This application claims the priority benefit of Taiwan application serial no. 106135274, filed on Oct. 16, 2017. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The invention relates to an antenna module, and particularly relates to a dual band antenna module.
In current wireless transmission systems, dual band systems (for example, including a bandwidth of 2.4G and a bandwidth of 5G, both) are commonly seen. In antenna designs of the dual band systems, one of the designs uses two single band antennas, but such designs often face the problem of poor signal isolation between the two single band antennas. The distance between the two antennas is usually increased to boost the signal isolation, but increasing the distance between the two antennas will increase the overall size of the antenna and make it difficult to downsize the overall system. Another design is to use a diplexer with the dual band antennas to divide the different band signals. However, since the dual band antennas require a diplexer, the overall price will also be higher.
The invention provides a dual band antenna module with a good isolation in the different bands, a smaller size and a lower cost.
The dual band antenna module of the invention includes a first radiator, a second radiator, a first filter and a second filter. The first radiator includes a first feeding end and a first ground end. The first radiator resonates to generate a first frequency band. The second radiator includes a second feeding end and a second ground end. The second radiator resonates to generate a second frequency band. The first filter is extended from the first feeding end in a direction away from the first radiator and used for filtering the second frequency band. The second filter is extended from the second feeding end in a direction away from the second radiator and used for filtering the first frequency band.
In an exemplary embodiment of the invention, the foregoing dual band antenna module further includes a first ground pattern and a second ground pattern. The first ground end is connected to the first ground pattern. The second ground end is connected to the second ground pattern. The first ground pattern and the second ground pattern are located between the first radiator and the second radiator, respectively.
In an exemplary embodiment of the invention, the foregoing dual band antenna module further includes a carrier board, a third ground pattern and a plurality of through holes. The carrier board includes a first surface and a second surface opposite each other, wherein the first ground pattern and the second ground pattern are configured on the first surface. The third ground pattern is configured on the second surface. The plurality of through holes penetrates the carrier board. Some of the through holes are connected to the first ground pattern and the third ground pattern, and some of the through holes are connected to the second ground pattern and the third ground pattern.
In an exemplary embodiment of the invention, the foregoing first ground pattern and the second ground pattern are located in a middle region of the first surface, the first radiator and the second radiator are extended in a direction away from the middle region on the first surface, the first filter is extended from the first feeding end to the middle region, and the second filter is extended from the second feeding end to the middle region.
In an exemplary embodiment of the invention, the foregoing through holes connected to the first ground pattern and the third ground pattern are arranged along the outer edges of the first ground pattern, and the through holes connected to the second ground pattern and the third ground pattern are arranged along the outer edges of the second ground pattern.
In an exemplary embodiment of the invention, the foregoing first ground pattern has a notch, and the first filter is extended into the notch.
In an exemplary embodiment of the invention, the foregoing first ground pattern and the second ground pattern have corresponding outlines, and the second filter extends along the outline of the first ground pattern and the outline of the second ground pattern and between the first ground pattern and the second ground pattern.
In an exemplary embodiment of the invention, a length of the foregoing first filter is ¼ wavelength of the second frequency band, and a length of the second filter is ¼ wavelength of the first frequency band.
In an exemplary embodiment of the invention, the foregoing first frequency band is between 2400 MHz and 2500 MHz, and the second frequency band is between 5150 MHz and 5850 MHz.
Based on the foregoing descriptions, the dual band antenna module of the invention uses the first radiator and the second radiator to resonate and generate the first frequency band and the second frequency band. The first filter is designed at the first feeding end of the first radiator to filter the second frequency band. The second filter is designed at the second feeding end of the second radiator to filter the first frequency band. That achieves a good isolation between the first frequency band and the second frequency band. In this way, it is not necessary for the first radiator and the second radiator to be far apart from each other and the dual band antenna module can be in a smaller size. In addition, since the dual band antenna module of the invention does not require a diplexer, and therefore the cost is lower.
To make the aforementioned more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
As shown in
In the exemplary embodiment, the first ground pattern 160 and the second ground pattern 170 are located between the first radiator 120 and the second radiator 130, respectively. To be more specific, the first ground pattern 160 and the second ground pattern 170 are located in a middle region 113 of the first surface 112 of the carrier board 110, and the first radiator 120 and the second radiator 130 extend in a direction away from the middle region 113 on the first surface 112. In the exemplary embodiment, the first radiator 120 is located on an upper side of the middle region 113, and the second radiator 130 is located on a lower side of the middle region 113. Certainly, the relative location of the first radiator 120 and the second radiator 130 is not limited thereto, as long as the first radiator 120 and the second radiator 130 are away from each other.
In addition, as shown in
As shown in
In the exemplary embodiment, the first radiator 120 of the dual band antenna module 100 resonates to generate a first frequency band. The second radiator 130 resonates to generate a second frequency band. In the exemplary embodiment, a bandwidth of the first frequency band is 2.4 G bandwidth, which is approximately between 2400 MHz and 2500 MHz, and a bandwidth of the second frequency band is 5G bandwidth, which is approximately between 5150 MHz and 5850 MHz. Certainly, in other exemplary embodiments, the first frequency band and the second frequency band may have other bandwidth ranges, and the bandwidth ranges of the first frequency band and the second frequency band are not limited thereto.
It is worth mentioning that, in general, the problem with the dual band antenna structure is the signal interference caused by the energy between the two antennas. Therefore, it is necessary to keep a certain degree of isolation between the two antennas in order to obtain good signals in each of the two frequency bands. In the exemplary embodiment, the first filter 140 and the second filter 150 are specially designed. In this way, the dual band antenna module 100 may effectively increase the isolation between the first frequency band and the second frequency band on the premise that the dual band antenna module 100 is small-sized and low-cost. In other words, even though the dual band antenna module 100 is limited in size and the first radiator 120 and the second radiator 130 are relatively close, the first filter 140 and the second filter 150 may still have a good isolation between the first frequency band generated by the first radiator 120 and the second frequency band generated by the second radiator 130.
As shown in
Similarly, the second filter 150 extends from the second feeding end 132 in a direction away from the second radiator 130 and towards the middle region 113. In the exemplary embodiment, the first ground pattern 160 and the second ground pattern 170 have corresponding outlines such that the second filter 150 extends along the outline of the first ground pattern 160 and the outline of the second ground pattern 170 and between the first ground pattern 160 and the second ground pattern 170. The second filter 150 is used for filtering electromagnetic waves of the first frequency band. In the exemplary embodiment, a length of the second filter 150 is ¼ wavelength of the first frequency band.
In other words, the dual band antenna module 100 of the exemplary embodiment uses the first radiator 120 and the second radiator 130 to generate the first frequency band and the second frequency band, respectively, and the first filter 140 at the first feeding end 122 of the first radiator 120 and the second filter 150 at the second feeding end 132 of the second radiator 130 are designed to filter the second frequency band and the first frequency band, respectively. That achieves a good isolation between the first frequency band and the second frequency band. In this way, since it is not necessary for the first radiator 120 and the second radiator 130 to be far apart from each other, the dual band antenna module 100 can go smaller. In addition, the dual band antenna module 100 does not require a frequency divider and therefore the cost is reduced.
Referring to
Referring to
Therefore, the design of the first filter 140 and the second filter 150 of the dual band antenna module 100 of the exemplary embodiment reduces the distance between the first radiator 120 and the second radiator 130 and the overall size. In the exemplary embodiment, a type of the first radiator 120 and the second radiator 130 may be, for example, a planar inverted-F antenna (FIFA Antenna) to reduce the size of the dual band antenna module 100. To be more specific, a length, width and height of the dual band antenna module 100 may be reduced to 27.5 mm, 16 mm and 0.6 mm. Certainly, the type of the first radiator 120 and the second radiator 130 and the length, width and height of the dual band antenna module 100 are also not limited thereto.
Based on the foregoing, the dual band antenna module of the invention uses the first radiator and the second radiator to resonate and generate the first frequency band and the second frequency band, respectively, and the first filter at the first feeding end of the first radiator is designed to filter the second frequency band, and the second filter at the second feeding end of the second radiator is designed to filter the first frequency band. That achieves a good isolation between the first frequency band and the second frequency band. In this way, since it is not necessary for the first radiator and the second radiator to be far apart from each other, the dual band antenna module can go smaller in size. In addition, since the dual band antenna module of the invention does not require a diplexer, the cost is lowered.
Although the invention has been described with reference to the above embodiments, it will be apparent to one of ordinary skill in the art that modifications to the described embodiments may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims and not by the above detailed descriptions.
Number | Date | Country | Kind |
---|---|---|---|
106135274 A | Oct 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5936594 | Yu et al. | Aug 1999 | A |
6957080 | Guetre et al. | Oct 2005 | B2 |
7411554 | Jung | Aug 2008 | B2 |
7450072 | Kim et al. | Nov 2008 | B2 |
7605760 | Kim et al. | Oct 2009 | B2 |
8059046 | Nysen | Nov 2011 | B2 |
20030119457 | Standke | Jun 2003 | A1 |
20040189530 | Chung et al. | Sep 2004 | A1 |
20070229366 | Kim et al. | Oct 2007 | A1 |
20080258977 | Kim | Oct 2008 | A1 |
20090189824 | Nishikido | Jul 2009 | A1 |
20110163922 | Wang et al. | Jul 2011 | A1 |
20130222186 | Leung et al. | Aug 2013 | A1 |
20150295311 | Bringuier et al. | Oct 2015 | A1 |
20160294048 | Xu et al. | Oct 2016 | A1 |
20170012345 | Zhang et al. | Jan 2017 | A1 |
20170250471 | Lee | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
101443957 | May 2009 | CN |
20080094530 | Oct 2008 | KR |
20080112346 | Dec 2008 | KR |
20160017750 | Feb 2016 | KR |
I403026 | Jul 2013 | TW |
Entry |
---|
“Search Report of Europe Counterpart Application”, dated Mar. 8, 2019, p. 1-p. 8. |
Number | Date | Country | |
---|---|---|---|
20190115654 A1 | Apr 2019 | US |