The present invention relates generally to the field of valves. More particularly to a diaphragm type flushometer, typically for use in a urinal or water closet or the like.
Prior art flushometers have included a two part diaphragm-disc assembly. The diaphragm plate was typically a rubber component with a metallic core (for support). The diaphragm serves to control the main (primary) water flow through a flushometer by the use of a bypass. The relief valve seat was a separate component that engaged with the diaphragm. In prior art devices, the relief valve seat typically was an additional part also rubber molded around a metallic base.
As lower flush volume fixtures have become necessary and popular, there is a need for flushometers to deliver tighter variability to each flush delivered. This requires tighter control over the components which in-turn give tighter control over the flush profile (both total volume per flush and volume per time.)
In one embodiment, the invention provides for a reduced part count when assembled as a flush valve, thus providing the associated benefits of reduced parts such as lower cost, ease of maintenance and easy of assembly. The diaphragm of the present invention includes, in one aspect, a plurality of bypasses, in another aspect a singular diaphragm with integrated relief valve seat and in yet another aspect an improved mechanism for sealing the components of the diaphragm kit via the use of retainer.
In one embodiment, the invention relates to a flush valve system comprising a flush valve body having a water inlet and a water outlet, the water inlet positioned on a side of the flush valve body and the water outlet positioned at a bottom of the flush valve body. The system further includes a barrel, having a hollow passage, disposed within the flush valve body, the barrel forming a vertical pathway for water from the water inlet to pass to the water outlet, a skirt of the barrel and the flush valve body in communication to form a seal between the water inlet and the water outlet and the flush valve body defining an inlet chamber. A diaphragm is disposed at an upper end of the barrel, sealing the inlet chamber from the hollow passage and the diaphragm defining a control chamber above the diaphragm. The diaphragm has a top surface, a bottom surface, and a side and having a central aperture, the diaphragm further including a plurality of by-pass apertures therethrough. Each of the plurality of by-pass apertures is configured to retain a by-pass, the by-pass providing a passage from the inlet chamber to the control chamber allowing equilibration of pressure. A relief valve retention ring circumscribes the central aperture and extends from the top surface of the diaphragm. The relief valve retention ring has a plurality of relief valve lugs protruding from an inner surface of the relief valve retention ring towards the central aperture. The relief valve seat is positioned on the top surface, and the relief valve seat is positioned between the relief valve retention ring and the central aperture. A relief valve is seated on the diaphragm and has a valve stem extending downward therefrom through the diaphragm into and extending beyond a guide. The guide is coupled to the diaphragm and extending downward from the diaphragm into the barrel, the guide being a generally cylindrical hollow tube in communication with the central aperture.
In another embodiment in the form of a flush valve diaphragm kit, the kit comprises a diaphragm having substantially a disk-shape with a top surface, a bottom surface, and a side, with a radius of the diaphragm being substantially greater than a height of the diaphragm. The diaphragm has a central aperture positioned substantially centrally through the diaphragm and a plurality of by-pass apertures are disposed in the diaphragm, the plurality of by-pass apertures comprising passages through the diaphragm. The kit further includes a plurality of by-passes and each by-pass aperture has a by-pass associated therewith and retainably disposable therein. A relief valve retention ring circumscribes the central aperture and extends from the top surface of the diaphragm. The relief valve retention ring has a plurality of relief valve guides protruding from an inner surface of the relief valve retention ring towards the central aperture. A relief valve seat is positioned on the top surface, the relief valve seat positioned between the relief valve retention ring and the central aperture. A retainer is affixed the diaphragm to a guide, the retainer being disposable with the central aperture of the diaphragm and has a flange engagable with the top surface of the diaphragm. A relief valve has a valve stem, the relief valve seatable on the relief valve seat and retained at least partially by the relief valve retention ring, and the valve stem extending through the retainer and the guide away from the diaphragm.
In yet another embodiment comprised of an diaphragm assembly for use in a flush valve, the diaphragm assembly comprises a diaphragm having a substantially cylindrical shape with a top surface, a bottom surface, and a side, with a radius of the diaphragm being substantially greater than a height of the diaphragm. The diaphragm has a central aperture positioned substantially centrally through the diaphragm. A plurality of by-pass apertures are disposed in the diaphragm, the plurality of by-pass apertures comprising passages through the diaphragm. A plurality of by-passes is included with each by-pass aperture having a by-pass associated therewith and retainably disposable therein. A relief valve retention ring circumscribes the central aperture and extends from the top surface of the diaphragm. The relief valve retention ring has a plurality of relief valve guides protruding from an inner surface of the relief valve retention ring towards the central aperture. A relief valve seat is positioned on the top surface, the relief valve seat positioned between the relief valve retention ring and the central aperture.
The invention includes certain features and combinations of parts hereinafter fully described, illustrated in the accompanying figures, described below, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
Diaphragm-type flushometers having a single bypass orifice and multiple assembled kit parts are well known, as taught in U.S. Pat. Nos. 6,616,119; 5,967,182; 5,887,848; 5,490,659; 5,213,305; and 5,332,192 and incorporated herein by reference. The invention has application for all fixtures utilizing a diaphragm flush valve, including traditional volume fixtures. However, it should be appreciated that the diaphragm assembly described herein has substantial advantages for reduced water consumption fixtures, also referred to as High Efficiency Urinals (“HEU”) and High Efficiency Toilets (“HET”). However, it should be understood that the improved diaphragm of the present invention can likewise improve performance of flushometers of various volumes per flush and is not unique to improvement of low flushing fixtures.
While the diaphragm assembly described herein may be used in various flush valves,
In continued reference to
In one embodiment, the inlet 102 feeds water into an inlet chamber 103 that surrounds the barrel 105 and whose communication with the barrel 105 (and thus the outlet 104) is controlled by the diaphragm assembly 110. The diaphragm assembly 110 is positioned on the barrel 105 for controlling the flow of water from the inlet 102 through the outlet 104. Water from the inlet chamber 103 will flow “over” the top of the barrel 105 and into the interior of the barrel 105 to the outlet 104 when the diaphragm assembly 110 is “open”, i.e. lifted off of the diaphragm seat 106.
In one embodiment of the diaphragm assembly 110, the diaphragm assembly 110 includes a flexible diaphragm 116. The diaphragm 116, in one embodiment, has a substantially disc-like shape with a top surface 116a, a bottom surface 116b, and a side or outer periphery 116c, with the outer diameter of the diaphragm 116 being substantially greater than a height (thickness) of the diaphragm 116. The diaphragm 116 is secured about its periphery 116c. In one embodiment, the diaphragm periphery 116c is secured to the valve body 101. The diaphragm 116 is seated on a diaphragm seat 106, which is an uppermost portion of the barrel 105. The diaphragm 116, when seated on the diaphragm seat 106, forms a seal that prevents water from passing from the inlet 102, via the inlet chamber 103, into an interior of the barrel 105 (and subsequently out through the outlet 104).
The operation of the diaphragm assembly 110 is controlled by the balance of pressures between the inlet chamber 103 and a control chamber 107. The control chamber 107 is defined as a portion of the interior of the flush valve body 101 above the diaphragm assembly 110 and opposite the inlet chamber 103, such that pressure of the control chamber 107 operates on the diaphragm 116 opposite the pressure from the inlet chamber 103 (typically due to the pressure of the water in the water supply line (not shown) itself). Thus, the inlet chamber 103 pressure operates to push the diaphragm 116 off the diaphragm seat 106, and the control chamber 107 pressure operates to press the diaphragm 116 to the diaphragm seat 106.
As shown in
Referencing
In one embodiment (best shown in
Actuation of the handle 125 slides the plunger 124, which engages the lower end of the valve stem 122, pivoting it, results in movement of the relief valve head 121 (typically tilting it) breaking the seal between the relief valve head 121 and the relief valve seat 117 on the diaphragm 116. The tilting of the relief valve head 121 vents the pressure in the control chamber 107 above the diaphragm assembly 110. The release of the pressure in the control chamber 107 releases the seal of the diaphragm 116 against the diaphragm seat 106, allowing water to flow from the inlet chamber 103 (which is replenished via the inlet 102) past the annular passage 127 over the diaphragm seat 106 of the barrel 105 into the interior of the barrel 105. This unseating of the diaphragm 116 is often referred to as the “upstroke” of the diaphragm 116, and the downward motion of the diaphragm 116 reseating is referred to as the “downstroke” with the entire cycle referred to as the “stroke” of the diaphragm 116. The stroke of the diaphragm 116 determines the time period that water can flow into the barrel 105 from the inlet chamber 103, which is constantly being filled by water from the inlet 102 and ultimately though the barrel 105 to the outlet 104 to accomplish the “flush”.
In one embodiment, illustrated in
The at least two by-pass aperture 205 in the diaphragm 116 place the control chamber 107 in communication with the inlet chamber 103. The by-pass apertures 205 are adapted to receive a by-pass 206. The by-pass 206 includes a housing having a passage 207 therethrough. Each by-pass 206 is shaped to fit the by-pass aperture 205 in the diaphragm 116. It should be appreciated that various size passages 207 (passage diameter) may be utilized to provide for various flush profiles. The by-pass aperture 205 is spaced from the center aperture 108 of the diaphragm 116 sufficiently to provide sufficient water flow to the pressure chamber even during a flush cycle when the diaphragm 116 flexes upwards. It will also be appreciated that it is preferred, structurally, that the by-pass aperture 205 is spaced sufficiently from the periphery 116c of the diaphragm 116 and also from the central aperture 108 of the diaphragm 116.
In one embodiment, the multiple by-pass apertures 205 are equally spaced from one another. The equal spacing of the aperture 205 provides for a more even influx of water (and pressure) into the control chamber 107 (via the by-pass body 206 disposed in the aperture 205) than with a singular by-pass aperture or unequally spaced multiple apertures. A disadvantage of a single bypass is the angular orientation of the fixed aperture in the diaphragm 116 relative to the inlet 102. The local pressure within the valve body 101 and flow of the water in the inlet 102 and inlet chamber 103 within the flushometer body annulus can affect performance of the flushometer. This requires careful alignment during assembly and throughout the lifespan of the diaphragm 116. The uneven flow of water into the control chamber 107 and the pressurization of same can result in an uneven flexing of the diaphragm 116 resulting in increased wear and a shorter useful lifespan for the diaphragm 116.
The bypass aperture 205 provides communication between the control chamber 107 and the inlet chamber 103. Thus, the bypass orifices 206, in combination with the relief valve head 121 and relief valve stem 122, control, the pressure of the pressure chamber 107, which, in turn, controls the position of the diaphragm 116 and thus the flow of water past the annular passage 127 between the diaphragm 116 and diaphragm seat 106. Thus, fluid (and, in certain embodiments, some air) pressure above the diaphragm 116 in the control chamber 107 maintains pressure for closing and holding the diaphragm assembly 110 on the diaphragm seat 106 after flush operation. The by-pass passage 207 is sized to allow a rate of fluid flow through the diaphragm 116 before the flush valve closes. For embodiments having more than one bypass 206, the passages 207 there through are designed to, in total, allow a rate of fluid flow through the diaphragm 116.
In a particular embodiment, shown in
As previously mentioned, in one embodiment shown in
The relief valve retention ring 214, against which the relief valve head 121 abuts during use, is backed by a rigid core material, in one embodiment being the same material as the diaphragm core, thus providing for a more supportive cavity to retain the relief valve head 121. This increased rigidity also results in improved performance as the prior art rubber-only design is prone to being pushed out of shape over time. The diaphragm 116 and relief valve seat 117 also includes an embodiment with a connecting piece extending from the diaphragm 116 opposite the disc. The outer portion of the connecting piece may be threaded to allow engagement with the flush valve. In one embodiment the connecting piece forms a single metallic component with the metallic portion of the diaphragm/disk unitary piece (diaphragm 116). In an alternative embodiment the diaphragm/disk unitary piece (diaphragm 116) is affixed to the kit with a separate connection component, such as the retainer 112. This connection component may be of a different material from either the metal or elastomer from the diaphragm/disk unitary piece (diaphragm 116), such as a material of plastic. This material selection allows for greater cost control in manufacturing. In addition the use of a separate connection component allows for a simpler metallic portion to be used in the diaphragm/disk unitary piece (diaphragm 116), such as one that can be manufactured with, for example, a punch press and again allowing for greater cost control in the manufacturing process.
Referring to
With continued reference to
The outer portion of the relief valve retention ring 214 has in one embodiment, a slightly slanted or curved lower portion such that it slopes towards the center of the diaphragm 116. This provides improved component life and performance over time by allowing the elastomeric diaphragm 116 sufficient space to move in response to pressure. In contrast, prior art diaphragms were secured to a disk that presented a flat bottom surface and an annular angular edge. The interaction of the diaphragm 116 against these surfaces over repeated operations and pressure conditions would result in wear and poor performance. Prior art assemblies also had the seat and diaphragm two separate pieces which introduced a potential leak surface between the two parts. The integrated seat and diaphragm 116 removes this sealing area and potential leak because of incompletely assembled parts.
The foregoing description of embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention. The embodiments were chosen and described in order to explain the principles of the present invention and its practical application to enable one skilled in the art to utilize the present invention in various embodiments, and with various modifications, as are suited to the particular use contemplated.
This application claims priority to U.S. Provisional Application No. 60/954,749, filed Aug. 8, 2007, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2472576 | Dobrick | Jun 1949 | A |
3400731 | McCornack | Sep 1968 | A |
3674237 | Heyer et al. | Jul 1972 | A |
3695288 | Billeter et al. | Oct 1972 | A |
4108134 | Malec | Aug 1978 | A |
4272052 | Gidner | Jun 1981 | A |
4327891 | Allen et al. | May 1982 | A |
4437493 | Okuda et al. | Mar 1984 | A |
4659059 | Morris et al. | Apr 1987 | A |
4699351 | Wells | Oct 1987 | A |
4872638 | Thompson et al. | Oct 1989 | A |
4899778 | Laube | Feb 1990 | A |
5026021 | Pino | Jun 1991 | A |
5048790 | Wells | Sep 1991 | A |
5082239 | Feild | Jan 1992 | A |
5169118 | Whiteside | Dec 1992 | A |
5213305 | Whiteside et al. | May 1993 | A |
5244179 | Wilson | Sep 1993 | A |
5295654 | Laube | Mar 1994 | A |
5295655 | Wilson et al. | Mar 1994 | A |
5335694 | Whiteside | Aug 1994 | A |
5415374 | Carroll et al. | May 1995 | A |
5417402 | Speybroeck | May 1995 | A |
5427351 | Körfgen et al. | Jun 1995 | A |
5431181 | Saadi et al. | Jul 1995 | A |
5456279 | Parsons et al. | Oct 1995 | A |
5476244 | Carroll et al. | Dec 1995 | A |
5649686 | Wilson | Jul 1997 | A |
5655748 | Regelbrugge et al. | Aug 1997 | A |
5730415 | Gronwick | Mar 1998 | A |
5738138 | Grunert et al. | Apr 1998 | A |
5755253 | Gronwick | May 1998 | A |
5865420 | Wilson | Feb 1999 | A |
5881993 | Wilson et al. | Mar 1999 | A |
5887848 | Wilson | Mar 1999 | A |
6182689 | Lauer et al. | Feb 2001 | B1 |
6216730 | Hall | Apr 2001 | B1 |
6260576 | Allen | Jul 2001 | B1 |
6299127 | Wilson | Oct 2001 | B1 |
6299128 | Verdecchia | Oct 2001 | B1 |
6408873 | Hall et al. | Jun 2002 | B1 |
6467750 | Verdecchia | Oct 2002 | B2 |
6550744 | Nortier | Apr 2003 | B2 |
6616118 | Nortier | Sep 2003 | B2 |
6616119 | Wilson | Sep 2003 | B2 |
6913239 | Nortier | Jul 2005 | B2 |
6959905 | Bush | Nov 2005 | B2 |
6971634 | Funari et al. | Dec 2005 | B2 |
7108240 | Funari et al. | Sep 2006 | B2 |
7192002 | Nortier | Mar 2007 | B2 |
7516938 | Funari et al. | Apr 2009 | B2 |
20020005500 | Verdecchia | Jan 2002 | A1 |
20020179871 | Verdecchia | Dec 2002 | A1 |
20070272887 | Carroll et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090039299 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60954749 | Aug 2007 | US |