Subsea completions are known in the downhole drilling and completions industry. In subsea completions a drilling vessel is used to drill and complete a borehole. The drilling vessel connects at a subsea wellhead to the borehole via a riser, which is important for maintaining downhole fluid control with a column of fluid held in the riser. For this reason, the drilling vessel and riser remain in place until the borehole is fully completed and ready for production. The daily costs to operate a drilling vessel are very high and it can take a significant amount of time to finish the completion process. The industry would well receive methods and systems for reducing the cost to complete subsea wells.
A method of completing a subsea borehole comprising connecting a first vessel to a subsea wellhead assembly via a riser; drilling a borehole with a drill string communicated to the subsea wellhead assembly through the riser; running a lower completion assembly on a service string into the borehole through the riser; setting at least two barrier valves of the lower completion assembly with the service string in order to form a mechanical barrier to fluid flow with each of the at least two barrier valves; disconnecting the riser from the subsea wellhead assembly; running an upper completion string through open water to the borehole; and connecting the upper completion string to the lower completion assembly.
A lower completion assembly for a subsea borehole, comprising a borehole originating at a subsea wellhead assembly; at least two barrier valves each forming a mechanical barrier to isolate the borehole when the at least two barrier valves are in a closed configuration; and a service string configured to shift the at least two barrier valves into the closed configuration without installation of an upper completion string to the lower completion assembly.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring now to
As illustrated by
The lower completion assembly 20 includes a pair of barriers 28 and 30. In the illustrated embodiment, the barriers 28 and 30 each include a barrier valve 32 for enabling isolation within a tubing string 34 of the lower completion assembly 20. As used herein, “barrier” or “mechanical barrier” is intended to indicate a device or devices that mechanically blocks or impedes the flow of fluid through or across the barrier. “Barrier valve” is intended to mean a device that is actuatable or operable, e.g., between open and closed configurations, to selectively form a mechanical barrier to fluid flow. The barriers 28 and 30 can each be paired with a packer 36 for sealing the annulus between the string 34 and the borehole 10.
Although the barrier valves 32 and the packers 36 form mechanical barriers, it is noted that this does not mean that the valves 32 and the packers 36 are set, actuated, or otherwise operated via mechanical manipulation. That is, as discussed in more detail below, the barrier valves 32 and the packers 36 can be operated mechanically, hydraulically, electrically, etc., or via any desired manner. In one embodiment, the barrier valves 28 and 30 are mechanically (e.g., via a setting tool) and hydraulically (e.g., via cycled tubing pressure) actuated ball valves, discussed in more detail below, although it is understood that other valves known in the art can be utilized. The packers 36 can take the form of any packer, or packing, sealing, anchoring, and/or isolating device known or used in the art.
Creating a dual barrier system, e.g., having both the mechanical barriers 28 and 30, avoids the need to rely on the column of fluid in the riser 16 to hydraulically control fluid flow from the lower completion 20 and the formation 26. Advantageously, this enables the riser 16 to be retrieved and the drilling vessel 14 moved off site while the barriers 28 and 30 maintain fluid flow control, as depicted in
Since drilling vessels are very expensive to operate, costs to complete the borehole 10 can be reduced by utilizing a relatively less expensive vessel, i.e., the utility vessel 38, to finish completing the borehole 10. The drilling vessel 14 and the riser 16 can also be immediately used for drilling and at least partially completing another borehole (e.g., miming a lower completion assembly, then moving offsite for another vessel to finish the completion process). The barriers 28 and 30 can then be removed, e.g., the barrier valves 32 and 34 opened, by cycling pressure through the upper completion string 40. Once opened, the borehole 10 is ready for production.
A lower completion assembly 100 according to one embodiment is shown in
In order to seal an annulus 110 between the lower completion assembly 100 and the borehole in which it is run, an upper packer 112 and a lower packer 114 can also be included. In one embodiment, the packer 112 is commercially available from Baker Hughes Incorporated as an SC-XP™ packer, and the packer 114 is a so-called “premier” isolation packer. The packers 112 and 114 can include suitable slips and/or sealing elements for enabling the packers 112 and 114 to anchor and/or seal the lower completion assembly 100 within its corresponding borehole, e.g., the borehole 10. Those with knowledge in the art will appreciate that other valves, packers, and sealing devices can be utilized in lieu of those discussed and illustrated for creating mechanical barriers to fluid flow.
The lower completion assembly 100 includes an upper sleeve 116 for selectively enabling fluid communication between the interior passageway 106 of the string 108 and a portion 110a of the annulus 110 isolated between the packers 112 and 114 via one or more ports 118. Selectively opening and closing the ports 118 with the sleeve 116 can be employed, for example, to circulate fluid for testing the packers 112 and 114 or other components of the lower completion 100 for leaks. In one embodiment, a gauge 119 is included for monitoring the temperature and/or pressure of the fluid within the interior passageway 16 and the annulus portion 20a. By gauge it is meant any combination of sensors or sensing devices. Comparing the results measured by the gauge 119 in both locations enables determinations as to the integrity of the packers 22 and 24 to be made, i.e., whether leaks exists through the packers.
A lower sleeve 120 can be included to selectively enable fluid communication between the interior passageway 106 and a portion 110b of the annulus 110 isolated between the packer 114 and a sump packer 122 via one or more ports 124. Selectively opening and closing the port 124 with the lower sleeve 120 can be used for testing packers and valves or other components of the assembly 100, similar to the sleeve 116 and the port 118. Additionally, the portion 110b of the annulus 110 is in communication with one or more screen assemblies 126 of the lower completion assembly 100. The screen assemblies 126 could include slots, wire wraps, mesh, bead packs, permeable foam, or any other filtering media or configuration known or used in the art for impeding the flow of solid particles, e.g., sand, into the assembly 100 while permitting the flow of fluids such as hydrocarbons. In this way, the sleeve 120 and the port 124 can be utilized for stimulating or treating the portion 110b of the annulus 110 and/or the downhole formation located contiguous to the portion 110b (e.g., the formation 26). For example, operations such as gravel or frac packing, hydraulic fracturing, acidizing, or other formation treatments can be carried out via the port 124 when the sleeve 120 is moved to an open position. By shifting the sleeve 120 to its closed position and closing the port 124, fluids from the formation, e.g., hydrocarbons, can be filtered by the screen assemblies 126 and produced through the interior passageway 106 of the string 108.
Similar to the schematic embodiment of
After setting the upper packer 112, the service string 128 can be picked up to release the assembly 100 at the coupling 130. This enables a service tool 134 of the service string 128, shown in
The locator sub 140 in the illustrated embodiment corresponds with the lower packer 114 and a pair of seal bore subs 142 adjacent to the lower packer 114. When the locating device 136 is located at the locator sub 140, a pair of seal members 144 engages respectively with the seal bore subs 142. By isolating on opposite sides of the lower packer 114 with the seal members 144 in the seal bores 142, the lower packer 114 can be hydraulically set via high pressure fluid communicated to the lower packer 114 via a port or ports 146 (see
After setting the lower packer 114, the work string 128 can continue to be picked up past the upper sleeve 116 and then moved back downhole to enable a shifting tool 148 to engage and shift the upper sleeve 116 to open the ports 118. In one embodiment the shifting tool 148 includes collet fingers, retractable dogs, etc. that are arranged to enable the tool 148 to be moved past a device (e.g., the sleeve 116) in one direction (e.g., the uphole direction with respect to the illustrated embodiment), but to engage and actuate the device (e.g., the sleeve 116) when moving in the opposite direction. The locating device 136 will land at a locating sub 150 with the sleeve 116 in its opened configuration, as illustrated in
The sub 150 generally resembles the sub 140 in structure and function, but is arranged to locate the work string 128 with respect to the upper sleeve 116. Similar to the locating sub 140, the sub 150 is arranged with respect to a pair of seal bores 152 that are aligned with the seal members 144 when the tool 134 is located by the device 136 at the sub 150. In this configuration, the work string 128 is in fluid communication with the annulus portion 110a, but isolated from the passageway 106 via the engagement of the seal members 144 in the seal bores 152. For example, this enables the integrity of the packers 112 and 114 defining the annulus portion 110a to be tested, e.g., by pressuring up fluid within the work string 128 and monitoring the results.
The work string 128 can be picked up to release the locating device 136 from the sub 150 and to cycle the device 136 to enable the tool 134 to pass downhole by the sub 150 without engagement. Moving the string 128 further downhole will cause the locator device 136 to land at a locating sub 154 as illustrated in
After the desired treatment has been performed, the work string 128 can be removed from the borehole. The tool 134 can include a shifting tool 158 configured similarly to the shifting tool 148, but to engage and actuate devices or components in a direction opposite to that of the tool 148, e.g., in the uphole direction as the work string 128 is pulled out. At a distal end of the work string 128, a closing tool 160, shown in
A lower completion assembly 200 according to one embodiment is depicted in
Another potential modification to the assembly 100 that can be appreciated in view of the assembly 200 is that the relative placement of the barrier valves 102 and 104 can be altered if desired. That is, by comparing the assemblies 100 and 200 it can be seen that the upper barrier valve 102 of the system 200 is repositioned between the upper packer 112 and the gauge 119, while the lower barrier valve is repositioned between the lower packer 114 and the lower sleeve 120. Repositioning the lower barrier valve 104 uphole of the lower sleeve 120 may facilitate the ability of the completion 200 to be “V0” rated, as the lower sleeve 120 may undergo erosion or structural deterioration due to the flow of proppant or slurry therethrough during fracturing, gravel packing, etc. It is of course to be appreciated that combinations of the assemblies 100 and 200 are also possible and within the scope of this disclosure and the claims. For example, in one embodiment the lower completion assembly includes a lower barrier valve located uphole of a lower sleeve assembly (similar to the assembly 200) and also has an upper sleeve assembly (similar to the assembly 116 of the assembly 100). In one embodiment, the lower completion assembly includes a lower barrier valve located downhole of a lower sleeve assembly (similar to the assembly 100) and also has a ported sub in lieu of an upper sleeve assembly (similar to the ported sub 202 of the assembly 200).
A portion of a lower completion assembly 300 is shown in
A portion of a lower completion assembly 400 is shown in
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.