1. Field
The invention relates to three dimensional integrated automotive radars and passive mm-wave imagers. More particularly, the invention relates to a dual-band antenna array and RF front-end that can be used for creating a three dimensional integrated automotive radar and passive mm-wave imager.
2. Background
Automotive radar systems are currently being provided in many luxury automobiles. Over the past few years, automotive radar systems have been used with intelligent cruise control systems to sense and adjust the automobile's speed depending on traffic conditions. Today, automotive radar systems are being used with active safety systems to monitor the surroundings of an automobile for collision avoidance. Current automotive radar systems are divided into long range (for adaptive cruise control and collision warning) and short range (for pre-crash, collision mitigation, parking aid, blind spot detection, etc.). Two or more separate radar systems, for example, a 24 GHz short range radar system and a 77 GHz long range radar system, which are typically each 15×15×15 centimeters in dimensions, are used to provide long and short range detection. The long range radar systems are used to track vehicles in front of the automobile at long distances (e.g., 20 to 150 meters) and accordingly adjust the speed of the automobile.
Prior art automotive radar systems have several drawbacks. For example, since multiple prior art radar systems are separately mounted on a vehicle, significant space is needed and can be wasteful. The cost for packaging, assembling, and mounting each radar system increases due to the additional number of radar systems. In order for each radar system to work properly, the materials placed on top of each radar system needs to be carefully selected so that the materials are RF transparent. The cost for multiple radar systems is further increased because multiple areas of RF transparency are needed on the front, sides, and rear of the vehicle. Thus, increasing the number of radar systems increases the packaging, assembly, mounting, and materials costs.
Therefore, a need exists in the art for three dimensional integrated automotive radars having a dual-band antenna array and RF front-end for automotive radars and imagers.
The invention relates to a dual-band antenna array and RF front-end that can be used for creating a three dimensional (3-D) integrated automotive radar and passive millimeter (mm)-wave imager. The 3-D integrated automotive radar can be used for both 77 GHz long range radar and mm-wave imaging applications. The 3-D integrated automotive radar significantly reduces manufacturing, assembling, and mounting costs. In addition, the 3-D integrated automotive radar is compact, thus reducing the space needed for mounting sensors on the vehicle (e.g., front and rear bumpers), wiring, and RF transparent materials in multiple locations on the front of the vehicle.
Millimeter wave imagers form an image based on receiving mm-wave radiation that is emitted from a scene. Millimeter wave imagers have the ability to sense objects through fog, dust, haze, sandstorms, etc. during both nighttime and daytime. Millimeter wave imagers advantageously do not radiate any signals thus making them very safe to operate and difficult to detect.
In one embodiment, the invention includes a method for creating a dual-band antenna array and RF front-end for automotive radars and imagers. The invention combines a 220 GHz mm-wave passive imager RF front-end with a 77 GHz radar antenna RF front-end on a single chip/system based on 3-D RF integration techniques. Combining the imager and the radar provides advantages in manufacturing, assembly, and testing costs. The combined imager and radar allow for a smaller size and for the packaging, assembly, and mounting to be together inside the vehicle (e.g., within the bumper). Also, data transfers between the imager and the radar can be accomplished more rapidly, efficiently, and with a reduced number of connections and wires. Data is used from both the imager and the radar to create an image of the environment.
In another embodiment, an automotive radar comprises a printed circuit board having a top surface, a bottom surface, and a cavity, a lower layer having a plurality of patches, the lower layer being positioned on the top surface of the printed circuit board, and a lower microstrip feed connected to the plurality of patches and positioned on the lower layer. The automotive radar also comprises an upper layer having a patch with a plurality of perforations that expose the plurality of patches, the upper layer being positioned on the lower layer, an upper microstrip feed connected to the patch and positioned on the upper layer, and a transmit module positioned in the cavity of the printed circuit board and configured to transmit a first signal having a first frequency to the upper microstrip feed and a second signal having a second frequency to the lower microstrip feed. The automotive radar also comprises an antenna positioned underneath the perforated patch or underneath the patch and connected to the first microstrip array or the second microstrip array.
The features, objects, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
Apparatus, systems and methods that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the invention and not to limit the scope of the invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. For purposes of this disclosure, the term “patch” may be used synonymously with the term “antenna.”
The first layer (i.e., top layer) 106 has a series microstrip patch array 110 for 77 GHz operation. The patch array 110 includes one or more perforated patches 111 (i.e., antennas) where each hole or opening 112 is an approximately 1.4 millimeter square opening which uncovers a 220 GHz patch 113 (i.e., an antenna) located at or on the second layer (i.e., bottom layer) 107, which has a series microstrip patch array 115 for 220 GHz operation. The 220 GHz series microstrip patch array 115 may be printed on the second layer 107. In one embodiment, each perforated patch 111 is an approximately 3.6 millimeter square and each patch 113 is an approximately 1.2 millimeter square. The patches 111 are connected to one another via connectors 114. The size of each opening 112 is optimized to have minimum effects on the radiation performance of the patches 111 and 113. In one embodiment, the openings 112 on the first layer 106 allow unhindered radiation to be emitted from the 220 GHz patches 113. Furthermore, the openings 112 may be formed as a small horn-type of opening to further improve the radiation performance of the patches 111 and 113.
In order to ensure no grating lobes and low side lobe level, the spacing between the first patch array 110 and the second patch array 115 is λ0/2, where λ0 is the free space wavelength at 220 GHz and 77 GHz, respectively. Due to the ratio between the two frequencies (220/77≈3), two 220 GHz patches 113 are placed inside or within the outer boundaries of one 77 GHz patch 111. In addition, two 220 GHz patches 113 are placed between two adjacent 77 GHz patches 111.
The second layer 107 may be formed between the 220 GHz array 113 and the T/R module ground 120. The array of second patches 113 are formed on top of or are part of the second layer 107. The microstrip feed 122 connects the array of second patches 113 to the T/R module 141. The microstrip feed 122 is transitioned through a second via 124 to the T/R module 141. The first layer 106 may be formed on top of the microstrip feed 122 and/or the second layer 107. An array of first perforated patches 111 (e.g., 77 GHz patches) are formed on top of or are part of the first layer 106. The perforations 112 on the first layer 106 allow relatively unhindered radiation to pass from the array of second patches 113 (e.g., 220 GHz patches). In one embodiment, each perforation 112 is a horn-shaped opening (i.e., a lower portion of the horn is smaller in circumference than an upper portion of the horn), which improves the radiation performance of each patch 113. The microstrip feed 121 connects the array of first patches 111 to the T/R module 141. The microstrip feed 121 is transitioned through a first via 123 to the T/R module 141 and may be formed on or may be part of the first layer 106. The first layer 106 may contain the 77 GHz series patch array 110 and the microstrip feed 121. The microstrip feed 121 and the microstrip feed 122 may include a network of feed connectors or lines.
The first layer 106 has one or more microstrip feeds 121 and the second layer 107 has one or more microstrip feeds 122. The microstrip feeds 121 and 122 are used as connections to the first and second layers 106 and 107, respectively. In one embodiment, the patch arrays 110 and 115 are comprised of microstrip patch antennas.
A plurality of chips and/or components 160 (e.g., two Silicon-Germanium (SiGe) BiCMOS chips) may be mounted on a bottom surface 119 of the PCB 109. The plurality of chips and/or components 160 may include one or more of the following: a digital signal processor (DSP), a digital clock, a temperature controller, a memory, a microprocessor, dynamic link libraries, a DC port, a data port, a voltage controlled oscillator, a PLL, etc. The plurality of chips and/or components 160 may be connected to one another via wireless links or via connectors, traces or wires on the PCB 109. The output signals 170 (e.g., digital, DC, IF or RF signals) from the T/R module 141 may be directly connected using through-vias 165 (or may be wirelessly connected) to the plurality of chips and/or components 160.
The T/R module 141 may be flip-chip bonded or mounted on a bottom surface 117 of the second layer 107. The flip-chip transition provides significantly less parasitic inductance and lower loss compared to conventional wirebonds. A plurality of thermal vias 162 are directly connected to the T/R modules 141 and pass through the first and second layers 106 and 107. The plurality of thermal vias 162 are used to remove the heat from the T/R module 141 and transfer the heat to a heat rejection area 163 that is located on a top surface 116 of the first layer 106.
In one embodiment, the first layer 106 includes the array of 77 GHz perforated patches 111 along with the microstrip feeding network 121. The first layer 106 also includes a heat rejection area 163 for removing the heat generated at the SiGe or CMOS 77 GHz T/R module 141. The ground plane 120 is formed or positioned on or adjacent to a third layer 103. The third layer 103 may be similar to the first and second layers 106 and 107. Therefore, the ground plane 120 separates the 77 GHz patch array 111 and the chips 160 from the 220 GHz components (e.g., 220 GHz receiver modules 142 and 143), thus minimizing or reducing the crosstalk between the 77 GHz lines or systems and the 220 GHz lines or systems. The plurality of chips and/or components 160 are connected or mounted to the PCB 109. Typically, one 220 GHz receiver module (e.g., SiGe, InP, GaAs or CMOS chip) is positioned behind each pixel, therefore there is no distribution network for the 220 GHz focal plane array 810.
The microstrip feed 121 is used to connect the first layer 106 to a first (e.g., 77 GHz) transmit/receive (T/R) module 141 and the microstrip feed 122 is used to connect the second layer 107 to a second (e.g., 220 GHz) T/R module 142. The first T/R module 141 may be formed or positioned on a top surface 116 of the first layer 106 and connected to the first microstrip feed 121. The second T/R module 142 may be formed or positioned on a bottom surface 104 of the third layer 103 and connected to the second microstrip feed 122. The first T/R module 141 is connected to the plurality of chips and/or components 160 using vias 172 and the first and second receive modules 142 and 143 are connected to the plurality of chips and/or components 160 using wired or wireless signals 170.
Packaged module 141 for 77 GHz operation is mounted on the top surface 116 of the first layer 106 and packaged modules 142 and 143 for 220 GHz operation is mounted on the third layer 103. The first and second T/R modules 141 and 142 may be a T/R monolithic microwave integrated circuit (MMIC) or a Silicon-Germanium (SiGe) BiCMOS chip that may include one or more of the following: a T/R switch, a low noise amplifier (LNA), a variable gain amplifier (VGA), a power amplifier (PA), a phase shifter, a mixer, an intermediate frequency (IF) amplifier, and an analog-to-digital (A/D) converter. The first T/R module 141 may generate first frequency signals (e.g., 77 GHz signals) and the first and second modules 142 and 143 may receive second frequency signals (e.g., 220 GHz signals).
The three mm-wave substrate layers 106, 107 and 103 are mounted on the PCB 109 such that the third layer 103 is directly mounted on the PCB 109. The PCB hosts all the digital circuitry. The interconnections between the T/R module 141 and the PCB 109 are achieved through vias 162 (for the 77 GHz module) and between the receive modules 142 and 143 and the PCB 109 are achieved through wirebonds 170 (for the 220 GHz modules). In both cases, the interconnections are at a very low Intermediate Frequency or DC. Therefore, limited parasitic effects exist from the interconnections to the PCB 109. The heat rejection area 163 is on the side of the array and appropriate thermal straps are used to remove heat from under the T/R module 141 and the receive modules 142 and 143.
A low cost substrate (such as LCP) is used to reduce the costs associated with printing the antennas, mounting the SiGe, InP, GaAs or CMOS chips, creating thermal management systems, packaging the chips. Hence, the overall cost of the radars and imagers disclosed herein is significantly reduced. The 3-D integration techniques also improve the performance of the radar and imager since they significantly reduce the number of necessary RF transitions from the antennas to the low noise amplifiers on the receiver chips and also improves the insertion loss. This reduces the overall system noise and improves the radar and imager sensitivity (i.e., range and minimum detectable target radar cross section). By combining the 220 GHz imager and the 77 GHz radar, the space on the vehicle needed to install mm-wave sensors is reduced, since only one mounting bracket can be used for both systems. Furthermore, the costs for packaging, assembly, and mounting of the mm-wave sensors are reduced. Also, by combining the 220 GHz imager and the 77 GHz radar, the need for wiring for data fusion between sensors and the use of mm-wave transparent materials is reduced.
Those of ordinary skill would appreciate that the various illustrative logical blocks, modules, and algorithm steps described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosed apparatus and methods.
The various illustrative logical blocks, modules, and circuits described in connection with the examples disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC). The ASIC may reside in a wireless modem. In the alternative, the processor and the storage medium may reside as discrete components in the wireless modem.
The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present application is a continuation application of co-pending U.S. patent application Ser. No. 12/429,470, entitled “Dual-Band Antenna Array and RF Front-End for Automotive Radars,” filed on Apr. 24, 2009, now U.S. Pat. No. 8,022,861, which is a continuation-in-part application of U.S. patent application Ser. No. 12/340,448 now U.S. Pat. No. 7,830,301, entitled “Dual-Band Antenna Array and RF Front-End for Automotive Radars,” filed on Dec. 19, 2008, and U.S. patent application Ser. No. 12/098,283 now U.S. Pat. No. 7,733,265, entitled “Three Dimensional Integrated Automotive Radars and Methods of Manufacturing the Same,” filed on Apr. 4, 2008. The entire disclosures of each of these applications are assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3093805 | Osifchin et al. | Jun 1963 | A |
3686596 | Albee | Aug 1972 | A |
4259743 | Kaneko et al. | Mar 1981 | A |
4494083 | Josefsson et al. | Jan 1985 | A |
4513266 | Ishihara | Apr 1985 | A |
4623894 | Lee et al. | Nov 1986 | A |
4731611 | Muller et al. | Mar 1988 | A |
4786913 | Barendregt et al. | Nov 1988 | A |
5008678 | Herman | Apr 1991 | A |
5111210 | Morse | May 1992 | A |
5115245 | Wen et al. | May 1992 | A |
5124713 | Mayes et al. | Jun 1992 | A |
5153600 | Metzler et al. | Oct 1992 | A |
5220335 | Huang | Jun 1993 | A |
5262783 | Philpott et al. | Nov 1993 | A |
5307075 | Huynh | Apr 1994 | A |
5376902 | Bockelman et al. | Dec 1994 | A |
5436453 | Chang et al. | Jul 1995 | A |
5481268 | Higgins | Jan 1996 | A |
5485167 | Wong et al. | Jan 1996 | A |
5495262 | Klebe | Feb 1996 | A |
5512901 | Chen et al. | Apr 1996 | A |
5554865 | Larson | Sep 1996 | A |
5561405 | Hoffmeister et al. | Oct 1996 | A |
5583511 | Hulderman | Dec 1996 | A |
5633615 | Quan | May 1997 | A |
5724042 | Komatsu et al. | Mar 1998 | A |
5767009 | Yoshida et al. | Jun 1998 | A |
5815112 | Sasaki et al. | Sep 1998 | A |
5821625 | Yoshida et al. | Oct 1998 | A |
5867120 | Ishikawa et al. | Feb 1999 | A |
5877726 | Kudoh et al. | Mar 1999 | A |
5886671 | Riemer et al. | Mar 1999 | A |
5909191 | Hirshfield et al. | Jun 1999 | A |
5929802 | Russell et al. | Jul 1999 | A |
5933109 | Tohya et al. | Aug 1999 | A |
5943005 | Tanizaki et al. | Aug 1999 | A |
5952971 | Strickland | Sep 1999 | A |
5994766 | Shenoy et al. | Nov 1999 | A |
5999092 | Smith et al. | Dec 1999 | A |
6008750 | Cottle et al. | Dec 1999 | A |
6034641 | Kudoh et al. | Mar 2000 | A |
6037911 | Brankovic et al. | Mar 2000 | A |
6040524 | Kobayashi et al. | Mar 2000 | A |
6043772 | Voigtlaender et al. | Mar 2000 | A |
6091365 | Derneryd et al. | Jul 2000 | A |
6107578 | Hashim | Aug 2000 | A |
6107956 | Russell et al. | Aug 2000 | A |
6114985 | Russell et al. | Sep 2000 | A |
6130640 | Uematsu et al. | Oct 2000 | A |
6137434 | Tohya et al. | Oct 2000 | A |
6191740 | Kates et al. | Feb 2001 | B1 |
6232849 | Flynn et al. | May 2001 | B1 |
6249242 | Sekine et al. | Jun 2001 | B1 |
6278400 | Cassen et al. | Aug 2001 | B1 |
6281843 | Evtioushkine et al. | Aug 2001 | B1 |
6329649 | Jack et al. | Dec 2001 | B1 |
6359588 | Kuntzsch | Mar 2002 | B1 |
6388206 | Dove et al. | May 2002 | B2 |
6452549 | Lo | Sep 2002 | B1 |
6483481 | Sievenpiper et al. | Nov 2002 | B1 |
6483714 | Kabumoto et al. | Nov 2002 | B1 |
6501415 | Viana et al. | Dec 2002 | B1 |
6577269 | Woodington et al. | Jun 2003 | B2 |
6583753 | Reed | Jun 2003 | B1 |
6624786 | Boyle | Sep 2003 | B2 |
6628230 | Mikami et al. | Sep 2003 | B2 |
6639558 | Kellerman et al. | Oct 2003 | B2 |
6642819 | Jain et al. | Nov 2003 | B1 |
6642908 | Pleva et al. | Nov 2003 | B2 |
6657518 | Weller et al. | Dec 2003 | B1 |
6683510 | Padilla | Jan 2004 | B1 |
6686867 | Lissel et al. | Feb 2004 | B1 |
6703965 | Ming et al. | Mar 2004 | B1 |
6717544 | Nagasaku et al. | Apr 2004 | B2 |
6727853 | Sasada et al. | Apr 2004 | B2 |
6756936 | Wu | Jun 2004 | B1 |
6771221 | Rawnick et al. | Aug 2004 | B2 |
6784828 | Delcheccolo et al. | Aug 2004 | B2 |
6794961 | Nagaishi et al. | Sep 2004 | B2 |
6795021 | Ngai et al. | Sep 2004 | B2 |
6806831 | Johansson et al. | Oct 2004 | B2 |
6828556 | Pobanz et al. | Dec 2004 | B2 |
6833806 | Nagasaku et al. | Dec 2004 | B2 |
6842140 | Killen et al. | Jan 2005 | B2 |
6853329 | Shinoda et al. | Feb 2005 | B2 |
6864831 | Woodington et al. | Mar 2005 | B2 |
6873250 | Viana et al. | Mar 2005 | B2 |
6897819 | Henderson et al. | May 2005 | B2 |
6909405 | Kondo | Jun 2005 | B2 |
6930639 | Bauregger et al. | Aug 2005 | B2 |
6933881 | Shinoda et al. | Aug 2005 | B2 |
6940547 | Mine | Sep 2005 | B1 |
6946995 | Choi et al. | Sep 2005 | B2 |
6987307 | White et al. | Jan 2006 | B2 |
6992629 | Kerner et al. | Jan 2006 | B2 |
7009551 | Sapletal et al. | Mar 2006 | B1 |
7015860 | Alsliety | Mar 2006 | B2 |
7019697 | du Toit | Mar 2006 | B2 |
7030712 | Brunette et al. | Apr 2006 | B2 |
7034753 | Elsallal et al. | Apr 2006 | B1 |
7071889 | McKinzie, III et al. | Jul 2006 | B2 |
7081847 | Ziller et al. | Jul 2006 | B2 |
7098842 | Nakazawa et al. | Aug 2006 | B2 |
7102571 | McCarrick | Sep 2006 | B2 |
7106264 | Lee et al. | Sep 2006 | B2 |
7109922 | Shmuel | Sep 2006 | B2 |
7109926 | du Toit | Sep 2006 | B2 |
7154356 | Brunette et al. | Dec 2006 | B2 |
7154432 | Nagasaku et al. | Dec 2006 | B2 |
7170361 | Farnworth | Jan 2007 | B1 |
7177549 | Matsushima et al. | Feb 2007 | B2 |
7187334 | Franson et al. | Mar 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7215284 | Collinson | May 2007 | B2 |
7236130 | Voigtlaender | Jun 2007 | B2 |
7239779 | Little | Jul 2007 | B2 |
7268732 | Gotzig et al. | Sep 2007 | B2 |
7292125 | Mansour et al. | Nov 2007 | B2 |
7298234 | Dutta | Nov 2007 | B2 |
7307581 | Sasada | Dec 2007 | B2 |
7310061 | Nagasaku et al. | Dec 2007 | B2 |
7331723 | Yoon et al. | Feb 2008 | B2 |
7336221 | Matsuo et al. | Feb 2008 | B2 |
7355547 | Nakazawa et al. | Apr 2008 | B2 |
7358497 | Boreman et al. | Apr 2008 | B1 |
7362259 | Gottwald | Apr 2008 | B2 |
7388279 | Fjelstad et al. | Jun 2008 | B2 |
7408500 | Shinoda et al. | Aug 2008 | B2 |
7411542 | O'Boyle | Aug 2008 | B2 |
7414569 | De Mersseman | Aug 2008 | B2 |
7436363 | Klein et al. | Oct 2008 | B1 |
7446696 | Kondo et al. | Nov 2008 | B2 |
7456790 | Isono et al. | Nov 2008 | B2 |
7463122 | Kushta et al. | Dec 2008 | B2 |
7489280 | Aminzadeh et al. | Feb 2009 | B2 |
7528780 | Thiam et al. | May 2009 | B2 |
7532153 | Nagasaku et al. | May 2009 | B2 |
7586450 | Muller | Sep 2009 | B2 |
7603097 | Leblanc et al. | Oct 2009 | B2 |
7639173 | Wang et al. | Dec 2009 | B1 |
7733265 | Margomenos et al. | Jun 2010 | B2 |
7830301 | Margomenos | Nov 2010 | B2 |
7881689 | Leblanc et al. | Feb 2011 | B2 |
8022861 | Margomenos | Sep 2011 | B2 |
20020047802 | Voipio | Apr 2002 | A1 |
20020158305 | Dalmia et al. | Oct 2002 | A1 |
20030016162 | Sasada et al. | Jan 2003 | A1 |
20030034916 | Kwon et al. | Feb 2003 | A1 |
20030036349 | Liu et al. | Feb 2003 | A1 |
20040028888 | Lee et al. | Feb 2004 | A1 |
20040075604 | Nakazawa et al. | Apr 2004 | A1 |
20050109453 | Jacobson et al. | May 2005 | A1 |
20050156693 | Dove et al. | Jul 2005 | A1 |
20050248418 | Govind et al. | Nov 2005 | A1 |
20060044189 | Livingston et al. | Mar 2006 | A1 |
20060146484 | Kim et al. | Jul 2006 | A1 |
20060152406 | Leblanc et al. | Jul 2006 | A1 |
20060158378 | Pons et al. | Jul 2006 | A1 |
20060250298 | Nakazawa et al. | Nov 2006 | A1 |
20060267830 | O'Boyle | Nov 2006 | A1 |
20060290564 | Sasada et al. | Dec 2006 | A1 |
20070026567 | Beer et al. | Feb 2007 | A1 |
20070052503 | Quach et al. | Mar 2007 | A1 |
20070085108 | White et al. | Apr 2007 | A1 |
20070131452 | Gilliland | Jun 2007 | A1 |
20070230149 | Bibee | Oct 2007 | A1 |
20070279287 | Castaneda et al. | Dec 2007 | A1 |
20070285314 | Mortazawi et al. | Dec 2007 | A1 |
20080030416 | Lee et al. | Feb 2008 | A1 |
20080048800 | Dutta | Feb 2008 | A1 |
20080061900 | Park et al. | Mar 2008 | A1 |
20080068270 | Thiam et al. | Mar 2008 | A1 |
20080074338 | Vacanti | Mar 2008 | A1 |
20080150821 | Koch et al. | Jun 2008 | A1 |
20080169992 | Ortiz et al. | Jul 2008 | A1 |
20090000804 | Kobayashi et al. | Jan 2009 | A1 |
20090058731 | Geary et al. | Mar 2009 | A1 |
20090066593 | Jared et al. | Mar 2009 | A1 |
20090102723 | Mateychuk et al. | Apr 2009 | A1 |
20090251357 | Margomenos | Oct 2009 | A1 |
20090251362 | Margomenos et al. | Oct 2009 | A1 |
20100182103 | Margomenos et al. | Jul 2010 | A1 |
20100182107 | Margomenos | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
101145627 | Mar 2008 | CN |
1324423 | Jul 2003 | EP |
4-40003 | Feb 1992 | JP |
5-267931 | Oct 1993 | JP |
6-224629 | Aug 1994 | JP |
8-114667 | May 1996 | JP |
8186437 | Jul 1996 | JP |
11186837 | Jul 1999 | JP |
2001-077608 | Mar 2001 | JP |
2001-189623 | Jul 2001 | JP |
2001-512640 | Aug 2001 | JP |
2005-516446 | Jun 2005 | JP |
WO 2007149746 | Dec 2007 | WO |
WO 2008148569 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110156946 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12429470 | Apr 2009 | US |
Child | 13042302 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12340448 | Dec 2008 | US |
Child | 12429470 | US | |
Parent | 12098283 | Apr 2008 | US |
Child | 12340448 | US |