401 | Chen et al. | Mar 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7957075 | Tang | Jun 2011 | B2 |
7957076 | Tang | Jun 2011 | B2 |
7957079 | Tang | Jun 2011 | B2 |
7961406 | Tang et al. | Jun 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8000031 | Tsai | Aug 2011 | B1 |
8004777 | Souma | Aug 2011 | B2 |
8077400 | Tang | Dec 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8149523 | Ozaki | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8218253 | Tang | Jul 2012 | B2 |
8228622 | Tang | Jul 2012 | B2 |
8233224 | Chen | Jul 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8253843 | Lin | Aug 2012 | B2 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8279537 | Sato | Oct 2012 | B2 |
8363337 | Tang et al. | Jan 2013 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8395851 | Tang et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8400717 | Chen et al. | Mar 2013 | B2 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8451549 | Yamanaka et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8503107 | Chen et al. | Aug 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8514502 | Chen | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8570668 | Takakubo et al. | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8718458 | Okuda | May 2014 | B2 |
8780465 | Chae | Jul 2014 | B2 |
8803990 | Smith | Aug 2014 | B2 |
8810923 | Shinohara | Aug 2014 | B2 |
8854745 | Chen | Oct 2014 | B1 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8958164 | Kwon et al. | Feb 2015 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9229194 | Yoneyama et al. | Jan 2016 | B2 |
9235036 | Kato et al. | Jan 2016 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9279957 | Kanda et al. | Mar 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9488802 | Chen et al. | Nov 2016 | B2 |
9568712 | Dror et al. | Feb 2017 | B2 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9678310 | Iwasaki et al. | Jun 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9817213 | Mercado | Nov 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
10015408 | Shabtay | Jul 2018 | B2 |
10230898 | Cohen | Mar 2019 | B2 |
10951833 | Yuan | Mar 2021 | B2 |
11470257 | Shabtay | Oct 2022 | B2 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020118471 | Imoto | Aug 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050041300 | Oshima et al. | Feb 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050062346 | Sasaki | Mar 2005 | A1 |
20050128604 | Kuba | Jun 2005 | A1 |
20050134697 | Mikkonen et al. | Jun 2005 | A1 |
20050141103 | Nishina | Jun 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050168840 | Kobayashi et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20050248667 | Schweng et al. | Nov 2005 | A1 |
20050270667 | Gurevich et al. | Dec 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20060238902 | Nakashima et al. | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070064141 | Misawa | Mar 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070229983 | Saori | Oct 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080056698 | Lee et al. | Mar 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080094730 | Toma et al. | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080304161 | Souma | Dec 2008 | A1 |
20090002839 | Sato | Jan 2009 | A1 |
20090067063 | Asami et al. | Mar 2009 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090122423 | Park et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090141365 | Jannard et al. | Jun 2009 | A1 |
20090147368 | Oh et al. | Jun 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090225438 | Kubota | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100033844 | Katano | Feb 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100165476 | Eguchi | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100277813 | Ito | Nov 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110001838 | Lee | Jan 2011 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110102911 | Iwasaki | May 2011 | A1 |
20110115965 | Engelhardt et al. | May 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110149119 | Matsui | Jun 2011 | A1 |
20110157430 | Hosoya et al. | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110188121 | Goring et al. | Aug 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110249347 | Kubota | Oct 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120026366 | Golan | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120069455 | Lin et al. | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120092777 | Tochigi et al. | Apr 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120105708 | Hagiwara | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120154929 | Tsai et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120229920 | Otsu et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120262806 | Lin et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130057971 | Zhao et al. | Mar 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130088788 | You | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130208178 | Park | Aug 2013 | A1 |
20130229544 | Bando | Sep 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-LaCroix | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130279032 | Suigetsu et al. | Oct 2013 | A1 |
20130286488 | Chae | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140022436 | Kim et al. | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140092487 | Chen et al. | Apr 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140146216 | Okumura | May 2014 | A1 |
20140160311 | Hwang et al. | Jun 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140204480 | Jo et al. | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140285907 | Tang et al. | Sep 2014 | A1 |
20140293453 | Ogino et al. | Oct 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20140362274 | Christie et al. | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150042870 | Chan et al. | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150116569 | Mercado | Apr 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150138431 | Shin et al. | May 2015 | A1 |
20150153548 | Kim et al. | Jun 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150244942 | Shabtay et al. | Aug 2015 | A1 |
20150253532 | Lin | Sep 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20150373252 | Georgiev | Dec 2015 | A1 |
20150373263 | Georgiev et al. | Dec 2015 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160062084 | Chen et al. | Mar 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160085089 | Mercado | Mar 2016 | A1 |
20160105616 | Shabtay et al. | Apr 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160187631 | Choi et al. | Jun 2016 | A1 |
20160202455 | Aschwanden et al. | Jul 2016 | A1 |
20160212333 | Liege et al. | Jul 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160306161 | Harada et al. | Oct 2016 | A1 |
20160313537 | Mercado | Oct 2016 | A1 |
20160341931 | Liu et al. | Nov 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170102522 | Jo | Apr 2017 | A1 |
20170115471 | Shinohara | Apr 2017 | A1 |
20170150061 | Shabtay et al. | May 2017 | A1 |
20170160511 | Kim et al. | Jun 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170199360 | Chang | Jul 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170230585 | Nash | Aug 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20180013944 | Evans et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg et al. | Jan 2018 | A1 |
20180059365 | Bone et al. | Mar 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180063482 | Goesnar | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180183982 | Lee | Jun 2018 | A1 |
20180184010 | Cohen | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180217475 | Goldenberg et al. | Aug 2018 | A1 |
20180224630 | Lee et al. | Aug 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20190086638 | Lee | Mar 2019 | A1 |
20190107651 | Sade | Apr 2019 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190170965 | Shabtay et al. | Jun 2019 | A1 |
20200084358 | Nadamoto | Mar 2020 | A1 |
20200103726 | Shabtay et al. | Apr 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20210364746 | Chen | Nov 2021 | A1 |
20210368104 | Bian | Nov 2021 | A1 |
20210396974 | Kuo | Dec 2021 | A1 |
20230059657 | Hu | Feb 2023 | A1 |
20230156301 | Feng | May 2023 | A1 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102193162 | Sep 2011 | CN |
102466865 | May 2012 | CN |
102466867 | May 2012 | CN |
102739949 | Oct 2012 | CN |
102147519 | Jan 2013 | CN |
103024272 | Apr 2013 | CN |
103841404 | Jun 2014 | CN |
104297906 | Jan 2015 | CN |
105467563 | Apr 2016 | CN |
106680974 | May 2017 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S54157620 | Dec 1979 | JP |
S59121015 | Jul 1984 | JP |
S59191146 | Oct 1984 | JP |
6165212 | Apr 1986 | JP |
S6370211 | Mar 1988 | JP |
04211230 | Aug 1992 | JP |
406059195 | Mar 1994 | JP |
H07318864 | Dec 1995 | JP |
H07325246 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
H11223771 | Aug 1999 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2004334185 | Nov 2004 | JP |
2005099265 | Apr 2005 | JP |
2006195139 | Jul 2006 | JP |
2006238325 | Sep 2006 | JP |
2007133096 | May 2007 | JP |
2007164065 | Jun 2007 | JP |
2007219199 | Aug 2007 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2008111876 | May 2008 | JP |
2008191423 | Aug 2008 | JP |
2010164841 | Jul 2010 | JP |
2010204341 | Sep 2010 | JP |
2011055246 | Mar 2011 | JP |
2011085666 | Apr 2011 | JP |
2012203234 | Oct 2012 | JP |
2013003754 | Jan 2013 | JP |
2013105049 | May 2013 | JP |
2013106289 | May 2013 | JP |
2014142542 | Aug 2014 | JP |
2018059969 | Apr 2018 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20090131805 | Dec 2009 | KR |
20100008936 | Jan 2010 | KR |
20140135909 | May 2013 | KR |
20140014787 | Feb 2014 | KR |
20140023552 | Feb 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
20160000759 | Jan 2016 | KR |
M602642 | Oct 2020 | TW |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2013058111 | Apr 2013 | WO |
2013063097 | May 2013 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages. |
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages. |
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages). |
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages. |
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages. |
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages. |
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56. |
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017. |
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7 μm Pixels in 0.11 μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM Siggraph, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM Siggraph, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology Jun. 2009, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20230008641 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
61834486 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17126202 | Dec 2020 | US |
Child | 17947515 | US | |
Parent | 16198181 | Nov 2018 | US |
Child | 17126202 | US | |
Parent | 16048242 | Jul 2018 | US |
Child | 16198181 | US | |
Parent | 15865869 | Jan 2018 | US |
Child | 16048242 | US | |
Parent | 15424853 | Feb 2017 | US |
Child | 15865869 | US | |
Parent | 14880251 | Oct 2015 | US |
Child | 15424853 | US | |
Parent | 14365711 | US | |
Child | 14880251 | US |