Not Applicable
The present disclosure relates generally to radio frequency (RF) communication devices and, more particularly, to a dual-band and cross-polarized 5G millimeter wave phased array antenna for active beamformer applications.
Wireless communication systems find applications in numerous contexts involving information transfer over long and short distances alike, and a wide range of modalities tailored for each need have been developed. Chief among these systems with respect to popularity and deployment is the mobile or cellular phone. Generally, wireless communications utilize a radio frequency carrier signal that is modulated to represent data, and the modulation, transmission, receipt, and demodulation of the signal conform to a set of standards for coordination of the same. Many different mobile communication technologies or air interfaces exist, including GSM (Global System for Mobile Communications), EDGE (Enhanced Data rates for GSM Evolution), and UMTS (Universal Mobile Telecommunications System).
Various generations of these technologies exist and are deployed in phases, the latest being the 5G broadband cellular network system. 5G is characterized by significant improvements in data transfer speeds resulting from greater bandwidth that is possible because of higher operating frequencies compared to 4G and earlier standards. The air interfaces for 5G networks comprise two frequency bands, frequency range 1 (FR1), the operating frequency of which being below 6 GHz with a maximum channel bandwidth of 100 MHz, and frequency range 2 (FR2), the operating frequency of which being above 24 GHz with a channel bandwidth between 50 MHz and 400 MHz. The latter is commonly referred to as millimeter wave (mmWave) frequency range. Although the higher operating frequency bands, and mmWave/FR2 in particular, offer the highest data transfer speeds, the transmission distance of such signals may be limited. Furthermore, signals at this frequency range may be unable to penetrate solid obstacles. To overcome these limitations while accommodating more connected devices, various improvements in cell site and mobile device architectures have been developed.
One such improvement is the use of multiple antennas at both the transmission and reception ends, also referred to as MIMO (multiple input, multiple output), which is understood to increase capacity density and throughput. A series of antennas may be arranged in a single or multi-dimensional array, and further, may be employed for beamforming where radio frequency signals are shaped to point in a specified direction of the receiving device. A transmitter circuit feeds the signal to each of the antennas with the phase of the signal as radiated from each of the antennas being varied over the span of the array. The collective signal to the individual antennas may have a narrower beam width, and the direction of the transmitted beam may be adjusted based upon the constructive and destructive interferences from each antenna resulting from the phase shifts. Beamforming may be used in both transmission and reception, and the spatial reception sensitivity may likewise be adjusted.
There is an increasing demand for active beamforming technologies for use in current 5G communication devices such as cellular phones communicating over small-cell networks. To this end, array antenna packages may be used in 5G wireless communication devices for analog, digital, and hybrid beamforming applications. However, it is difficult to design a dual-band and cross-polarized array antenna to cover the full 5G millimeter wave operating bands, which include 26G (covering 24.25-27.5 GHz), 28G (covering 26.5-29.5 GHz), and 38G (covering 37-40 GHz). Therefore, in most cases, only a single band array antenna, either low band or high band, is used. For example, in the United States, a low band array antenna may be configured to radiate signals in the 27.5-28.3 GHz frequency band and a high band array antenna may be configured to radiate signals in the 37-40 GHz frequency band. In order to be used globally (since different countries use different bands), an array antenna would need to cover both of these bands as well as the remainder of the 28G band and the 26G band.
The present disclosure contemplates various devices for overcoming the above drawbacks associated with the related art. One aspect of the embodiments of the present disclosure is a dual-band cross-polarized antenna. The dual-band cross-polarized antenna may comprise a first metal layer at a first distance from a radio frequency (RF) ground plane, the first metal layer defining a first driven patch configured to radiate at a first frequency, and a second metal layer at a second distance from the RF ground plane, the second metal layer defining a second driven patch configured to radiate at a second frequency greater than the first frequency. The dual-band cross-polarized antenna may further comprise a first feed pin connecting a first feed line to the first driven patch at a first feed point thereof associated with a first polarization of the first patch, a second feed pin connecting the first feed line to the first driven patch at a second feed point thereof associated with a second polarization of the first patch orthogonal to the first polarization, a third feed pin connecting a second feed line to the second driven patch at a first feed point thereof associated with a first polarization of the second patch, and a fourth feed pin connecting the second feed line to the second driven patch at a second feed point thereof associated with a second polarization of the second patch orthogonal to the first polarization. The third feed pin may extend through a first hole in the first driven patch to capacitively couple the third feed pin to the first driven patch, and the fourth feed pin may extend through a second hole in the first driven patch to capacitively couple the fourth feed pin to the first driven patch.
The first and second feed points of the first driven patch may be equidistant from a center of the first driven patch, and the first and second feed points of the second driven patch may be equidistant from a center of the second driven patch.
The dual-band cross-polarized antenna may comprise a third metal layer at a third distance from the RF ground plane, the third metal layer defining a shared parasitic patch configured to radiate according to a current induced by inductive and capacitive coupling between the shared parasitic patch and the first and second driven patches. The first driven patch, the second driven patch, and the shared parasitic patch may be square. The first driven patch may have a length of 2.5 mm to 3.0 mm, the second driven patch may have a length of 1.5 mm to 2.0 mm, and the shared parasitic patch may have a length of 1.5 mm to 2.0 mm.
The first metal layer may further define one or more first parasitic patches configured to radiate according to a current induced by inductive and capacitive coupling between the one or more second parasitic patches and the first driven patch. The first driven patch may be square, and the one or more first parasitic patches may comprise four first parasitic patches respectively arranged adjacent to the four sides of the first driven patch.
The second metal layer may further define one or more second parasitic patches configured to radiate according to a current induced by inductive and capacitive coupling between the one or more second parasitic patches and the second driven patch. The second driven patch may be square, and the one or more second parasitic patches may comprise four second parasitic patches respectively arranged adjacent to the four sides of the second driven patch.
The dual-band cross-polarized antenna may comprise a first catch pad, disposed in the first hole, through which the third feed pin extends and a second catch pad, disposed in the second hole, through which the fourth feed pin extends. A diameter of the first catch pad, a diameter of the first hole, a diameter of the second catch pad, and a diameter of the second hole may be tuned to achieve an input return loss at the second frequency of less than −10 dB.
The dual-band cross-polarized antenna may further comprise a ground feed pin connecting the RF ground plane to the first driven patch and the second driven patch.
The first and second feed lines may be formed in one or more metal layers of a multi-layer printed circuit board (PCB) comprising the RF ground plane. The first, second, third, and fourth feed pins may extend through respective holes in the RF ground plane. The dual-band cross-polarized antenna may further comprise an RF front end integrated circuit disposed on an opposite side of the multi-layer PCB from the first and second metal layers, one or more signal output pins of the RF front end integrated circuit being connected to the first and second feed lines.
Another aspect of the embodiments of the present disclosure is an antenna module. The antenna module may comprise a multi-layer printed circuit board (PCB) including a radio frequency (RF) ground plane. The antenna module may further comprise a first metal layer at a first distance from the RF ground plane, the first metal layer defining a first driven patch configured to radiate at a first frequency, and a second metal layer at a second distance from the RF ground plane, the second metal layer defining a second driven patch configured to radiate at a second frequency greater than the first frequency. The antenna module may comprise a first feed pin connecting a first feed line to the first driven patch at a first feed point thereof associated with a first polarization of the first driven patch, a second feed pin connecting the first feed line to the first driven patch at a second feed point thereof associated with a second polarization of the first driven patch orthogonal to the first polarization, a third feed pin connecting a second feed line to the second driven patch at a first feed point thereof associated with a first polarization of the second driven patch, and a fourth feed pin connecting the second feed line to the second driven patch at a second feed point thereof associated with a second polarization of the second driven patch orthogonal to the first polarization. The first feed line and the second feed line may be formed in one or more metal layers of the multi-layer PCB. The third feed pin may extend through a first hole in the first driven patch to capacitively couple the third feed pin to the first driven patch, and the fourth feed pin may extend through a second hole in the first driven patch to capacitively couple the fourth feed pin to the first driven patch. The antenna module may further comprise an RF front end integrated circuit disposed on an opposite side of the multi-layer PCB from the first and second metal layers, one or more signal output pins of the RF front end integrated circuit being connected to the first and second feed lines. The antenna module may further comprise a package containing the first and second metal layers, the first, second, third, and fourth feed pins, and the multi-layer PCB including the RF ground plane and the one or more metal layers forming the first and second feed lines. The RF front end integrated circuit may be mounted on the package, and an outer surface of the package may have conductive contacts for routing input signals through the multi-layer PCB to one or more signal input pins of the RF front end integrated circuit.
Another aspect of the embodiments of the present disclosure is a dual-band cross-polarized phased array antenna. The dual-band cross-polarized phased array antenna may comprise two or more antenna elements arranged in an array. Each of the antenna elements may comprise a first driven patch configured to radiate at a first frequency, the first driven patch defined in a first metal layer at a first distance from a radio frequency (RF) ground plane, and a second driven patch configured to radiate at a second frequency greater than the first frequency, the second driven patch defined in a second metal layer at a second distance from the RF ground plane. Each of the antenna elements may further comprise a first feed pin connecting a first feed line to the first driven patch at a first feed point thereof associated with a first polarization of the first patch, a second feed pin connecting the first feed line to the first driven patch at a second feed point thereof associated with a second polarization of the first patch orthogonal to the first polarization, a third feed pin connecting a second feed line to the second driven patch at a first feed point thereof associated with a first polarization of the second patch, and a fourth feed pin connecting the second feed line to the second driven patch at a second feed point thereof associated with a second polarization of the second patch orthogonal to the first polarization. In each of the antenna elements, the third feed pin may extend through a first hole in the first driven patch to capacitively couple the third feed pin to the first driven patch, and the fourth feed pin may extend through a second hole in the first driven patch to capacitively couple the fourth feed pin to the first driven patch.
A distance DA between centers of the antenna elements may be between 0.3 and 0.4 times a free space wavelength λ0 of the first frequency.
The two or more antenna elements may be arranged in a two-by-two array.
The two or more antenna elements may be arranged in a four-by-one array.
The dual-band cross-polarized phased array antenna may comprise a multi-layer printed circuit board (PCB) including the RF ground plane and one or more metal layers forming the first and second feed lines and may further comprise an RF front end integrated circuit disposed on an opposite side of the multi-layer PCB from the two or more antenna elements. One or more signal output pins of the RF front end integrated circuit may be connected to the first and second feed lines. The dual-band cross-polarized phased array antenna may comprise a package containing the two or more antenna elements and the multi-layer PCB. The RF front end integrated circuit may be mounted on the package. An outer surface of the package may have conductive contacts for routing input signals through the multi-layer PCB to one or more signal input pins of the RF front end integrated circuit.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
The present disclosure encompasses various embodiments of dual-band cross-polarized antennas, including phased array antennas, for 5G millimeter wave applications. The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments and is not intended to represent the only form in which the disclosed invention may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that the use of relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship or order between such entities.
In order to provide capability in two orthogonal polarizations (e.g. horizontal and vertical) while also covering multiple 5G millimeter wave operating bands, each antenna element 100 may include first and second driven patches 110, 120 and first, second, third, and fourth feed pins 132, 134, 136, 138 for radiating vertical and horizontal polarized signals in either transmitting or receiving mode. For example, as shown in
More specifically, feeding the RF signal to the first driven patch 110 at the first feed point 112 thereof may produce a current in the first driven patch 110 that causes the first driven patch 110 to radiate with a horizontal polarization, whereas feeding at the second feed point 114 may produce a current in the first driven patch 110 that causes the first driven patch 110 to radiate with a vertical polarization. Likewise, feeding the RF signal to the second driven patch 120 at the first feed point 122 thereof may produce a current in the second driven patch 120 that causes the second driven patch 120 to radiate with a horizontal polarization, whereas feeding at the second feed point 124 may produce a current in the second driven patch 120 that causes the second driven patch 120 to radiate with a vertical polarization. To achieve the same performance for horizontal and vertical polarizations, the antenna element 100 may have a symmetrical or quasi-symmetrical structure. To this end, the first and second feed points 112, 114 of the first driven patch 110 may be equidistant from the center of the first driven patch 110, and the first and second feed points 122, 124 of the second driven patch 120 may be equidistant from the center of the second driven patch 120. Similarity of performance may be possible by making the first and second driven patches 110, 120 square as shown in
Referring again to
As explained above, the first and second feed lines 142, 144 may be formed in a metal layer M5 of a stripline structure comprising the RF ground plane M4, which may be part of a multi-layer PCB 300. More specifically, the metal layer M5 defining the feed trace network for the antenna element 100 may be sandwiched between the RF ground plane M4 and another metal layer M6, which together may serve as ground planes for the feed lines 142, 144. The RFIC 200 may be located below the metal layer M6. As shown in
As noted above, the one or more antenna elements 100 may be packaged with the multi-layer PCB 300 together with or in close proximity to the RFIC 200. In the example illustrated in
To electrically connect the first and second feed lines 142, 144 to the driven patches 110, 120, the first, second, third, and fourth feed pins 132, 134, 136, 138 may extend through the RF ground plane M4, e.g. through respective holes provided therein. For example, as shown in
In order to improve cross-polarization between feeds in the same frequency band, for example, between the first and second feed pins 132, 134 of the first driven patch 110 (or between the third and fourth feed pins 136, 138 of the second driven patch 120), as well as to improve isolation between feeds in different bands, a ground feed pin 160 may be used to connect the RF ground plane M4 to the first and second driven patches 110, 120. As shown in
In order to achieve wideband operation, the antenna 10 may further include a third metal layer M1 at a third distance from the RF ground plane M4 (which may be defined in relation to a distance H3 from the second metal layer M2 as shown in
Additional parasitic patches may be provided for one or the other of the first and second driven patches 110, 120. For example, the first metal layer M3 may define one or more first parasitic patches 182, 184, 186, 188 (collectively, first parasitic patches 180) that are configured to radiate according to a current induced by inductive and capacitive coupling between the one or more first parasitic patches 180 and the first driven patch 110. As shown in
By the same token, the second metal layer M2 may define one or more second parasitic patches 192, 194, 196, 198 (collectively, second parasitic patches 190) that are configured to radiate according to a current induced by inductive and capacitive coupling between the one or more second parasitic patches 190 and the second driven patch 120. The second parasitic patches 190 may likewise comprise four second parasitic patches 192, 194, 196, 198 respectively arranged adjacent to four sides of the second driven patch 120, e.g. adjacent to the four sides of a square patch. The parasitic patch distance L2-1 and width L2-2 of each second parasitic patch 190 (which may be the same in the case of a symmetrical arrangement) may be tuned to achieve wide operating bandwidth around the second wavelength. In a case where the second driven patch 120 is smaller than the first driven patch 110 as shown, the second parasitic patches 190 may be smaller than the first parasitic patches 180, e.g. patch width L2-2 being less than patch width L1-1. Similar to the first parasitic patches 180, the second parasitic patches 190 may be rectangles, with the long dimensions being aligned parallel with the sides of the second driven patch 120 in this case. As in the case of the first parasitic patches 180, it is also contemplated that the long dimensions may be longer or shorter than the corresponding sides of the second driven patch 120. Non-rectangular configuration of parasitic patches could be used as well.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application relates to and claims the benefit of U.S. Provisional Application No. 63/028,788, filed May 22, 2020 and entitled “DUAL-BAND CROSS-POLARIZED 5G MM-WAVE PHASED ARRAY ANTENNA,” the disclosure of which is wholly incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
63028788 | May 2020 | US |