The present invention is related to dual band antennas, of the kind apparent from the preamble of the attached claim 1.
A typical dual band antenna comprises at least one first antenna element including a number of radiating patches, and an associated second antenna element for transmitting and/or receiving radio frequency radiation, and an electrically conductive, substantially planar reflector device. The first and second antenna elements form a combined antenna element on a front side of the reflector device. Microwave power is typically fed from a single feeding network in two separate frequency bands. The microwave power in a first frequency band is being fed via an aperture in the reflector device to a first radiating patch, and the microwave power in a second frequency band is being fed via the aperture in the reflector device, and via a coupling patch and a cross-shaped aperture in the first radiating patch to a second radiating patch. An example of such a prior art dual band antenna is shown in WO02/43183 (Allgon AB).
In a dual band antenna, only a single feeding network is usually needed to feed both antenna elements. However, in some cases it may be necessary to have two separate feeding networks for feeding the antenna elements. For example, in order to obtain an improved, or some specific radiation pattern, it may be necessary to use separate feeding networks.
One such known solution for using separate feedings is shown in EP 1 069 646 A2. The antenna described in said document includes several patches, each patch being fed by feeding means including voltage sources connected to aligned points on the ground plane of a respective patch and probes extending from the point to the patch.
There are a number of drawbacks with the prior art solutions. Firstly, the solution presented in EP 1 069 646 A2 entails a tedious and labour intensive mounting of a bunch of cables, one for each patch being used. This mounting should also be performed such that the probes used are placed in a way so that imaginary lines between diametrically opposed probes are orthogonal. This in order to achieve well isolated dual polarised radiation. Therefore the mounting is rendered even more difficult. Further, each feeding means also includes capacitors, giving several components to be mounted. Further yet, the use of several different cables also gives a difficult and time consuming replacement, should a cable prove to be defect, or break down.
Thus there exists a need for an improved way of providing separate feedings to different antenna elements, wherein the mounting, the maintenance, and also the manufacture, of the antenna is facilitated.
An object of the present invention is to provide an antenna construction that overcomes the above mentioned disadvantages. In particular, it is an object of the invention to provide separate feedings in a dual band antenna giving desired radiation patterns in an easily mountable way. In accordance with the invention, the mounting is facilitated, whereby laborious assembling steps are eliminated, and thereby giving a less expensive dual band antenna. Further, a dual band antenna is provided having reliable and secure feeding of the radiating elements of a dual band antenna, giving desired radiation patterns. Further yet, the invention provides a new, inventive and simpler separate feeding of two or more antenna elements in a dual band antenna.
These objects are achieved, according to a first aspect of the invention, by an antenna as defined in the characterizing portion of claim 1.
In accordance with the invention, a dual band antenna is provided, comprising a number of antenna elements for transmitting and/or receiving radio frequency radiation. The antenna elements are placed above each other, and a shielded feeding is provided through a first antenna element to a second antenna element, thereby enabling separate feeding of the different antenna elements.
In accordance with one embodiment of the invention, the shielded feeding is arranged through an aperture area comprised of one or more apertures provided in said first antenna element. Thereby a simple and rather inexpensive, yet reliable solution for feeding the antenna elements separately is provided, which solution renders an easily mountable antenna structure.
In accordance with one embodiment of the invention, the shielded feeding comprises a hollow pipe, through which cables are arranged for feeding the second antenna element. Thereby a rather inexpensive shielding means is provided, that is easy to mount and easy to manufacture.
In accordance with one embodiment of the invention, the hollow pipe comprises several sections having different diameters.
This gives a flexible solution, in which for example the uppermost pipe section may be larger than lower pipe section(s), enabling the designer to hide and protect additional components within the pipe section.
In accordance with one embodiment of the invention, the shielded feeding is conductively connected directly or indirectly to a ground plane. The shielded feeding may be fastened directly to an upper antenna element, or not at all. Thereby means for a flexible design is provided, enabling a designer to customize an antenna to specific needs or demands.
In accordance with one embodiment of the invention, the first antenna element is fed by an aperture in a ground plane. This is the preferred embodiment, and the shielded feeding is preferably arranged through the aperture to an antenna element placed above the first antenna element.
In accordance with one embodiment of the invention, the antenna elements comprise one of a group consisting of: aperture antennas, such as slots, horns or aperture coupled patch antennas, dipole antennas or probe fed antennas. Besides providing a flexible solution, these are well known components, enabling the use of inexpensive and easily exchangeable components.
In accordance with one embodiment of the invention, a first antenna element is adapted to radiate at a low frequency band, and a second antenna element is adapted to radiate at a high frequency band.
In accordance with one embodiment of the invention, the dual band antenna comprises several antenna elements radiating at the same frequency band, and the shielded feeding means is arranged through each of said antenna elements. Thereby a wide band application may be provided.
Further embodiments of the present invention and advantages of it will become clear from the following description, taken in conjunction with the attached drawings.
a-2d show, in different views, an embodiment of an embodiment of the dual band antenna in accordance with the present invention.
a-b show another embodiment of the present invention.
a-b show another embodiment of the present invention, comprising several antenna elements.
With reference first to
The present invention is, in its most general form, based on the idea of using a shielded feeding means 9 through a first antenna element 2 to another antenna element 3 placed above it. The shielded feeding means 9 may preferably be provided by the use of an essentially symmetrical pipe, through which cables 10 or the like are pulled in order to feed the upper antenna element 3. In the schematic view shown in
In accordance with the invention thus, and with reference now to
In the embodiment shown in
In another embodiment, shown in
In
In another embodiment, for example in the embodiment shown in
The smaller the hollow pipe is made, the better, a first requirement being that there is enough room for the provision of the feeding means (for example cables) to the second antenna element 3. The second (i.e. the upper) antenna element 3 may thereby be fed by means of cables drawn through the hollow pipe. A second requirement is that it should be possible to ground the hollow pipe, directly or indirectly. However, it is possible to use a hollow pipe having varying diameter, i.e. the pipe could comprise several pipe sections having different diameters. An advantage thereby obtained would be the possibility to use a pipe section having a larger diameter for the uppermost antenna element(s).
For achieving the best possible performance of the antenna, the feeding should be as symmetric as possible. If the second (upper) antenna element 3 is providing only vertically polarization, a single cable is enough, whereby the hollow pipe may be omitted, and the single cable be drawn directly. This is because a coaxial cable is symmetric per se, and shielded. If dual polarization is required or desired, and thus necessitating two cables, the shielded hollow pipe is necessary for providing symmetry.
In accordance with another embodiment, the shielded feeding means may be provided by other means as well (i.e. not by means of the hollow pipe). The shielded feeding means 9 could be achieved for example in the form of wrapping conductors in a metal foil or the like. This would give a very thin and small shielded feeding, which is advantageous in some applications.
In
a-b show yet another embodiment of the present invention. In this embodiment an additional antenna element 15 is provided. This may function for example in order to provide wide-band characteristics of the low-band antenna. It is realized that further antenna elements may be stacked above each other, through which the shielded feeding means 9 is arranged. It is also understood that each frequency band could be widened by arranging several antenna elements for each band, whereby the shielded feeding means 9 is arranged through suitable antenna elements for separately feeding the uppermost antenna elements.
In accordance with the invention, an arrangement containing several dual band antennas in accordance with the invention may also be provided.
In summary, the present invention provides a new, inventive way of achieving separate feeding of the different antenna elements in a dual band antenna, by means of a shielded feeding means. Although the present invention has been shown and described by specific embodiments, many alterations and modifications are possible, as would be obvious to a person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
0402915-3 | Nov 2004 | SE | national |
This is a national stage of PCT/SE2005/001535 filed 14 Oct. 2005 and published in English.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE05/01535 | 10/14/2005 | WO | 5/30/2007 |