None.
None.
1. Field
The technology of the present application relates generally to array antennas and, and more specifically to a dual band slot array antenna residing above a ground plane.
2. Background
Directional, high gain patch antennas are currently available for various telematics uses, such as, for example, in-building wireless access points. Conventionally, these antennas operate over a single frequency. In some cases, the use requires operation over over multiple frequencies, such as, for example, dual frequency bands including, for example, frequency ranges of 2.4-2.5 GHz and 5.15-5.875 GHz.
While multiple independently operating antenna are possible, it would be preferable to use a single antenna design due to the compressed footprint normally available for the antenna. The antenna in some cases is constrained to a relatively small footprint such as, for example, a footprint of approximately 120 mm×120 mm×20 mm. Stacking patch antennas having the respective resonant frequencies of operation is problematic because the upper band frequency of operation is close to the second resonance of the lower band frequency of operation.
Against this background, it would be desirable to develop directional, high gain antenna. Still, however, there is a need in the industry for improved compact wideband directional antennas.
To attain the advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a directional, high gain antenna is provided.
The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention, and together with the description, serve to explain the principles thereof. Like items in the drawings may be referred to using the same numerical reference.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Moreover, any embodiment described herein should be considered exemplary unless otherwise specifically noted. One of ordinary skill in the art will recognize on regarding the disclosure, however, other constructions and configurations are possible.
Referring to
First elongated slots 106 are separated by a distance df. Distance df preferably is about ½ a free-space wavelength at the frequency of operation of the array formed by first elongated slots 106. Second elongated slots 108 are separated by a distance ds.
Distance ds preferably is about ½ a free-space wavelength at the frequency of operation of the array formed by second elongated slots 108. More preferably the distances df and ds are ½ free-space wavelength at the center frequency of their respective frequency bands.
Radio frequency power is provided through a feed network 112, shown in phantom. Feed network 112 provides both impedance matching and frequency diplexing functions. Radio frequency power could be supplied using any conventional method, such as, for example, a microstrip feed line or a coaxial cable conductor. Using a cable conductor, the central conductor of the cable feed would be connected to a feed point 114 through a via 118 in radiating array 102. The outer conductor would be connected to radiating array 102. Feed network 112 would provide in phase power to the slots 106 and 108 at connections 116. Alternatively, feed network 112 could provide power with non-zero relative phase between slots 106 and 108 to squint the radiation pattern in a desired direction.
Number | Name | Date | Kind |
---|---|---|---|
4775866 | Shibata et al. | Oct 1988 | A |
6130648 | Rulf et al. | Oct 2000 | A |
6225958 | Amano et al. | May 2001 | B1 |
7057569 | Isoifovich et al. | Jun 2006 | B2 |
20080100511 | Stutzke | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080272973 A1 | Nov 2008 | US |