The present disclosure relates generally to a user equipment (UE) that includes a 5G module. More particularly, the present disclosure relates to a UE that operates at two separate bands.
The next generation of telecommunication infrastructure is realized through the implementation of 5G networks. The 5G networks require new developments for both the backbone infrastructure and user equipments (UEs), particularly hand-held devices such as smartphones, wearable devices, etc. Refurbishing existing networks such as 4G/LTE networks can facilitate the realization of 5G network for designated frequencies at sub-6 GHz only because of the almost identical form factor. However, the associated radiofrequency (RF) transceivers for sub-6 GHz (e.g., Massive MIMO) are different. Practical solutions can be implemented for the sub-6 GHz band of 5G networks. However, 5G millimeter wave (mmWave) solutions that operate at two separate frequencies, such as 28 GHz and 39 GHz, face challenges such as reduced efficiency, propagation loss, and foliage and environmental interaction. For example, incorporating 5G mmWave equipment in existing UEs can be challenging because of the presence of electronics for seamless communications within 4G/LTE networks, limited physical dimensions, a higher loss, particularly the ones associated with transitions and interconnects, etc.
The present disclosure relates to dual-band and dual-band polarized mmWave array antennas with an improved, or reduced, side lobe level.
In one embodiment, an antenna array includes a plurality of unit cells. Each unit cells includes first and second patches, phase shift transmission lines, a third patch, and a transmission line. The first and second patches are configured to radiate at a first frequency band and positioned in a first plane of the antenna array. The phase shift transmission lines connect the first and second patches and are configured to shift a phase of a signal between the first and second patches. The third patch is positioned in a second plane of the antenna array and beneath the first patch and radiates at a second frequency band that is lower than the first frequency band. The transmission line is configured to excite at least the third patch.
In another embodiment, a user equipment (UE) includes a transceiver configured to transmit and receive signals via an antenna array. The antenna array is operably connected to the transceiver and includes a plurality of unit cells. Each unit cell includes first and second patches, phase shift transmission lines, a third patch, and a transmission line. The first and second patches are configured to radiate at a first frequency band and positioned in a first plane of the antenna array. The phase shift transmission lines connect the first and second patches and are configured to shift a phase of a signal between the first and second patches. The third patch is positioned in a second plane of the antenna array and beneath the first patch and radiates at a second frequency band that is lower than the first frequency band. The transmission line is configured to excite at least the third patch.
In this disclosure, the terms antenna, antenna module, antenna array, beam, and beam steering are frequently used. An antenna module may include one or more arrays. One antenna array may include one or more antenna elements. Each antenna element may be able to provide one or more polarizations, for example vertical polarization, horizontal polarization or both vertical and horizontal polarizations at or around the same time. Vertical and horizontal polarizations at or around the same time can be refracted to an orthogonally polarized antenna. An antenna module radiates the accepted energy in a particular direction with a gain concentration. The radiation of energy in the particular direction is conceptually known as a beam. A beam may be a radiation pattern from one or more antenna elements or one or more antenna arrays.
Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout the present disclosure. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “transmit,” “receive,” and “communicate,” as well as derivatives thereof, encompass both direct and indirect communication. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, means to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The term “controller” means any device, system or part thereof that controls at least one operation. Such a controller may be implemented in hardware or a combination of hardware and software and/or firmware. The functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.
Definitions for other certain words and phrases are provided throughout the present disclosure. Those of ordinary skill in the art should understand that in many if not most instances, such definitions apply to prior as well as future uses of such defined words and phrases.
For a more complete understanding of this disclosure and its advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
To meet the demand for wireless data traffic having increased since deployment of 4G communication systems, efforts have been made to develop an improved 5G or pre-5G communication system. Therefore, the 5G or pre-5G communication system is also called a “beyond 4G network” or a “post LTE system.”
The 5G communication system is implemented in higher frequency (mmWave) bands and sub-6 GHz bands, e.g., 3.5 GHz bands, to accomplish higher data rates. To decrease propagation loss of the radio waves and increase the transmission coverage, the beamforming, Massive MIMO, full dimensional MIMO (FD-MIMO), array antenna, an analog beam forming, large scale antenna techniques and the like are discussed in 5G communication systems.
In addition, in 5G communication systems, development for system network improvement is under way based on advanced small cells, cloud radio access networks (RANs), ultra-dense networks, device-to-device (D2D) communication, wireless backhaul communication, moving network, cooperative communication, coordinated multi-points (CoMP) transmission and reception, interference mitigation and cancellation and the like.
As shown in
The gNB 102 provides wireless broadband access to the network 130 for a first plurality of UEs within a coverage area 120 of the gNB 102. The first plurality of UEs includes a UE 111, which may be located in a small business (SB); a UE 112, which may be located in an enterprise (E); a UE 113, which may be located in a WiFi hotspot (HS); a UE 114, which may be located in a first residence (R); a UE 115, which may be located in a second residence (R); and a UE 116, which may be a mobile device (M), such as a cell phone, a wireless laptop, a wireless PDA, or the like. The gNB 103 provides wireless broadband access to the network 130 for a second plurality of UEs within a coverage area 125 of the gNB 103. The second plurality of UEs includes the UE 115 and the UE 116. In some embodiments, one or more of the gNBs 101-103 may communicate with each other and with the UEs 111-116 using 5G, LTE, LTE-A, WiMAX, WiFi, or other wireless communication techniques.
Depending on the network type, the term “base station” or “BS” can refer to any component (or collection of components) configured to provide wireless access to a network, such as transmit point (TP), transmit-receive point (TRP), an enhanced base station (eNodeB or gNB), a 5G base station (gNB), a macrocell, a femtocell, a WiFi access point (AP), or other wirelessly enabled devices. Base stations may provide wireless access in accordance with one or more wireless communication protocols, e.g., 5G 3GPP new radio interface/access (NR), long term evolution (LTE), LTE advanced (LTE-A), high speed packet access (HSPA), Wi-Fi 802.11a/b/g/n/ac, etc. For the sake of convenience, the terms “BS” and “TRP” are used interchangeably in the present disclosure to refer to network infrastructure components that provide wireless access to remote terminals. Also, depending on the network type, the term “user equipment” or “UE” can refer to any component such as “mobile station,” “subscriber station,” “remote terminal,” “wireless terminal,” “receive point,” or “user device.” For the sake of convenience, the terms “user equipment” and “UE” are used in the present disclosure to refer to remote wireless equipment that wirelessly accesses a BS, whether the UE is a mobile device (such as a mobile telephone or smartphone) or is normally considered a stationary device (such as a desktop computer or vending machine).
Dotted lines show the approximate extents of the coverage areas 120 and 125, which are shown as approximately circular for the purposes of illustration and explanation only. It should be clearly understood that the coverage areas associated with gNBs, such as the coverage areas 120 and 125, may have other shapes, including irregular shapes, depending upon the configuration of the gNBs and variations in the radio environment associated with natural and man-made obstructions.
Although
The UE 116 includes one or more transceivers 210, a microphone 220, a speaker 230, a processor 240, an input/output (I/O) interface 245, an input 250, one or more sensors 255, a display 265, and a memory 260. The memory 260 includes an operating system (OS) program 262 and one or more applications 264.
The transceiver 210 includes transmit (TX) processing circuitry 215 to modulate signals, receive (RX) processing circuitry 225 to demodulate signals, and an antenna array 205 including antennas to send and receive signals. The antenna array 205 receives an incoming signal transmitted by a gNB of the wireless network 100 of
The TX processing circuitry 215 receives analog or digital voice data from the microphone 220 or other outgoing baseband data (such as web data, e-mail, or interactive video game data) from the processor 240. The TX processing circuitry 215 encodes, multiplexes, and/or digitizes the outgoing baseband data to generate a processed baseband or IF signal. The RF transceiver 210 receives the outgoing processed baseband or IF signal from the TX processing circuitry 215 and up-converts the baseband or IF signal to an RF signal that is transmitted by the antenna array 205.
The processor 240 can include one or more processors or other processing devices and execute the OS program 262 stored in the memory 260 in order to control the overall operation of the UE 116. For example, the processor 240 can control the reception of forward channel signals and the transmission of reverse channel signals by the RF transceiver 210, the RX processing circuitry 225, and the TX processing circuitry 215 in accordance with well-known principles. In some embodiments, the processor 240 includes at least one microprocessor or microcontroller.
The processor 240 can execute other processes and programs resident in the memory 260, such as operations for transmitting dual polarized beams as described in embodiments of the present disclosure. The processor 240 can move data into or out of the memory 260 as part of an executing process. In some embodiments, the processor 240 is configured to execute the applications 264 based on the OS program 262 or in response to signals received from gNBs or an operator. The processor 240 is also coupled to the I/O interface 245, which provides the UE 116 with the ability to connect to other devices such as laptop computers and handheld computers. The I/O interface 245 is the communication path between these accessories and the processor 240.
The processor 240 is also coupled to the input 250 (e.g., keypad, touchscreen, button etc.) and the display 265. The operator of the UE 116 can use the input 250 to enter data into the UE 116. The display 265 can be a liquid crystal display or other display capable of rendering text and/or at least limited graphics, such as from web sites.
The memory 260 is coupled to the processor 240. The memory 260 can include at least one of a random-access memory (RAM), Flash memory, or other read-only memory (ROM).
As described in more detail below, the UE 116 can include a dual-band and dual-band polarized mmWave array antennas with an improved, or reduced, side lobe level. Although
The UE 116 can control the transceiver 210 to transmit and receive signals in an upper band and a lower band. For example, the upper band can be a frequency of 39 GHz and the lower band can be a frequency of 28 GHz. However, various embodiments of the present disclosure recognize that operating at separate frequency bands of 28 GHz and 39 GHz can result in reduced efficiency, propagation loss, and foliage and environmental interaction. Further, the design of the antenna array of the UE 116 is complicated by the difference in wavelengths between the frequency bands of 28 GHz and 39 GHz. In particular, because the array's element spacing is fixed, the optimum separation for a full scan at both frequencies, 28 GHz and 39 GHz, cannot be realized. For example, λf=28 GHz=˜1.4×λf=39 GHZ. While various embodiments discuss using dual bands at example frequencies of 28 GHz and 39 GHz, the present disclosure is not limited thereto and any suitable frequency bands may be utilized in embodiments of the present disclosure.
For example,
Accordingly, various embodiments of the present disclosure provide an antenna and an antenna array that gains equalization at both the 28 GHz and 39 GHz bands to compensate for a difference in the propagation loss of the two frequencies. Various embodiments of the present disclosure further provide an antenna and an antenna array that improve a side lobe level (SLL) at an upper band, such as the 39 GHz band, scanning due to element spacing. Finally, various embodiments of the present disclosure provide an antenna and an antenna array that can transmit dual-polarized radiation in an orthogonal fashion, such as both vertical/horizontal and slanted plus/minus forty five degrees.
As shown in Table 1, the array with df=39 GHz=0.5×λf=39 GHz provides a 6 dBi gain similar to an array operating at 28 GHz with inter-element spacing of 5.35 mm. The four element array with element spacing of df=39 GHz=5.35 mm=0.5×λf=28 GHz can provide a higher gain compared to its lower frequency counterpart. However, the array can suffer a limited beam-steering capability.
As shown in Table 1, two separate arrays can be used to achieve a dual-band operation. However, various embodiments of the present disclosure recognize that separate arrays may be impractical due to physical limitations of UEs. In particular, separate arrays may be impractical when the UE is a smartphone device. Therefore, various embodiments of the present disclosure provide collocated dual-band elements to form an array that overcomes the physical limitations of a smartphone.
For example,
As illustrated in
A first collocated element 610 can include separate elements for each resonance frequency. For example, the first collocated element 610 can include one element for a resonance frequency at a lower band, such as 28 GHz, and another element for a resonance frequency at a higher band, such as 39 GHz.
A second collocated element 620 can include an antenna with separate parasitic elements for a lower band and an upper band. For example, the second collocated element 620 can be a single unit cell with one parasitic element for resonance at the lower band, such as 28 GHz, and another parasitic element for resonance at the upper band, such as 39 GHz.
A third collocated element 630 can include a slot-loaded antenna for dual-band operation at multiple frequencies. For example, the third collocated element 630 can be a unit cell 630 that includes an antenna that, due to the slots in the antenna, can dually operate at a lower band, such as 28 GHz, and an upper band, such as 39 GHz.
The present disclosure recognizes various challenges associated with the dual-band array performance. For example, for element spacing of a collocated dual-band array at a wavelength of 28 GHz, the array at 39 GHz can produce approximately 1 dB of gain in comparison to the array at 28 GHz. The gain at 39 GHz is advantageous in some respects, but it does not provide an advantage regarding identical channel illumination, i.e. power equalization, because the propagation loss at 39 GHz is approximately 3 dB greater than the propagation loss at 28 GHz. For example, for the array illustrated in
As noted above, the collocated elements 610, 620, 630 can implement the array illustrated in
In addition, various embodiments of the present disclosure enable an antenna that improves system data handling by utilizing two streams generated within one same form factor. In particular, embodiments of the present disclosure support two polarizations, such as a pair of orthogonal polarizations.
The antenna 710 includes both 28 GHz elements and 39 GHz elements.
The antenna 720 includes four combined 28/39 GHz elements, illustrated by 39 GHz elements overlaid on 28 GHz elements. The 28/39 GHz elements are included in the same location on the antenna as the original 28 GHz elements in the antenna 710. Like the 28 GHz elements in antenna 710, each 28/39 GHz element is separated from the adjacent 28/39 GHz element by df=28 GHz.
The antenna 730 includes four 39 GHz elements. The antenna 740 adds the four 39 GHz elements of the antenna 730 to the four combined 28/39 GHz elements of the antenna 720. As a result, the antenna 740 includes both the four combined 28/39 GHz elements and the four 39 GHz elements disposed between the 28/39 GHz elements. In various embodiments, one 28/39 GHz elements combined with one adjacent 39 GHz element can be the unit cell 630 described in
Radiation patterns and gain of the linear arrays 810, 820 are similar. The element spacing (dopt) of both linear arrays 810, 820 as shown is 2.68 mm. The SLL of the linear array 810 is slightly lower than the SLL of the linear array 820. The AF (8-element array) dBi of the linear array 810 is 7.54, whereas the AF (8-element array) dBi of the linear array 820 is 7.44.
As shown in
The unit cell 1000 includes a first element 1010, a second element 1020, and a third element 1030. The first element 1010 can be the 28/39 GHz element illustrated in
In some embodiments, the first element 1010 can include a first patch 1012 that includes two slots 1014 and a second patch 1016 below the first patch 1012. The first patch 1012 can be overlaid on the second patch 1016. The first patch 1012 and the second patch 1016 can be provided on two separate planes. The two slots 1014 are arranged parallel to each other. The slots 1014 modify the radiation pattern of the patch 1012 at a second order mode and tune the respective resonance frequency at 39 GHz.
The third element 1030 is a single tone antenna element. The third element 1030 includes a patch 1032 that radiates at only one of the upper frequency and lower frequency. For example, the third element 1030 can radiate at only the upper frequency, for example 39 GHz. In some embodiments, the patch 1032 can be analogous to the second patch of the first element 1010 and provided on the same plane as the second patch of the first element 1010.
The second element 1020 is an interconnect between the first element 1010 and the third element 1030. The second element 1020 can be a transmission line that serves as a matching/phasing section between the first element 1010 and the third element 1030. In particular, the second element 1020 can perform as a transmission line at the lower band of 28 GHz and radiate, at least to some degree, of the fields at the upper band of 39 GHz. The second element 1020 can include a substantially straight transmission line or a transmission line that includes at least one curved, or meandering, portion. In some embodiments, the transmission line of the second element 1020 can be a phase shift transmission line that connects patches of the first element 1010 and the third element 1030.
As described herein, various embodiments of the present disclosure recognize that operating at separate frequency bands of 28 GHz and 39 GHz can result in reduced efficiency, propagation loss, and foliage and environmental interaction. Embodiments of the present disclosure further recognize complications of the design of a UE, such as the UE 116, because of the difference in wavelengths between the frequency bands of 28 GHz and 39 GHz. Accordingly, various embodiments of the present disclosure, such as the unit cell 900 and the unit cell 1000, provide a structure that addresses the challenges of reduced efficiency, propagation loss, and foliage and environmental interaction in devices that perform full scans at both upper and lower frequencies, such as 28 GHz and 39 GHz.
As described herein, the various unit cells 1110, 1120, 1130, 1140, and 1150 can be various representations of the unit cell 900 and the unit cell 1000. Accordingly, the various unit cells 1110, 1120, 1130, 1140, and 1150 can be implemented in an array to address the challenges of reduced efficiency, propagation loss, and foliage and environmental interaction in devices that perform full scans at both upper and lower frequencies, such as 28 GHz and 39 GHz.
Further, the third element 1133 includes a larger patch than either of the third element 1113 or the third element 1123. Increasing or decreasing the size of the patch can manipulate the gain and beam steering capabilities of the unit cell 1130. For example, the third element 1133 is shown as substantially square, in contrast to the rectangular patches of the third element 1113 and 1123.
Although described herein as including two branched portions, various embodiments are possible. For example, the transmission line of the second element 1152 can include more or fewer than two branched portions off of the transmission line that connects the first element 1151 to the third element 1153. For example, the transmission line of the second element 1152 can include two branched portions on either side of the main transmission line that connects the first element 1151 to the third element 1153. As another example, the transmission line of the second element 1152 can include a different number of branched portions on one side of the main transmission line that connects the first element 1151 to the third element 1153 than on the other side.
In addition, various features of the embodiments of the unit cell 1000 described herein can be further combined or divided. For example, a curved transmission line of the unit cell, such as the transmission line of the second element 1142 of the unit cell 1140, can also include branched portions as shown in unit cells 1130 and 1150. As another example, the wider slots illustrated in unit cell 1110 can be applied to the first element of any of the unit cells 1120, 1130, 1140, and 1150 without departing from the scope of the present disclosure.
As described herein, each of the array antennas 1200, 1250, and 1280 illustrated in
In various embodiments of the present disclosure, the array antennas 1200, 1250, and 1280 can be provided as stacked dual-polarized dual-band array antennas. Various embodiments of the stacked dual-polarized dual-band array antennas are described herein. For example, the stacked dual-polarized dual-band array antennas can be provided with a first unit cell that supports both upper band and lower band transmissions, a second unit cell that supports upper band transmissions, and a connection between the first unit cell and the second unit cell. These various embodiments are illustrated in
More specifically,
As described herein, the antenna array 1300, including the unit cell 1301, can include any combination of the unit cells 1110, 1120, 1130, 1140, and 1150. Therefore, the antenna array 1300 is provided to address the challenges of reduced efficiency, propagation loss, and foliage and environmental interaction in devices that perform full scans at both upper and lower frequencies, such as 28 GHz and 39 GHz. In addition, the antenna array 1300 improves the dual-band array antenna radiation performance (i.e., gain) while maintaining the form factor. The antenna array 1300 also improves the side-lobe level of transmissions sent by the UE 116 in which the antenna array 1300 is implemented and realizes a dual-polarized radiation.
The unit cell 1301 is disposed on a ground plane 1310. In some embodiments, the ground plane 1310 can be a printed circuit board (PCB). The unit cell 1301 includes a first element 1303 and a second element 1305. The first element 1303 includes a lower band patch antenna 1330, such as a 28 GHz patch antenna, disposed proximate to the ground plane 1310 and an upper band patch antenna 1320a, such as a 39 GHz patch antenna, disposed proximate to the lower band patch antenna 1330. In other words, the lower band patch antenna 1330 is disposed between the ground plane 1310 and the upper band patch antenna 1320a. The first element 1303 further includes a first dual polarized feed 1340 for the upper band patch antenna 1320a and a second dual polarized feed 1350 for the lower band patch antenna 1330. The lower band patch antenna 1330 includes a pair of holes 1360 that allow the first dual polarized feed 1340 to travel through the lower band patch antenna 1330 from the ground plane 1310 to the upper band patch antenna 1320a.
The second element 1305 includes an upper band patch antenna 1320b, such as a 39 GHz patch antenna. The upper band patch antenna 1320b can be identical to the upper band patch antenna 1320a of the first element 1303, but the second element 1305 does not include a lower band patch antenna. The upper band patch antenna 1320b and the upper band patch antenna 1320a are each positioned in a first plane of the of the antenna array 1300 to radiate in the first frequency band.
Although each upper band patch antenna 1320a, 1320b and the lower band patch antenna 1330 are illustrated in
The unit cell 1301 further includes a splitter 1380. The splitter 1380 can be the second element 1020 that connects the first element 1303 and the second element 1305. For example, the splitter 1380 can feed the upper band patch antenna 1320a and the upper band patch antenna 1320b. In some embodiments, the splitter 1380 can be implemented on the ground plane 1310, such as the PCB, and placed on the opposite side of the ground plane 1310 from the other elements to allow one RFIC to feed two separate upper band patch antennas 1320a, 1320b at a single polarization. In embodiments where the unit cell 1301 is configured for single-polarized radiation, the non-connected ports can be off, e.g. floated or terminated by high impedance, in order to reduce coupling.
The antenna array 1300 includes a plurality of unit cells 1301 described herein. For example, the antenna array 1300 can include four unit cells 1301 as shown in
In some embodiments, the antenna array 1300 further includes an additional, unconnected patch 1370 similar to the upper band patch antenna 1320. The unconnected patch 1370 can be referred to as a dummy patch because it does not include a mechanism for power transmission. The unconnected patch 1370 can be placed on the ground plane 1310 before the first unit cell 1301 to form a symmetric conductor shape with the upper band patch antenna 1320. The unconnected patch 1370 further improves the radiation pattern of the lower band patch antenna 1330 by being located in front of the lower band patch antenna 1330.
More specifically,
As described herein, the antenna array 1400, including the unit cell 1401, can include any combination of the unit cells 1110, 1120, 1130, 1140, and 1150. Therefore, the antenna array 1400 is provided to address the challenges of reduced efficiency, propagation loss, and foliage and environmental interaction in devices that perform full scans at both upper and lower frequencies, such as 28 GHz and 39 GHz. In addition, the antenna array 1400 improves the dual-band array antenna radiation performance (i.e., gain) while maintaining the form factor. The antenna array 1400 also improves the side-lobe level of transmissions sent by the UE 116 in which the antenna array 1400 is implemented and realizes a dual-polarized radiation.
The unit cell 1401 is disposed on a ground plane 1410. In some embodiments, the ground plane 1410 can be a printed circuit board (PCB). The unit cell 1401 includes a first element 1403 and a second element 1405. The first element 1403 includes a lower band patch antenna 1430, such as a 28 GHz patch antenna, disposed proximate to the ground plane 1410 and an upper band patch antenna 1420a, such as a 39 GHz patch antenna, disposed proximate to the lower band patch antenna 1430. In other words, the lower band patch antenna 1430 is disposed between the ground plane 1410 and the upper band patch antenna 1420a.
The second element 1405 includes an upper band patch antenna 1420b, such as a 39 GHz patch antenna. The upper band patch antenna 1420b can be identical to the upper band patch antenna 1420a of the first element 1403, but the second element 1405 does not include a lower band patch antenna. The upper band patch antenna 1420b and the upper band patch antenna 1420a are each positioned in a first plane of the of the antenna array 1400 to radiate in the first frequency band.
The upper band patch antenna 1420, as included in either the first element 1403 or the second element 1405, can be circular with notches 1422 to receive a transmission line. For example, as shown in
The phase shift transmission lines 1440 can be the second element 1020. In particular, the phase shift transmission lines 1440 can shift a phase of the unit cell of the upper band patch antenna 1420 and provide dual-polarized radiation for the antenna array 1400. In some embodiments, the phase shift transmission lines 1440 can make phase-inverted copies of the signals to feed an adjacent upper band patch antenna 1420 in series of the antenna array 1400. In some embodiments, the unit cell 1401 includes a set of two phase shift transmission lines 1440. One of the set of two phase shift transmission lines 1440 can be excited by the upper band patch antenna 1420b and the upper band patch antenna 1420a is excited by the one of the set of two phase shift transmission lines 1440 from the upper band patch antenna 1420b. For example, the upper band patch antenna 1420a can be excited by a phase-inverted copy of a signal that excites the upper band patch antenna 1420b.
Although the upper band patch antenna 1420 and the lower band patch antenna 1430 are illustrated in
More specifically,
As described herein, the antenna array 1500, including the unit cell 1501, can include any combination of the unit cells 1110, 1120, 1130, 1140, and 1150. Therefore, the antenna array 1500 is provided to address the challenges of reduced efficiency, propagation loss, and foliage and environmental interaction in devices that perform full scans at both upper and lower frequencies, such as 28 GHz and 39 GHz. In addition, the antenna array 1500 improves the dual-band array antenna radiation performance (i.e., gain) while maintaining the form factor. The antenna array 1500 also improves the side-lobe level of transmissions sent by the UE 116 in which the antenna array 1500 is implemented and realizes a dual-polarized radiation.
The unit cell 1501 is disposed on a ground plane 1510. In some embodiments, the ground plane 1510 can be a printed circuit board (PCB). The unit cell 1501 includes a first element 1503 and a second element 1505. The first element 1503 includes a lower band patch antenna 1530, such as a 28 GHz patch antenna, disposed proximate to the ground plane 1510 and an upper band patch antenna 1520a, such as a 39 GHz patch antenna, disposed proximate to the lower band patch antenna 1530. In other words, the lower band patch antenna 1530 is disposed between the ground plane 1510 and the upper band patch antenna 1520a.
The lower band patch antenna 1530 includes one or more holes 1532. The holes 1532 are of a sufficient size to allow a vertical feed 1560 to extend through the lower band patch antenna 1530 via the hole 1532. The vertical feed 1560 can be referred to as a vertical coupler or a vertical feed coupler. Each vertical feed 1560 can extend from the ground plane 1510 through one of the holes 1532 and connect to a horizontal feed 1534. The horizontal feed 1534 can be referred to as a horizontal coupler or a horizontal feed coupler. The horizontal feed 1534 is provided between the lower band patch antenna 1530 and the upper band patch antenna 1520 and can excite one or both of the lower band patch antenna 1530 and the upper band patch antenna 1520.
In various embodiments, the vertical feed 1560 and the horizontal feed 1534 are able to feed each of the lower band patch antenna 1530 and the upper band patch antenna 1520 simultaneously. For example, the horizontal feed 1534 can feed the lower band patch antenna 1530 below the horizontal feed 1534 and can feed the upper band patch antenna 1520 above the horizontal feed 1534.
The second element 1505 includes an upper band patch antenna 1520b, such as a 39 GHz patch antenna. The upper band patch antenna 1520b can be identical to the upper band patch antenna 1520a of the first element 1503, but the second element 1505 does not include a lower band patch antenna. The upper band patch antenna 1520b and the upper band patch antenna 1520a are each positioned in a first plane of the of the antenna array 1500 to radiate in the first frequency band.
The upper band patch antenna 1520, as included in either the first element 1503 or the second element 1505, can be circular. For example, as shown in
The phase shift transmission lines 1540 can be the second element 1020. In particular, the phase shift transmission lines 1540 can shift a phase of the unit cell of the upper band patch antenna 1520 and provide dual-polarized radiation for the antenna array 1500. In some embodiments, the phase shift transmission lines 1540 can make phase-inverted copies of the signals to feed an adjacent upper band patch antenna 1520 in series of the antenna array 1500. In particular, the embodiment of the antenna array 1500 can be used with a single RFIC port to support dual-band polarization. In some embodiments, the unit cell 1501 includes a set of two phase shift transmission lines 1540. One of the set of two phase shift transmission lines 1540 can be excited by the upper band patch antenna 1520b and the upper band patch antenna 1520a is excited by the one of the set of two phase shift transmission lines 1540 from the upper band patch antenna 1520b. For example, the upper band patch antenna 1520a can be excited by a phase-inverted copy of a signal that excites the upper band patch antenna 1520b.
Although the upper band patch antenna 1520 and the lower band patch antenna 1530 are illustrated in
Although described herein as part of the lower band patch antenna 1530, various embodiments are possible. For example, one or more of the holes 1532, horizontal feeds 1534, and vertical feeds 1560 can be implemented on the lower band patch antenna 1430 or the lower band patch antenna 1330 without departing from the scope of the present disclosure.
In some embodiments, an antenna array includes a plurality of unit cells. Each unit cells includes first and second patches, phase shift transmission lines, a third patch, and a transmission line. The first and second patches are configured to radiate at a first frequency band and positioned in a first plane of the antenna array. The phase shift transmission lines connect the first and second patches and are configured to shift a phase of a signal between the first and second patches. The third patch is positioned in a second plane of the antenna array and beneath the first patch and radiates at a second frequency band that is lower than the first frequency band. The transmission line is configured to excite at least the third patch.
In some embodiments, the third patch includes a port and the transmission line passes through the port to excite both the first patch and the third patch. The transmission line can include a vertical feed coupler that extends through the port and a horizontal feed coupler that extends from the vertical feed coupler to excite the first patch and the third patch.
In some embodiments, the antenna array includes a second transmission line configured to excite the second patch. One of the set of phase shift transmission lines can be excited by the second patch and the first patch can be excited by the one of the set of phase shift transmission lines from the second patch. In some embodiments, the first patch is excited by a phase-inverted copy of a signal that that excites the second patch.
In some embodiments, the antenna array includes a splitter configured to feed the first patch and the second patch. In some embodiments, radiation emitted at at least one of the first frequency band or the second frequency band includes a reduced side lobe level. In some embodiments, each of the phase shift transmission lines provide dual-polarized radiation. In some embodiments, the first frequency is a 39 GHz frequency band and the second frequency is a 28 GHz frequency band.
In some embodiments, a UE includes a transceiver configured to transmit and receive signals via an antenna array. The antenna array is operably connected to the transceiver and includes a plurality of unit cells. Each unit cell includes first and second patches, phase shift transmission lines, a third patch, and a transmission line. The first and second patches are configured to radiate at a first frequency band and positioned in a first plane of the antenna array. The phase shift transmission lines connect the first and second patches and are configured to shift a phase of a signal between the first and second patches. The third patch is positioned in a second plane of the antenna array and beneath the first patch and radiates at a second frequency band that is lower than the first frequency band. The transmission line is configured to excite at least the third patch.
Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims. None of the description in this application should be read as implying that any particular element, step, or function is an essential element that must be included in the claims scope.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/894,322 filed on Aug. 30, 2019, U.S. Provisional Patent Application No. 62/912,851 filed on Oct. 9, 2019, and U.S. Provisional Patent Application No. 62/924,397 filed on Oct. 22, 2019, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62894322 | Aug 2019 | US | |
62912851 | Oct 2019 | US | |
62924397 | Oct 2019 | US |