Wireless Local Area Networks (WLANs) are used for providing users with access to services and/or network connectivity. WLANs typically follow sets of standards described in the Institute of Electrical and Electronics Engineers (IEEE) 802.11. WLANs may operate in an unlicensed Industrial, Scientific and Medical (ISM) region of the frequency spectrum. For most countries, the communication channels in these bands are located between 2.41 Gigahertz (GHz) and 2.48 GHz (known as 2.4 GHz band or 2.4 GHz) or between 5.17 GHz and 5.82 GHz (known as 5 GHz band or 5 GHz).
The dual band nature of several IEEE 802.11x standards requires antennas to operate at both frequency bands. Additionally, other standards require the use of multiple input multiple output (MIMO) antennas where several transmitting/receiving antennas are operating simultaneously to achieve higher data rates.
A dual band printed antenna pair operates simultaneously at both WLAN frequency bands (2.4 GHz/5 GHz). The antenna pair provides high isolation between both antennas while having an efficient over the air performance. The antenna pair achieve greater than 20 dB isolation at 2.4 GHz and 5 GHz band, while having antennas positioned in close proximity. The high isolation is accomplished using an orthogonal antenna configuration (exploiting orthogonal polarization) and a parasitic element to further enhance isolation at 2.4 GHz. The antenna pair and parasitic element are printed on a Printed Circuit Board (PCB) adding relatively little cost to a Radio Frequency (RF) interface. The PCB is then fixed on top of a metal chassis with the antenna keep out area overhanging a corner of the metal chassis to enhance performance.
In other embodiments, additional antennas operating in other frequency bands and/or additional parasitic elements may be used to provide isolation.
In an embodiment, an apparatus comprises a substrate having first and second sides. A first antenna is disposed on the first side of the substrate. A second adjacent antenna is disposed on the second side of the substrate. A parasitic element is disposed between the first and second antennas. The first and second antennas are disposed on the first and second sides of the substrate such that the radiation from the first and second antennas has orthogonal polarization. The parasitic element also forms an electrical field to further provide isolation between the first and second antennas.
A method embodiment includes operating a multi-band wireless wide area network antenna having a parasitic element. The method comprises transmitting from a first antenna a first signal at a first frequency in a first range of frequencies. A second signal is transmitted at a second frequency in a second range of frequencies from a second antenna, while the first antenna is transmitting the first signal. The second signal is transmitted orthogonal to the first signal to form isolation. A current is generated through the parasitic element in response to at least transmission from one of the first and second antennas. The current forms an electric field to further isolate the first and second signals.
In another apparatus embodiment, the apparatus includes a PCB having a ground plane. The PCB has a first side and adjacent second side. A first microstrip antenna is disposed on the first side and radiates a first signal in first range of frequencies. A second microstrip antenna is disposed on the second side. The second microstrip antenna radiates a second signal in a second range of frequencies that is orthogonal to the first signal. A parasitic element is disposed between the first and second antennas. The parasitic element is coupled to the ground plane and generates an electronic isolation field in response to at least one of the first and second antennas radiating the first and second signals. A processor readable memory stores processor readable instructions and at least one processor executes the processor readable instructions to output a third and fourth signals to the first and second microstrip antennas. The third signal represent first information to access a network such that the first microstrip antenna radiates the first signal that includes the first information to access the network. The fourth signal represents second information to access the network such that the second microstrip antenna radiates the second signal that includes the second information to access the network.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In order to maximize a benefit of using at least two antennas (i.e. higher channel capacity and data rates), radiation coupling between the two antennas is relatively low (for example <20 dB) in an embodiment. In a computing device embodiment having a relatively small form factor in which space is limited, the separation between the antennas may not be easily increased. Yet, having antennas relatively closely spaced allows for proximity to a transceiver and avoid a use of long coaxial cables or strip lines. Therefore, it is desirable to have highly isolated antennas that are electrically close to each other in an embodiment.
Accordingly, key aspects of the present technology include at least a specific antenna topology having an orthogonal arrangement and a parasitic element that may allow for a close proximity arrangement and high isolation. The orthogonal arrangement takes advantage of orthogonal polarization to provide isolation and a parasitic element further enhances isolation between the antennas by forming an electrical isolation field. More antennas and/or parasitic elements may be used for additional frequency bands. Also, overhanging a PCB having the pair of antennas disposed on the sides from a metal chassis allows for efficient antenna performance without the use of antenna carriers.
In embodiments, antennas 101 and 102 may take on different geometric shapes. For example antennas 101 and 102 may have a single or multiple branches. Parasitic element 103, as described herein, may take on different geometric shapes as well. For example, parasitic element 103 may be formed in the shape of a capital letter L. In an embodiment, antennas 101 and 102 as well as parasitic element 103 have approximately the same length.
In an embodiment, signals are carried on cables 206 and 207 to antennas 101 and 102, as illustrated in
In an embodiment, antennas 101 and 102 are microstrip patch antennas that are formed by printing metallic material or elements over a surface of substrate 100. In an embodiment, substrate 100 is a PCB 200 as illustrated in
In an embodiment, antennas 101 and 102 are microstrip patch antennas having a half wave length antenna with the wave length an inversely known relation to the frequency of operation scaled by the speed of light in the medium.
In an alternate embodiment, antennas 101 and 102 are quarter wave length microstrip antennas. In an embodiment, antennas 101 and 102 are Planar inverted F-antennas (PIFA) which is a particular type of quarter wave length microstrip antenna with reduced size compared to half wave length antennas. The overall antenna length is approximately a quarter wave length at an operating frequency with an option of having multiple branches originating from a feed point in order to cover more than one frequency band. PIFA antennas may have a shorting point located close to an antenna feed point in order to provide a shunt inductance to match an antenna to 50 ohm system impedance. In an embodiment, shorting elements 101a for antenna 101 and shorting element 102a for antennas 102, as illustrated in
In an embodiment, substrate 100 having antennas 101 and 102 are PIFA antennas operating in a Many Input Many Output (MIMO) computing device. In a typical MIMO computing device, isolation between two antennas typically depends upon several factors.
For example, physical separation between antennas provides isolation. The further apart the antennas; higher the isolation typically.
Polarization discrimination may also provide isolation. Two antennas arranged in an orthogonal manner may have orthogonal polarizations, which increases the isolation level between them.
In embodiments, physical separation may not be increased due to computing device space constraints. Polarization discrimination may provide isolation up to a certain extent (depending on the antenna polarization purity) which may not be enough in particular embodiments. In order to provide further antenna isolation, an external element, or parasitic element 103 is disposed between antennas 101 and 102. In an embodiment, parasitic element 103 is a metallic material, printed on PCB 200 that is directly connected to the ground plane 301 and has an overall length similar to a quarter wave length at a desired high isolation frequency.
Due to parasitic element 103 proximity with antennas 101 and 102, currents are induced into parasitic element 103. Some of this induced current resonating at a frequency close to 2.4 GHz is then re-radiated back into space. The electric fields from the antennas 101 and 102 and electric fields from parasitic element 103 are added together to form the total electric field. An electric field contribution from parasitic element 103 may add with electric fields from antennas 101 and 102 in a constructive or destructive manner for different regions of space. When this addition is destructive, the total electric field at a specific point of space is zero. When this region of the space happens to be the feed point of the opposite antenna, then there is a minimum coupling condition between antennas 101 and 102.
In alternate embodiments, additional antennas operating in different frequency bands and matching parasitic elements may be used. For example, a third antenna may be disposed on side 108 across from antenna 101 that radiates and receives signals at a different frequency than the 2.4 GHz and 5 GHz frequency bands. An additional parasitic element may be disposed between the additional antenna and antenna 102 to provide an additional electric isolation field that provides further isolation for the three antennas (101, 102 and additional antenna on side 108). In embodiments, the additional parasitic element may be disposed on side 104 and/or 108.
In still further embodiments, n antennas operating at n frequency bands with n−1 parasitic elements may be configured on a substrate to exploit polarization discrimination and provide additional electric isolation fields from the n−1 parasitic elements that further isolate the n antennas.
Null areas 400-403 shown in
In comparison,
In contrast,
In an embodiment in which a notch or higher isolation is needed in the 5 GHz band, a second parasitic element may be used to resonate at a frequency close to 5 GHz.
In an embodiment, substrate 100 with antennas 101 and 102 are included in a computing device such as a video game console and/or media console and illustrated in
In an embodiment, a method shown
Step 600 represents transmitting from a first antenna a first signal at a first frequency in a first range of frequencies. For example, antenna 101 transmits a signal a frequency band.
Step 601 represents transmitting from a second antenna, while transmitting from the first antenna, a second signal at a second frequency in a second range of frequencies. The second signal transmitting orthogonal to the first signal for form isolation. In an embodiment, antenna 102 transmits the second signal.
Step 602 represents generating a current through the parasitic element in response to at least one of the transmitting from the first and second antenna. The current forming an electric field to further isolate the first and second signals. In an embodiment, a parasitic element 103 is used.
Step 603 illustrates receiving from the second antenna, while transmitting from the first antenna, a third signal that is received having a third frequency in the second range of frequencies.
Step 604 illustrates receiving from the first antenna, while transmitting from the second antenna, a fourth signal that is received having a fourth frequency in the first range of frequencies.
Step 605 illustrates transmitting from a third antenna, while transmitting from the first and second antennas, a third signal at a third frequency in a third range of frequencies.
This method may include other steps, actions and/or details that are not discussed in this method overviews illustrated in
In an embodiment, computing device include substrate 100 having antennas 101 and 102 and parasitic element 103 may be, but is not limited to, a video game and/or media console.
As depicted in
The console 1002 connects to a television or other display (such as display 1050) via A/V interfacing cables 1020. In one implementation, the console 1002 is equipped with a dedicated A/V port configured for content-secured digital communication using A/V cables 1020 (e.g., A/V cables suitable for coupling to a High Definition Multimedia Interface “HDMI” port on a high definition display 1050 or other display device). A power cable 1022 provides power to the game console. The console 1002 may be further configured with broadband capabilities, as represented by a cable or modem connector 1024 to facilitate access to a network, such as the Internet. The broadband capabilities can also be provided wirelessly, through a broadband network such as a wireless fidelity (Wi-Fi) network.
Each controller 1004 is coupled to the console 1002 via a wired or wireless interface. In the illustrated implementation, the controllers 1004 are USB-compatible and are coupled to the console 1002 via a wireless or USB port 1010. The console 1002 may be equipped with any of a wide variety of user interaction mechanisms. In an example illustrated in
In an embodiment, a user may enter input to console 1002 by way of gesture, touch or voice. In an embodiment, optical I/O interface 1135 receives and translates gestures of a user. In another embodiment, console 1002 includes a natural user interface (NUI) to receive and translate voice and gesture inputs from a user. In an alternate embodiment, front panel subassembly 1142 includes a touch surface and a microphone for receiving and translating a touch or voice, such as a voice command, of a user.
In one implementation, a memory unit (MU) 1040 may also be inserted into the controller 1004 to provide additional and portable storage. Portable MUs enable users to store game parameters for use when playing on other consoles. In this implementation, each controller is configured to accommodate two MUs 1040, although more or less than two MUs may also be employed.
The gaming and media system 1000 is generally configured for playing games (such as video games) stored on a memory medium, as well as for downloading and playing games, and reproducing pre-recorded music and videos, from both electronic and hard media sources. With the different storage offerings, titles can be played from the hard disk drive, from an optical storage disc (e.g., 1008), from an online source, or from MU 1040. Samples of the types of media that gaming and media system 1000 is capable of playing include:
Game titles played from CD and DVD discs, from the hard disk drive, or from an online streaming media source.
Digital music played from a CD in portable media drive 1006, from a file on the hard disk drive (e.g., music in a media format), or from online streaming media sources.
Digital audio/video played from a DVD disc in portable media drive 1006, from a file on the hard disk drive (e.g., Active Streaming Format), or from online streaming sources.
During operation, the console 1002 is configured to receive input from controllers 1004 and display information on the display 1050. For example, the console 1002 can display a user interface on the display 1050 to allow a user to select a game using the controller 1004 and display state solvability information as discussed below.
The CPU 1100, the memory controller 1102, and various memory devices are interconnected via one or more buses. The details of the bus that is used in this implementation are not particularly relevant to understanding the subject matter of interest being discussed herein. However, it will be understood that such a bus might include one or more of serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus, using any of a variety of bus architectures. By way of example, such architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, and a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus.
In one implementation, the CPU 1100, the memory controller 1102, the ROM 1104, and the RAM 1106 are integrated onto a common module 1114. In this implementation, the ROM 1104 is configured as a flash ROM that is connected to the memory controller 1102 via a PCI bus and a ROM bus (neither of which are shown). The RAM 1106 is configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR SDRAM) modules that are independently controlled by the memory controller 1102 via separate buses. The hard disk drive 1108 and the portable media drive 1006 are shown connected to the memory controller 1102 via the PCI bus and an AT Attachment (ATA) bus 1116. However, in other implementations, dedicated data bus structures of different types can also be applied in the alternative.
In an embodiment, RAM 1106 may represent one or more processor readable memories. In an embodiment, RAM 1106 may be a Wide I/O DRAM. Alternatively, RAM 1106 may be Low Power Double Data Rate 3 dynamic random access memory (LPDDR3 DRAM) memory (also known as Low Power DDR, mobile DDR (MDDR) or mDDR).
In embodiments, RAM 1106 includes one or more arrays of memory cells in an IC disposed on a semiconductor substrate. In an embodiment, RAM 1106 is included in an integrated monolithic circuit housed in a separately packaged device than CPU 1100.
RAM 1106 may be replaced with other types of volatile memory that include at least dynamic random access memory (DRAM), molecular charge-based (ZettaCore) DRAM, floating-body DRAM and static random access memory (“SRAM”). Particular types of DRAM include double data rate SDRAM (“DDR”), or later generation SDRAM (e.g., “DDRn”).
ROM 1104 may likewise be replaced with other types of non-volatile memory including at least types of electrically erasable program read-only memory (“EEPROM”), FLASH (including NAND and NOR FLASH), ONO FLASH, magneto resistive or magnetic RAM (“MRAM”), ferroelectric RAM (“FRAM”), holographic media, Ovonic/phase change, Nano crystals, Nanotube RAM (NRAM-Nantero), MEMS scanning probe systems, MEMS cantilever switch, polymer, molecular, nano-floating gate and single electron.
A three-dimensional graphics processing unit 1120 and a video encoder 1122 form a video processing pipeline for high speed and high resolution (e.g., High Definition) graphics processing. Data are carried from the graphics processing unit 1120 to the video encoder 1122 via a digital video bus. An audio processing unit 1124 and an audio codec (coder/decoder) 1126 form a corresponding audio processing pipeline for multi-channel audio processing of various digital audio formats. Audio data are carried between the audio processing unit 1124 and the audio codec 1126 via a communication link. The video and audio processing pipelines output data to an AN (audio/video) port 1128 for transmission to a television or other display. In the illustrated implementation, the video and audio processing components 1120-1128 are mounted on the module 1114.
In an embodiment, PCB 200 having PIFA antennas 101 and 102 as well as a parasitic element 103, as illustrated in
In the implementation depicted in
The MUs 10401 and 10402 are illustrated as being connectable to MU ports “A” 10301 and “B” 10302 respectively. Additional MUs (e.g., MUs 10403-10406) are illustrated as being connectable to the controllers 10041 and 10043, i.e., two MUs for each controller. The controllers 10042 and 10044 can also be configured to receive MUs. Each MU 1040 offers additional storage on which games, game parameters, and other data may be stored. In some implementations, the other data can include any of a digital game component, an executable gaming application, an instruction set for expanding a gaming application, and a media file. When inserted into the console 1002 or a controller, the memory controller 1102 can access the MU 1040.
A system power supply module 1150 provides power to the components of the gaming system 1000. A fan 1152 cools the circuitry within the console 1002.
An application 1160 comprising processor readable instructions is stored on the hard disk drive 1108. When the console 1002 is powered on, various portions of the application 1160 are loaded into RAM 1106, and/or caches 1110 and 1112, for execution on the CPU 1100, wherein the application 1160 is one such example. Various applications can be stored on the hard disk drive 1108 for execution on CPU 1100. In an embodiment, CPU 1100 executes application 1160 having processor readable instructions that causes signals to be output to antennas 101 and 102.
The console 1002 is also shown as including a communication subsystem 1170 configured to communicatively couple the console 1002 with one or more other computing devices (e.g., other consoles). The communication subsystem 1170 may include wired and/or wireless communication devices compatible with one or more different communication protocols. As non-limiting examples, the communication subsystem 1170 may be configured for communication via a wireless telephone network, or a wired or wireless local- or wide-area network. In some embodiments, the communication subsystem 1170 may allow the console 1002 to send and/or receive messages to and/or from other devices via a network such as the Internet. In specific embodiments, the communication subsystem 1170 can be used to communicate with a coordinator and/or other computing devices, for sending download requests, and for effecting downloading and uploading of digital content. More generally, the communication subsystem 1170 can enable the console 1002 to participate on peer-to-peer communications.
The gaming and media system 1000 may be operated as a standalone system by simply connecting the system to display 1050 (
The above described console 1002 is just one example of a computing device having a substrate 100 and antennas 101 and 102 as well as parasitic element 103 as illustrated in
Device 1800 may also contain communications connection(s) 1812 such as one or more network interfaces and transceivers that allow the device to communicate with other devices. Device 1800 may also have input device(s) 1814 such as keyboard, mouse, pen, voice input device, touch input device, gesture input device, etc. Output device(s) 1816 such as a display, speakers, printer, etc. may also be included. These devices are well known in the art so they are not discussed at length here.
The foregoing detailed description of the inventive system has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the inventive system to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the inventive system and its practical application to thereby enable others skilled in the art to best utilize the inventive system in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the inventive system be defined by the claims appended hereto.