This disclosure relates to roofing or siding tile systems for attachment to mounting surfaces.
Natural slate tiles may be used as roofing shingles or siding tiles. These tiles are often hand-split from larger sheets or blocks of slate and may require specialized tools and expert craftspeople. Slate shingles provide enhanced aesthetics as a roofing material. Other natural stone or manufactured stone materials may be used to create similar roofing tiles.
An injection-molded tile for attachment to a mounting surface is provided. The tile is generally attached via at least one fastener. The tile includes a body having a face side opposite the mounting surface and an underside adjacent to the mounting surface.
A plurality of first-angle ribs and a plurality of second-angle ribs are formed on the underside of the body. The first-angle ribs are disposed at a first offset angle relative to a forward edge of the body, and the second-angle ribs are disposed at a second offset angle relative to the forward edge of the body. The first-angle ribs and second-angle ribs do not have shared vertices and the second offset angle is different from the first offset angle.
The injection-molded tile may be movable between an uninstalled position and an installed position. In the uninstalled position, the body defines a first offset along a longitudinal length between the body and the mounting surface. In the installed position, the body is biased against the mounting surface by the fastener to substantially close the first offset, such that the underside of the body abuts the mounting surface.
The above features and advantages, and other features and advantages, of the present subject matter are readily apparent from the following detailed description of some of the best modes and other embodiments for carrying out the disclosed structures, methods, or both
Referring to the drawings, like reference numbers correspond to like or similar components wherever possible throughout the several figures. There is shown in
The mounting surface 16 may be a sloped or angled roof. The roof tile 10 may be attached to the mounting surface 16 with at least one fastener 18 (not shown in
Note that the roof tile 10 shown may also be used as siding along a vertical, or substantially-vertical, wall. The principles of operation and benefits described herein apply to both roof and siding applications.
While the present invention may be described with respect to specific applications or industries, those skilled in the art will recognize the broader applicability of the invention. Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” et cetera, are used descriptively of the figures, and do not represent limitations on the scope of the invention, as defined by the appended claims. Any numerical designations, such as “first” or “second” are illustrative only and are not intended to limit the scope of the invention in any way.
Features shown in one figure may be combined with, substituted for, or modified by, features shown in any of the figures. Unless stated otherwise, no features, elements, or limitations are mutually exclusive of any other features, elements, or limitations. Furthermore, no features, elements, or limitations are absolutely required for operation. Any specific configurations shown in the figures are illustrative only and the specific configurations shown are not limiting of the claims or the description.
The roof tile 10 is formed from a body 20, which is a substantially-continuous component and may be formed from different types of plastic or composite materials. The body defines a vertical or longitudinal length along the y-axis 12 and a horizontal or transverse width along the x-axis 14. The y-axis 12 is generally oriented along the portion of the mounting surface 16 having vertical or elevational change. The span of the y-axis 12 may also be referred to as the longitudinal arch and the x-axis 14 may also be referred to as the transverse arch.
As will be described herein, the body 20 is movable between an uninstalled position (as illustrated in
A forward edge 22 of the body 20 is on the downward side or lower portion of the roof tile 10, relative to the mounting surface 16. A rearward edge 24 is the upward side or higher portion of the roof tile 10, relative to the mounting surface 16. The rearward edge 24 may be chamfered toward the mounting surface 16.
The roof tile 10 shown generally emulates slate or stone roofing tiles, even though it is formed from polymeric materials. However, the roof tile 10 may emulate other materials, such as wood shingles or clay tiles, without changing the functional and aesthetic benefits described and shown herein.
As shown in
Note that only one of the roof tiles 10 shown in
One or more fastener points 32 are marked on the roof tile 10, such as through indentations, molded features, or ink. The fastener points 32 help an installer identify locations through which the one or more fasteners 18 should be driven into the mounting surface 16.
The body 20 further includes or defines a center mark 34 at the rearward edge 24. The body 20 may also include or define one or more length marks 36, which may be used in conjunction with chalk lines on the mounting surface 16 to vertically locate the roof tile 10 relative to other roof tiles 10.
One typical installation method involves laying a first course 10A of roof tiles 10 horizontally along the lower edge of the mounting surface 16, such that the forward edge 22 is substantially parallel with the lower edge of the mounting surface 16. Additional roof tiles 10 are arranged within the first course 10A as illustrated in
Generally, the subsequent course is horizontally offset by approximately one-half the width of the roof tiles 10. Note that the non-textured portion effectively becomes part of the mounting surface 16 for the subsequent roof tiles 10. In some installations, an underlayment layer may be placed between the mounting surface 16 and the roof tiles 10.
As used herein, the term substantially refers to quantities, values, or dimensions that are within manufacturing variance or tolerance ranges of being exact or that are subject to human error during installation. Substantially equal dimensions, for example, may be planned as ideally equal but normal manufacturing tolerances may cause the resulting dimensions to vary by 10-20% for different pieces.
During installation of the roof tile 10, the installer places the roof tile 10 onto the mounting surface 16. At this point, the roof tile 10 is in the uninstalled position and both the longitudinal arch and the transverse arch are visible as camber away from the mounting surface 16. The installer then flexes the body 20 against the mounting surface 16 to remove the camber and drives the fastener 18 through the body into the mounting surface 16. Alternatively, the installer may simply drive the fastener 18 through the body 20 until the head of the fastener 18 is flush with the body 20 and the body 20 is flush with the mounting surface 16.
Referring now to
As shown in
In the uninstalled position, the body 20 has or defines a first offset 46 along the longitudinal length or vertical span of the roof tile 10. The first offset 46 creates a gap or space between the body 20 and the mounting surface 16, as shown in
In the uninstalled position, the body 20 has or defines a second offset 48 along the transverse width or horizontal span of the roof tile 10. The second offset 48 creates a gap or space between the body 20 and the mounting surface 16, as shown in
Referring now to
Comparing
Therefore, the body 20 abuts the mounting surface 16 and the underside 50 of the body 20 is substantially planar, as opposed to the dual arches of the uninstalled position. The roof tile 10 must be sufficiently flexible to allow the fastener 18 to bias the body 20 without fracturing any portions thereof. However, the roof tile 10 may be sufficiently rigid to retain some resistance to force applied to the body 20 and feel more like actual slate tile.
The uninstalled position may actually be further divided into an as-molded shape and a sagging shape. Generally,
For example, the as-molded shape of the roof tile 10 may include arches defining the first offset 46 of up to approximately 0.375 inches and the second offset 48 of up to approximately 0.125 inches. The longitudinal length may be approximately 16 inches and the transverse width may be approximately 12 inches. Therefore, with the maximum respective offsets suggested above, the ratio (offset distance to span distance) of the longitudinal arch would be approximately 43 and the ratio of the transverse arch would be up to approximately 96.
However, when the roof tile 10 is removed from the mold, the weight of the body 20 may cause sagging by varying amounts, depending on: the materials used to form the roof tile 10, the size of the first offset 46 and the second offset 48, the longitudinal and transverse spans of the body 20, and any deformation resulting from storage or transport of manufactured roof tiles 10. The sagging shape may also be referred to as a resting shape or relaxed shape.
In the sagging position, for example, the body 20 may deflect enough to substantially close the second offset 48, such that the transverse arch may not be viewable when the roof tile 10 is resting on the mounting surface 16 or a planar surface. However, the lack of arch is a result of deformation away from the arch defining the second offset 48 in the as-molded shape.
In the installed position, the fastener 18 is reacted by the body 20 at, or around, the fastener points 32. However, the reaction forces between the mounting surface 16 and the body 20 are substantially at the corners of the body 20, as illustrated by reaction arrows 52.
Therefore, the roof tile 10 having the as-molded dual arches is pressing its corners against the mounting surface 16. Contrarily, a tile that is molded completely flat would be pressing against the mounting surface 16 at or around the fasteners 18. This may allow the corners of such a flat tile to curl away from the mounting surface slightly.
As illustrated in
Referring now to
In some configurations of the roof tile 10, the body 20 may include a plurality of ribs 60, as best viewed in
The roof tile 10 may include at least one longitudinal rib 62, or cutting rib. The configuration shown in
The other two longitudinal ribs 62 (nearer the left and right edges) may also assist in installation by providing cut lines for the last roof tile 10 in the course. The longitudinal ribs 62 create both beginning and ending cut lines that allow the roof tiles 10 to be offset, and to be installed on different width roofs, without exposing visible gaps at the ends of the mounting surface 16. Note that the longitudinal ribs 62 are flush with the mounting surface 16 when the roof tile 10 is in the installed position. Additionally, the longitudinal ribs 62 extend from the front edge 22 toward the rear edge 24, and extend vertically at least as far as any of the other ribs 60.
The roof tile 10 includes a plurality of first-angle ribs 64, which are angled relative to the y-axis 12 and to the x-axis 14, and also relative to the forward edge 22, as illustrated by a first offset angle 65. The roof tile 10 also includes a plurality of second-angle ribs 66, which are angled relative to the first-angle ribs 64, the y-axis 12, and the x-axis 14, as illustrated by a second offset angle 67. In the orientation of
The first-angle ribs 64 and the second-angle ribs 66 cooperate to form or define an elongated diamond pattern. However, unlike some diamond patterns, the intersections of which form a continuous and repeating “X,” the first-angle ribs 64 and the second-angle ribs 66 do not have shared vertices. As used herein, a shared vertex refers to a single point at which two or more ribs intersect. For example, in the typical X-pattern, four ribs intersect at a shared vertex.
Furthermore, in the roof tile 10 shown, neither the first-angle ribs 64 nor the second-angle ribs 66 align with each other to form continuous lines. Adjacent first-angle ribs 64 are not collinear, such that there is an offset 69 between adjacent first-angle ribs 64. Similarly, adjacent second-angle ribs 66 are not collinear and have an offset (unnumbered) there between. Therefore, there is a space of several elongated diamonds before any of the first-angle ribs 64 or the second-angle ribs 66 align.
The first-angle ribs 64 and the second-angle ribs 66 also join to form a plurality of filleted or radial intersections 68. These radial intersections are arced or curved transitions between the first-angle ribs 64 and the second-angle ribs 66, as opposed to abrupt points or sharp transitions. In the orientation shown in
As illustrated in the figures, the ribs 60 substantially contact the mounting surface 16 when the roof tiles 10 are installed to the mounting surface 16, although some slight offsets may exist. Therefore, there are substantially no continuous channels or passageways through which gases or liquids could flow upward or downward between the body 20 and the mounting surface 16. The elongated diamond pattern formed by the first-angle ribs 64 and the second-angle ribs 66 breaks up all such pathways.
The ribs 60 shown provide improved strength characteristics in resisting wind loads. Furthermore, the ribs 60 may exhibit improved response to hail, or other storm impacts. As viewed in
Referring now to
The injection molding process occurs in a mold as polymeric or composite materials are injected into the mold at an offset injection point 72. In the configuration shown, a sprue injects the materials perpendicularly into what will become the face side 25 of the roof tile 10. As illustrated in
Furthermore, the offset injection point 72 is also offset to either the left or the right (as viewed in
The roof tile 10 also includes an injection area 74 surrounding the offset injection point 72. The injection area 74 is textured, as opposed to smooth. This may be accomplished via post-injection processes, such as abrasion. Alternatively, the roof tile 10 may be formed in a mold with a textured injection nozzle, such that the texture is imparted during the injection molding process.
If the injection area 74 were smooth, portions of a non-textured area may be viewable through the keyways formed by subsequent courses of tiles, particularly if the injection point 72 is not sufficiently offset from the center of the roof tile 10. Furthermore, the textured injection area 74 shown may improve the in-hand aesthetics—before the roof tiles 10 are actually installed to the mounting surface—of the roof tiles 10 by minimizing a visible remnant of the manufacturing process.
The detailed description and the drawings or figures are supportive and descriptive of the structures and methods disclosed herein. While some of the best modes and other embodiments for carrying out the claimed structures and methods have been described in detail, various alternative designs, configurations, and embodiments exist for practicing the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/909,791, filed Nov. 27, 2013, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61909791 | Nov 2013 | US |