1. Field of the Invention
The present invention relates in general to radio communication systems and components. More particularly the invention is directed to antenna elements and antenna arrays for radio communication systems.
2. Description of the Prior Art and Related Background Information
Modern wireless antenna implementations generally include a plurality of radiating elements that may be arranged to provide a desired radiated (and received) signal beam width and azimuth scan angle. For a common three sector cellular coverage implementation each antenna will have a 65 degree (deg) azimuthal coverage area. It is desirable to achieve a near uniform beam pattern that exhibits a minimum variation over the desired azimuthal degrees of coverage. In modern applications, it is also necessary to provide a consistent beam width over a wide frequency bandwidth.
In addition in modern cellular applications a number of antenna elements may be configured in an array to provide beam control by phase control of the beam, for example to provide beam tilt or beam steering. Providing an antenna array with a number of antenna elements in a typical cellular installation can create problems related to antenna weight and size. Also, cost is very important in such applications. Accordingly, providing the desired antenna performance is made more difficult by the need to maintain low cost, weight and size.
Consequently, there is a need to provide an improved antenna structure with desired beam uniformity over a desired coverage area. Furthermore, it is desirable to provide such an antenna in a relatively compact and low cost construction suitable for use in antenna arrays.
In a first aspect the present invention provides an antenna array comprising first, second and third generally planar reflectors each having one or more radiators coupled thereto, the second reflector configured adjacent to and between the first and third reflectors. The first and third reflectors are configured with their planar surfaces oriented at opposite angles between about 20 to 30 degrees relative to that of the second reflector. The antenna array includes beam forming means coupled to the radiators for providing a dual beam radiation pattern from the radiators.
In a preferred embodiment of the antenna array the dual beam radiation pattern comprises an approximately 33 degree half power beam width for each of the dual beams forming a total beam pattern of approximately 65 degrees at half power beam width. The beam forming means preferably comprises means for combining signals provided to the radiators and means for providing an unequal splitting of the signals provided to the radiators. The means for providing an unequal splitting preferably employs an unequal amplitude weight function. The beam split loss is less than about 0.25 dB. The beam forming means preferably comprises a microstrip transmission line pattern and the transmission line pattern and line width implement the unequal amplitude weight function. The means for providing an unequal splitting preferably comprises first and second 180 degree splitters. The means for combining signals preferably comprises first and second 0 degree combiners. The beam forming means preferably further comprises means for coupling the first and second 180 degree splitters and the first and second 0 degree combiners with a non-overlapping transmission line pattern.
In another aspect the present invention provides an antenna array comprising a reflector structure having a center panel and first and second outer panels with respective generally planar panel surfaces oriented in different directions. One or more first radiators are coupled to the first outer panel, one or more second radiators are coupled to the second outer panel, and one or more third radiators are coupled to the center panel. The antenna array further comprises first, second and third radiator coupling ports, first and second RF signal input coupling ports, and a three to two beam forming network coupled between the first, second and third radiator coupling ports and the first and second RF signal input coupling ports. The beam forming network comprises a first 0 degree combiner, a second 0 degree combiner, a first 180 degree splitter, a second 180 degree splitter, and a non-overlapping transmission line pattern coupling the splitters and couplers to the first and second RF signal input coupling ports and the first, second and third radiator coupling ports.
In a preferred embodiment of the antenna array each of the first, second and third radiators comprise plural radiators, respectively configured on the first and second outer panels and center panel in first, second and third columns, respectively. The first, second and third plural radiators may be arranged in groups of six radiators wherein each group is coupled to a beam forming network. The transmission line, splitters and couplers together comprise a microstrip line pattern having plural segments of varying width and length to implement a phase and amplitude control to create a dual beam radiation pattern from the first, second and third radiators. The first 0 degree combiner and second 0 degree combiner are preferably coupled directly to the first and second RF input signal coupling ports, the first 180 degree splitter and second 180 degree splitter are preferably coupled directly to the first and second radiator coupling ports and the first 180 degree splitter and second 180 degree splitter are preferably coupled to the third radiator coupling port by a split transmission line. The first 180 degree splitter and second 180 degree splitter are preferably both coupled directly to the first and second 0 degree combiners. The first and second 0 degree combiners are preferably configured symmetrically on opposite sides of the first and second 180 degree splitters. The split transmission line and third radiator coupling port are preferably configured between the first and second 0 degree combiners and the first and second 180 degree splitters. The first and second outer panels are preferably oriented at angle of about 20 to 30 degrees relative to the center panel.
In another aspect the present invention provides a method of providing a dual signal beam radiation pattern in a wireless antenna array. The method comprises providing a left and right beam signal to a beam forming network and providing first, second and third signals from the beam forming network to at least three radiators respectively configured on three separate non-planar reflector panels, the signals having an amplitude and phase adjusted by the beam forming network to provide a dual beam radiation pattern.
In a preferred embodiment of the method of providing a dual signal beam radiation pattern the three separate non-planar reflector panels comprise left and right panels oriented at an angle of 20 to 30 degrees relative to a center panel and the dual beam radiation pattern comprises two symmetric approximately 33 degree beams at half power beam width, the dual beams together covering an azimuth angle of about 65 degrees.
Further features and advantages are set out in the following detailed description of the invention.
To provide desired elevation beam control a plurality of vertically arranged antenna element groups 140 may be provided as shown. In the illustrated embodiment five groups 140 are shown but more or fewer may be provided depending on the application. As shown in the illustrated embodiment each group 140 includes left, center and right sub groups 142, 144 and 146 of antenna elements configured on respective panels 110, 120 and 130. This grouping corresponds to a separate beam forming network for each group of six radiators which may be respectively phase controlled to provide beam tilt capability. Different groupings are possible, however, including as few as three radiators per group or greater than six. Further details on such beam tilt control as well as details on suitable radiator and network coupling are provided in U.S. patent application Ser. No. 12/175,725 filed Jul. 17, 2008, the disclosure of which is incorporated herein by reference in its entirety. Remotely controllable down tilt based on remotely controllable signal phase shifting is also described in U.S. Pat. No. 5,949,303 incorporated herein by reference in its entirety.
The foregoing description is not intended to limit the invention to the form disclosed herein. Accordingly, variants and modifications consistent with the following teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described herein are further intended to explain modes known for practicing the invention disclosed herewith and to enable others skilled in the art to utilize the invention in equivalent, or alternative embodiments and with various modifications considered necessary by the particular application(s) or use(s) of the present invention.
The present application claims priority under 35 USC section 119(e) to U.S. provisional patent application Ser. No. 60/999,182 filed Oct. 16, 2007, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5949303 | Arvidsson et al. | Sep 1999 | A |
6788661 | Ylitalo et al. | Sep 2004 | B1 |
7084815 | Phillips et al. | Aug 2006 | B2 |
7196674 | Timofeev et al. | Mar 2007 | B2 |
7817096 | Linehan | Oct 2010 | B2 |
20070063791 | Wu et al. | Mar 2007 | A1 |
20070182634 | Yamamoto et al. | Aug 2007 | A1 |
20090021437 | Foo | Jan 2009 | A1 |
20090074109 | Foo | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090096702 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60999182 | Oct 2007 | US |