The following is a tabulation of some prior art that presently appears relevant:
A spinning toy, commonly referred to as “fidget spinner,” is essentially a device comprised of a circular center piece to grip, while an outer piece, loosely restrained to this center piece, spins coaxially around this center piece. This device is small enough to fit in a hand to be gripped by the thumb and index or middle finger while the outer piece spins between these two digits. U.S. Pat. No. 5,591,062 of Hettinger, U.S. Pat. No. 9,914,063 of McCoskery, and U.S. Pat. Application No. 20190015757 of Bumblebee Studio Ltd. illustrates such a device. Although the toy has proven to be popular, due in part to the soothing psychological effect it has on the person spinning it, it is somewhat inconvenient; it can be bothersome to carry, and to use such a device in social and professional engagements can be overly distracting to the people interacting with the person spinning the device.
Spinner rings, commonly referred to as “fidget rings,” are wearable, less conspicuous devices with a similar function and effect. A spinner ring constitutes two bands, in which the inner band restrains a second outer band by two annular protrusions or rims at the top and bottom. This arrangements allows the outer band to spin coaxially around the inner band. At present, we can categorize two kinds of spinner rings as seen in the market, claimed in patents, or shown in fabrication tutorials: those in which the two bands are individual pieces, and those in which at least one of the two bands comprises of two or more parts.
The spinner rings of individual pieces are made somewhat crudely, either by flaring the edges of an inner band with a hammer (see https://www.instructables.com/id/Spinner-Ring-Copper-Silver/), or bending and/or soldering the outer band around the inner band (see http://www.fundametals.net/blog/2014/05/30/daisy-spinner-ring-tutorial/ and https://www.erindelargy.com/blog/the-making-of-a-spinner-ring/).
Both crude techniques produce an inferior ring. The imprecise nature of fabrication consequently forms a large gap of the space between the inner circumference of the outer band to the inner band's outer circumference, resulting in the outer band to shake and jingle when worn. Also, the bending of metal compromises the structural integrity of the bent band, and there exists a high likelihood of accidentally warping or disfiguring any design or overall form on the band being hammered or soldered on.
Furthermore, to compensate for the dual band ring's compromised structural integrity, a jeweler would have to increase the thickness of a band, resulting in a bulky ring, uncomfortable to wear on a finger.
The spinner rings of three or more parts are assembled together in a sequence specific to the ring's design. The jeweler then secures the bands of the ring together by either soldering or gluing, as seen in U.S. Pat. No. 5,678,428 of Pasquetti and U.S. Pat. Application No. 20110011131 of Bisserier, fastening the parts together with threads inherent to the design to screw into each other, as seen in U.S. Pat. No. 5,228,316 of Meyrowitz, inserting screws or rods to hold the band together, as seen in U.S. Pat. No. 8,636,624 of Liberman and Hopson, or interlinking or latching the parts onto one another, as seen in Foreign Pat. No. DE2013100000436 of Heinz or U.S. Pat. Application No. 20010020369 of Hirano.
The characteristic of a ring having multiple parts fastened, glued, or held together by some means runs the risk of becoming loose or detached from one another, particularly for an object that is being fidgeted with on a daily basis. If the ring's parts do detach these parts could become lost, or could cause the whole ring to fall off the wearer's finger. Furthermore, the mere thought that a ring could come apart because a fastener came loose or dissolved over time can give its wearer a kind of anxiety, which negates the soothing purpose of the spinner ring.
Although the results of this category of spinner rings are more precise by avoiding the necessity of bending or contorting a band to achieve the desired arrangement, they must have a certain thickness in order to fasten the divided band's parts together. This necessity causes it to have the same issue of bulkiness and discomfort that the rings of two individual bands do.
Until recently, jewelry was only manufactured using the lost-wax casting method or by forming material using bending, contorting, or cutting techniques. More 3-dimensional (3D) printing techniques have become more affordable and accessible due to the expiration of patents, particularly U.S. Pat. No. 6,085,122 by Manning entitled “End-of-Vector Laser Power Control in a Selective Laser Sintering System,” which expired 2017 May 30, and U.S. Pat. No. 6,215,093 by Meiners et al. entitled “Selective Laser Sintering at Melting Temperature,” which expired 2017 Oct. 27. The expiration of these patents is creating a greater supply of metal 3D printers in the market, including laser-sintering and laser-melting printers. This offers more opportunities for end-product design and manufacturing using these printers.
The objective of this invention is to fabricate a ring that has two bands, wherein one band is securely interlinked around the other seamlessly, designed to permit one band to revolve around the other. This assembly is accomplished not by the bending or contorting of one band around another, but by the complete and simultaneous materialization of one band around the other. To interlink the two bands, annular channels and protrusions on the complementary sides of the bands prevent separation.
In order to process the materialization of the outer band 102 around the inner band 101, this embodiment will be 3D printed using the laser-sintering or laser-melting methods, and so its design must respect the tolerances of the printer that relate to the necessity of using support material for overhanging surfaces. Typically, a printer has a tolerance of about 30° relative to the horizontal that can materialize an ascending protruding layer without the need of support material. Therefore, the protrusion's 103 and channel's 104 protruding inclines will be able to print without the need for supports.
Printer manufacturers recommend that any object be tilted about 10° to avoid printing defects along the bottom surface. If the bands 101 and 102 are tilted 10° in preparation for printing, then the bands' inclines and declines have a 35° angle to the horizontal within the recommended minimum 30° tolerance of the printer. After the ring is materialized, all support material is removed and discarded. In its finished stage, the inner band 101 and outer band 102 will be securely interlinked together by the design of the inner band's 101 annular protrusion 103 and the complementary design of the outer band's 102 annular channel 104, but allowing the outer band 102 to revolve around the inner band 101, as the inner band 101 and outer band 102 are not fused together.
In order to process the materialization of this embodiment, printer angle tolerances have been considered for this embodiment as well. Tilting the inner band 201 and outer band 202 10° for printing recommendations will keep the rings within the 30° overhang tolerance of the printer. Supports will not be necessary for any overhangs, thus being able to print the inner band 201 and outer band 202 simultaneously with the inner band 201 inside the outer band 202 as depicted in
The reader will see that each embodiment described above achieves the main goals of the invention, that is, to make a spinner ring of two bands that are materialized simultaneously, in an interlinked formation, thus avoiding the need to bend or fasten the bands together, which could lead to a compromised integrity of the material or its assembly. As no bending nor seaming of the ring is necessary in its construction, any motifs drafted on the ring in its design phase will have no risk of being warped or disturbed in that process, and the bands do not need to be uncomfortably thick.
For accuracy and in order to print a ring on a 3D printer, its model must be designed on the computer. There will be no alteration of its design post-printing for the purpose of producing the interlinking or spinning functions.
As for the embodiments' materials, the bands can be made with any material that a 3D printer can print with. Most commercial laser-sintering and laser-melting systems use powdered materials like aluminum, stainless steel, and titanium, and there are several printers that use precious metals, such as gold, silver, and platinum. Although rings made of resin or plastic may have a shorter life span due to the destructive warmth of body heat, stereolithography printers can make these rings. It is conceivable that one can use the resulting resin or plastic-based rings to make metal rings using the lost-wax metal casting method.
While my above descriptions contain many specifics, they should not be construed as limitations on the scope, but rather as an exemplification of several embodiments thereof. Many other variations are possible. For example, both embodiments are designed with protrusions 103 and 203 that wrap along the entire band. The form of these protrusions do not have to wrap along the entire band, but can be substituted by tabs, blocks, or bars of protrusions, that are positioned along the circumference of the band like a dashed or dotted line within its complementary channel of the other band, strategically positioned to prevent the bands from separating.
Another possible variation of the embodiments is to design either the inner bands 101 and 201, or outer bands 102 and 202 with cavities that penetrate from the outer surface of the ring to the inside surface. The existence of such cavities could consequently allow any protrusions in the gap between the bands to have an overhang with supports, as the jeweler now has access to the gap between the two bands and could remove the supports through the cavities.
Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1558418 | Bertil | Oct 1925 | A |
1712417 | Beaujard, Jr. | May 1929 | A |
2060345 | Phillips | Nov 1936 | A |
2185811 | Nathan | Aug 1939 | A |
2497207 | Ernest | Feb 1950 | A |
5228316 | Meyrowitz | Jul 1993 | A |
5591062 | Hettinger | Jan 1997 | A |
5669240 | Lima | Sep 1997 | A |
5678428 | Pasquetti | Oct 1997 | A |
6065971 | Lennon | May 2000 | A |
6574989 | Lampert | Jun 2003 | B1 |
8636624 | Liberman | Jan 2014 | B2 |
9445652 | Yousef | Sep 2016 | B1 |
D813077 | Noble | Mar 2018 | S |
9914063 | Mccoskery | Mar 2018 | B1 |
20010020369 | Hirano | Sep 2001 | A1 |
20080314081 | Morgan et al. | Dec 2008 | A1 |
20110011131 | Bisserier | Jan 2011 | A1 |
20190015757 | Mak | Jan 2019 | A1 |
20190174885 | Tata | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
205337879 | Jun 2016 | CN |
9413057 | Oct 1994 | DE |
2013100000436 | Dec 2014 | DE |
4172675 | Oct 2008 | JP |
20110085685 | Jul 2011 | KR |
Entry |
---|
Https://www.instructables.com/id/Spinner-Ring-Copper-Silver/. |
Http://www.fundamentals.net/blog/2014/05/30/daisy-spinner-ring-tutorial/. |
Https://www.erindelargy.com/blog/the-making-of-a-spinner-ring/. |
Number | Date | Country | |
---|---|---|---|
20210289896 A1 | Sep 2021 | US |