Not applicable.
The present description relates generally to satellite communications including, for example, waveguide feed networks.
Waveguide feed networks that cover wide bandwidths may be composed of many parts and may have a high level of complexity. Higher part count can lead to higher mass for the feed network, which is undesirable for satellite applications. In addition, increased complexity can lead to increased manufacturing risks and costs.
Certain features of the subject technology are set forth in the appended claims. However, for purpose of explanation, several embodiments of the subject technology are set forth in the following figures.
The detailed description set forth below is intended as a description of various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology can be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a thorough understanding of the subject technology. However, the subject technology is not limited to the specific details set forth herein and can be practiced using one or more other implementations. In one or more implementations, structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.
The present disclosure is directed, in part, to a feed network with dual circular polarization for satellite communications. A satellite may include a satellite receiver coupled to a satellite antenna system for receiving uplink signals, and may also include a satellite transmitter coupled to the satellite antenna system for transmitting downlink signals. The feed network may be coupled between elements of the satellite antenna system and the satellite receiver and also may be coupled between the elements of the satellite antenna system and the satellite transmitter. The feed network that couples the satellite transmitter to the satellite antenna system may transform a linearly polarized signal received from the satellite transmitter into one of a right hand or a left hand circularly polarized signals for the satellite antenna system to be transmitted. Also, the feed network that couples the satellite receiver to the satellite antenna system may transform a received right hand or left hand circularly polarized signal from the satellite antenna system into a linearly polarized signal for the receiver. By providing circularly polarized signals for communication to and from the satellite, the communications may not be sensitive to an orientation of transceiver devices that communicates with the satellite.
The feed network includes a receiver unit and a transmitter unit. The transmitter unit may include two branches and two input ports, a first input port on a first end of a first branch and a second input port on a first end of a second branch. The input ports may also be coupled to circuitry for receiving input signals that can be linearly polarized signals. The transmitter unit can be coupled to a section of a core waveguide that is a square waveguide via the second end of the two branches that can include evanescent waveguides and may provide a circularly polarized signal based on the received signals at the input ports. The transmitter unit may provide a left hand circularly polarized signal at the core waveguide when the input signal is received from the first input port and may provide a right hand circularly polarized signal at the core waveguide when the input signal is received from the second input port. The transmitter unit may include an integrated branch line coupler between the two branches for generating the left hand and right hand circularly polarized signals. The integrated branch line coupler may have one or more branches between the first and second branches to form a branch line coupler. The integrated branch line coupler may include waveguide filters performing as waveguide reject filters that are integrated into the first and second branches. The waveguide reject filters may be used for isolating the input ports from undesired signals in the core waveguide. The waveguide reject filters of the integrated branch line coupler may include single-sided stubs that may be used for further tuning the waveguide reject filters.
The receiver unit may include two branches and two output ports, a first output port at a first end of a first branch and a second output port at a first end of a second branch. The receiver unit can be coupled to a section of the core waveguide that is a circular waveguide via the second end of the two branches to receive a left hand or right hand circularly polarized signal. The receiver unit may receive a left hand circularly polarized signal from the core waveguide and may provide a linearly polarized signal at a first output port. Alternatively, the receiver unit may receive a right hand circularly polarized signal from the core waveguide and may provide a linearly polarized signal at a second output port. The receiver unit may include an integrated branch line coupler coupled between the two branches for creating linearly polarized signals from the left hand and right hand circularly polarized signals. Waveguide reject filters may be integrated into each one of the branches of the integrated branch line coupler for isolating the output ports from undesired signals in the core waveguide.
Using a square waveguide for the section of the core waveguide coupled to the transmitter unit provides advantages over using a circular waveguide for the entire core waveguide. For example, the square waveguide allows the degenerate TE11 and TM11 modes, which decay, to be used to the advantage of the design in place of the two instances of the TE21 mode that exist in a circular waveguide. The dimensions of the square waveguide can be selected to place the TE11 and TM11 modes cutoffs in between a receive band and a transmission band and at a position that provides ample frequency room to decay before the lowest receive frequency. In addition, the TE20 mode cutoff in the square waveguide can be selected high enough above the receive band to allow a broad receive band to be used. Accordingly, bands such as the commercial Ka band, which requires 52% bandwidth, may be used with the subject technology. The subject technology is not limited to the commercial Ka band and may be implement for other communication bands including the military Ka band.
Feed network 100 includes core waveguide 110. Core waveguide penetrates transmit section 106 and body section 104, and terminates in receive section 102. A section of core waveguide 110 in transmit section 106 and partially in body section 104 is a square waveguide. This section of core waveguide 110 is coupled to the transmitter unit. In body section 104, core waveguide 110 abruptly is adapted to a circular waveguide, which continues into receive section 102. The section of core waveguide 110 is coupled to the receive unit.
According to aspects of the subject technology, the transmitter unit comprises two segments. A first segment of the transmitter unit is included in body section 104 and a second segment of the transmitter unit is included in transmit section 106. Thus, the transmitter unit is formed when transmit section 106 and body section 104 are connected to each other. In some examples, connecting transmit section 106 and body section 104 also forms two input ports 132 and 134 as shown in
According to aspects of the subject technology, the receiver unit comprises two segments. A first segment of the receiver unit is included in body section 104 and a second segment of the receiver unit is included in receive section 102. Thus, the receiver unit is formed when receive section 102 and body section 104 are connected to each other. In some examples, connecting receive section 102 and body section 104 also forms two output ports 136 and 138 as shown in
The components of feed network 100 are not limited to any particular type of material. For example, the components may be manufactured out of aluminum.
The transmitter unit includes two branches that couple input ports 132 and 134 to core waveguide 110. Each one of the branched includes a waveguide reject filter that includes one or more stubs, e.g., four stubs. As an example,
According to aspects of the subject technology, the Ka commercial band may be used for receiving and transmitting signals and allowed frequency ranges and stop (e.g., suppressed) frequency ranges of the transmitter unit are predefined. In some examples, a transmitting frequency band includes frequencies 17.7 GHz to 20.2 GHz that may pass from input ports 132 or 134 to core waveguide 110. The receiving frequency band includes frequencies 27.5 GHz to 30.0 GHz that are suppressed, e.g., by more than 55 dB, from reaching input ports 132 or 134 from the core waveguide 110. Thus, an isolation of better than 55 dB may be achieved for input ports 132 and 132 from undesired signals in the core waveguide that are in the receiving frequency band.
A free end of stubs 302A, 302B, 302C, 302D, 302E, 302F, 302G, and 302H may be short-circuited. Then an input impedance of a short-circuited stub is purely reactive; either capacitive or inductive, depending on the electrical length and width of the stubs and a wavelength of signal passing through the waveguide reject filters. Stubs may thus function as capacitors and inductors in the waveguide reject filters and may be used to tune a bandwidth of the waveguide reject filters. The subject technology is not limited to the use of four stubs and may be implement with fewer or more than four stubs to further shape a frequency response of waveguide reject filters.
The transmitter unit also includes two evanescent waveguides 304A and 304B that are coupled between the two branches and the core waveguide 110. In some examples, a size of evanescent waveguides 304A and 304B are adjusted such that an insertion loss between core waveguide 110 and the waveguide reject filters of the two branches are less than a predetermined level, e.g., less than 0.05 dB, in each branch. Evanescent waveguides 304A and 304B of first and second branches of the transmitter unit may have predetermined angles, e.g., 45 degrees, when coupled to the core waveguide. The 45-degree turns of evanescent waveguides 304A and 304B may cause a supposed continuation of the first and second branches to intersect each other at a center of core waveguide 110 with an angle equal to 90 degrees. Thus, the ends of the first and second branches coupled to the core waveguide 110 may become perpendicular to each other. Additionally, the 45-degree turn may allow the integrated branch line coupler to stay close to core waveguide 110, reducing a size and mass of the transmitter unit to make it compact.
The transmitter unit may further include transformers 306A, 306B, 306C, and 306D on the first and second branches. The transformers have dimensions that are determined based on a frequency range of the transmitted signals that may be input at input ports 132 and 134 and to minimize an insertion loss of the transmitter unit. In some embodiments, the one or more transformers of each branch are quarter wave transformers that are configured to provide a change of wavelength for matching. By using transformers 306A, 306B, 306C, and 306D, to change the wavelength, the branches may match to a transmitter circuit that can be coupled to input ports 132 and 134.
The transmitter unit includes an integrated branch line coupler that includes couplers 314A, 314B, 314C, and 314D that inwardly couple the first and second branches. The integrated branch line coupler also includes the waveguide reject filters that are described above. A number, size, and location of couplers 314A, 314B, 314C, and 314D may be selected to create left hand circular polarization as well as right hand circular polarization signals in core waveguide 110. The circular polarization signals are created based on the linearly polarized signals that are received from input ports 132 and 134 of the first and second branches. In some examples, the waveguide reject filters have an inner face and an outer face. In some examples, couplers 314A, 314B, 314C, and 314D are coupled between the inner faces of the waveguide reject filters. In some implementations, the integrated branch line coupler provides splitting a power by 3 dB and a 90 degrees phase shift to generate a circular polarization mode from a linear polarization mode. In some examples, the width of couplers 314A, 314B, 314C, and 314D can provide the 90 degrees phase shift. The waveguide reject filters of the integrated branch line coupler may isolate an unwanted circular polarization mode from reaching input ports 132 or 134.
The distance between couplers 314A, 314B, 314C, and 314D may depend on the dimensions of core waveguide 110. In some examples, couplers 314A, 314B, 314C, and 314D are e-plane couplers and a height of the couplers may determine an amount of energy that may be transferred between the branches. As an example, the height of coupler 314B determines an amount of energy that may be transferred between the two branches.
As depicted in
According to aspects of the subject technology, the integrated branch line coupler generates, at core waveguide 110, one or both of a right hand circularly polarized signal and a left hand circularly polarized signal from a linearly polarized signal. In some implementations, the transmitter unit receives an input signal at a first frequency at input port 132 of the first branch and generates a right hand circularly polarized signal at the first frequency in core waveguide 110. In some implementations, the transmitter unit receives an input signal at a first frequency from input port 134 of the second branch and generates a left hand circularly polarized signal at the first frequency in the core waveguide 110.
According to aspects of the subject technology, the receiver unit includes two branches that are coupled to core waveguide 110. The two branches include waveguide reject filters 412A or 412B, respectively. Waveguide reject filters 412A and 412B may have dimensions that are determined based on a frequency of the transmitted signals, and may act as transmit reject filters. Thus, waveguide reject filters 412A and 412B may perform a filtering, e.g., high pass filtering, to suppress the transmitter signals and further prevent the transmitter signals from reaching output ports 136 or 138 of the receiver unit.
The receiver unit includes an integrated branch line coupler that includes couplers 414A, 414B, and 414C that inwardly couples the two branches. The integrated branch line coupler also includes waveguide reject filters 412A and 412B that are described above. A number, size, and location of the couplers 414A, 414B, and 414C may be selected to transform left hand circular polarization as well as right hand circular polarization signals at core waveguide 110 to linearly polarized signals at output ports 136 and 138 of the two branches. In some examples, a distance between couplers 414A, 414B, and 414C, depends on diameter of core waveguide 110. In some examples, couplers 414A, 414B, and 414C are e-plane couplers.
In some embodiments, the waveguide reject filters 412A and 412B have an inner face and an outer face. In some examples, the integrated branch line coupler comprises couplers 414A, 414B, and 414C that are coupled between the inner face of the waveguide reject filters 412A or 412B. The integrated branch line coupler may divide power and generate phase shift to create linearly polarized signals from circularly polarized signals. In some embodiments, couplers 414A, 414B, and 414C of the integrated branch line coupler generate a linearly polarized signal at a first frequency from a circularly polarized signal at the first frequency. In some embodiments, the integrated branch line coupler provides, splitting a power by 3 dB, causing 90 degrees phase shift to generate a linear polarization from a circular polarization mode, and isolating a signal to get to the other port.
The receiver unit also includes transformers 406A, 406B, 406C, and 406D on the two branches. The transformers have dimensions that are determined based on a frequency of the received signals from the core waveguide and to minimize an insertion loss of the receiver unit at output ports 136 and 138. In some embodiments, the one or more transformers of each branch are quarter wave transformers that are configured to provide a change of wavelength for matching. By using transformers 406A, 406B, 406C, and 406D, to change wavelength, the two branches may match to a receiver circuit that can be coupled to output ports 136 and 138.
According to aspects of the subject technology, the receiver unit may receive a right hand circularly polarized signal at a first frequency from core waveguide 110 and generate a linearly polarized signal at the first frequency at output port 136. The receiver unit may receive a left hand circularly polarized signal at a first frequency from core waveguide 110 and generate a linearly polarized signal at the first frequency at output port 138. In some implementations the two branches may have a 45-degree turn, e.g., bend, at an end that attaches to core waveguide 110. The 45-degree turn may allow integrated branch line coupler to stay close to core waveguide 110, reducing a size and mass of the receiver unit and creating a compact receiver unit. In some examples, placing integrated branch line coupler close to core waveguide 110 may allow more effective impedance matching between core waveguide 110 and the receiver unit.
According to aspects of the subject technology, the first section 510 is configured as a square waveguide in order to take advantage of the degenerate TE11 and TM11 modes which decay rather than the two instances of the TE21 mode which exists in a circular waveguide. The dimensions of the waveguide sections are selected to place the cutoff frequency for the TE11 and TM11 modes between the receive band and the transmit band with enough space for the degenerate modes to decay before the lowest receive frequency. In addition, the dimensions are selected such that the TE20 mode cutoff frequency is above the highest receive frequency to allow for wider bandwidth.
According to aspects of the subject technology, a feed network is provided that includes a transmit section, a body section coupled to the transmit section, and a receive section coupled to the body section. The transmit section and the body section form a transmitter unit coupled to a first section of a core waveguide, wherein the first section of the core waveguide is a square waveguide. The body section and the receive section form a receiver unit coupled to a second section of the core waveguide, wherein the second section of the core waveguide is a circular waveguide.
Dimensions of the square waveguide may be selected to position cutoff frequencies for a TE11 mode and a TM11 mode between a receive frequency band and a transmit frequency band. The dimensions of the square waveguide may be selected to position a cutoff frequency for a TE20 mode above the receive frequency band and the transmit frequency band. The receive frequency band may be 27.5 GHz to 30.0 GHz and the transmit frequency band may be 17.7 GHz to 20.2 GHz.
The transmitter unit may include a first branch having a first input port, a second branch having a second input port, and a first integrated branch line coupler coupling the first branch and the second branch. The transmitter unit may be configured to receive a linearly polarized signal at one of the first input port or the second input port and to generate a circularly polarized signal in the core waveguide.
The first integrated branch line coupler may include a first waveguide reject filter in the first branch comprising a first end and a second end and an outer face and an inner face, wherein the first end of the first waveguide reject filter is coupled to the first input port, and a second waveguide reject filter in the second branch comprising a first end and a second end and an outer face and an inner face, wherein the first end of the second waveguide reject filter is coupled to the second input port. The first integrated branch line coupler may further include a first group of one or more couplers coupled between the inner face of the first waveguide reject filter and the inner face of the second waveguide reject filter, a first group of one or more single-sided stubs protruding outwardly from the outer face of the first waveguide reject filter, and a second group of one or more single-sided stubs protruding outwardly from the outer face of the second waveguide reject filter. The first section of the core waveguide is coupled to the first branch via the second end of the first waveguide reject filter and to the second branch via the second end of the second waveguide reject filter.
The first group of one or more couplers of the transmitter unit may be configured to generate a 90 degree phase shift when transferring a linearly polarized signal between the first branch and the second branch. The transmitter unit may be configured to receive an input signal at a first frequency at the first input port of the first branch and to generate a right-hand circularly polarized signal at the first frequency in the core waveguide. The transmitter unit may be configured to receive an input signal at a first frequency at the second input port of the second branch and to generate a left-hand circularly polarized signal at the first frequency in the core waveguide.
The first group of one or more single-sided stubs may correspond to a first group of one or more cascaded filter sections in the first waveguide reject filter, and wherein the second group of one or more single-sided stubs correspond to a second group of cascaded filter sections in the second waveguide reject filter. The first and second waveguide reject filters of the transmitter unit may be low pass filters configured to transmit a received input signal at a first frequency from the first or second input port and to reject a second signal received from the core waveguide at a second frequency greater than the first frequency.
The feed network may further include a first group of one or more transformers coupled between the first input port of the first branch and the first end of the first waveguide reject filter, and a second group of one or more transformers coupled between the second input port of the second branch and the first end of the second waveguide reject filter, wherein the first and second groups of one or more transformers are quarter-wave transformers. The feed network may further comprise a first evanescent waveguide coupled between the second end of the first waveguide reject filter and the core waveguide, and a second evanescent waveguide coupled between the second end of the second waveguide reject filter and the core waveguide.
The receiver unit may include a third branch having a first output port, a fourth branch having a second output port, and a second integrated branch line coupler coupling the third branch and the fourth branch of the receiver unit. The receiver unit may be configured to receive a circularly polarized signal from the core waveguide and generate a linearly polarized signal at one of the first output port or the second output port. The second integrated branch line coupler may include a third waveguide reject filter in the third branch comprising a first end and a second end and an outer face and an inner face, a fourth waveguide reject filter in the fourth branch comprising a first end and a second end and an outer face and an inner face, and a second group of one or more couplers coupled between the inner face of the third waveguide reject filter and the inner face of the fourth waveguide reject filter. The receiver unit may further include a third group of one or more transformers coupled between the second end of the third waveguide reject filter and the first output port, and a fourth group of one or more transformers coupled between the second end of the fourth waveguide reject filter and the second output port, wherein the third and fourth groups of one or more transformers are quarter-wave transformers.
According to aspects of the subject technology, a feed network is provided that includes a transmitter unit that includes a first branch having a first input port, a second branch having a second input port, and a first integrated branch line coupler coupling the first branch and the second branch. The feed network further includes a first section of a core waveguide, wherein the first section of the core waveguide is a square waveguide having dimensions selected to position cutoff frequencies for a TE11 mode and a TM11 mode between a receive frequency band and a transmit frequency band, and wherein the transmitter unit is configured to receive a linearly polarized signal at one of the first input port or the second input port and to generate a circularly polarized signal in the core waveguide.
The first integrated branch line coupler may include a first waveguide reject filter in the first branch comprising a first end and a second end and an outer face and an inner face, wherein the first end of the first waveguide reject filter is coupled to the first input port, a second waveguide reject filter in the second branch comprising a first end and a second end and an outer face and an inner face, wherein the first end of the second waveguide reject filter is coupled to the second input port, a first group of one or more couplers coupled between the inner face of the first waveguide reject filter and the inner face of the second waveguide reject filter, a first group of one or more single-sided stubs protruding outwardly from the outer face of the first waveguide reject filter, and a second group of one or more single-sided stubs protruding outwardly from the outer face of the second waveguide reject filter. The first section of the core waveguide may be coupled to the first branch via the second end of the first waveguide reject filter and to the second branch via the second end of the second waveguide reject filter.
The feed network may further include a receiver unit that includes a third branch having a first output port, a fourth branch having a second output port, and a second integrated branch line coupler coupling the third branch and the fourth branch of the receiver unit. The feed network may further include a second section of the core waveguide, wherein the second section of the core waveguide is a circular waveguide, and wherein the receiver unit is configured to receive a circularly polarized signal from the core waveguide and generate a linearly polarized signal at one of the first output port or the second output port.
The second integrated branch line coupler may include a third waveguide reject filter in the third branch comprising a first end and a second end and an outer face and an inner face, a fourth waveguide reject filter in the fourth branch comprising a first end and a second end and an outer face and an inner face, and a second group of one or more couplers coupled between the inner face of the third waveguide reject filter and the inner face of the fourth waveguide reject filter.
As used herein, the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
The predicate words “configured to”, “operable to”, and “programmed to” do not imply any particular tangible or intangible modification of a subject, but, rather, are intended to be used interchangeably. In one or more implementations, a processor configured to monitor and control an operation or a component may also mean the processor being programmed to monitor and control the operation or the processor being operable to monitor and control the operation. Likewise, a processor configured to execute code can be construed as a processor programmed to execute code or operable to execute code.
Phrases such as “an aspect”, “the aspect”, “another aspect”, “some aspects”, “one or more aspects”, “an implementation”, “the implementation”, “another implementation”, “some implementations”, “one or more implementations”, “an embodiment”, “the embodiment”, “another embodiment”, “some implementations”, “one or more implementations”, “a configuration”, “the configuration”, “another configuration”, “some configurations”, “one or more configurations”, “the subject technology”, “the disclosure”, “the present disclosure”, other variations thereof and alike are for convenience and do not imply that a disclosure relating to such phrase(s) is essential to the subject technology or that such disclosure applies to all configurations of the subject technology. A disclosure relating to such phrase(s) may apply to all configurations, or one or more configurations. A disclosure relating to such phrase(s) may provide one or more examples. A phrase such as an aspect or some aspects may refer to one or more aspects and vice versa, and this applies similarly to other foregoing phrases.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration”. Any embodiment described herein as “exemplary” or as an “example” is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, to the extent that the term “include”, “have”, or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more”. Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the subject disclosure.
This application claims the benefit of Provisional Application No. 63/093,733 filed on Oct. 19, 2020, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
9947978 | Tavassoli Hozouri | Apr 2018 | B1 |
20100149058 | Bosshard et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
63093733 | Oct 2020 | US |