The present invention relates generally to product packaging and/or containers that include integrated dispensing devices. More specifically, the present invention relates to a multiple reservoir fluid container that allows the user to introduce a metered amount of fluid from each of the reservoirs into a mixing chamber that serves to mix and apply the fluid material.
Various types of fluid material and media are employed for different purposes throughout commerce and industry. For example, there are various products in the areas of personal care, home care, air care, transportation care and food industries that require a fluid material to be dispensed in some manner from a source of such material. Further, when this material is sold in commerce, it must be contained and stored in some type of container while awaiting use. Ultimately, when that product is used, it must be dispensed from its storage container to the desired location for use.
In the prior art, there are many different types of dispensers that are employed for the delivery of a stored fluid material to their desired location for use. For example, a storage container having a flexible body with a nozzle tip extending therefrom is commonly provided for such a purpose. An example of such use can be seen in the context of a ketchup dispenser, where a user squeezes the container body to urge the fluid material (ketchup) out from container body and through the nozzle tip to accurately deposit the fluid material at the desired location. In such an application, the amount of fluid that is ultimately delivered is determined by the how much the user actually squeezes the container body. While this method has provided marginally acceptable results, this method also typically yields an erratic fluid volume since more or less fluid material may be delivered on each successive squeeze of the container body. Also, the container must be held upright to avoid leakage because no valves are employed in the fluid nozzle tip.
In another example of a prior art dispensing device, a flexible container is provided that holds a volume of fluid material to be delivered. In an attempt to overcome the leakage issue noted above, a single one-way check valve is provided at the exit port of the flexible container. When the flexible body is squeezed, the material is urged out under pressure through the valve. The difficulty here is that the valve over time becomes partially clogged thereby requiring that the user apply additional pressure to cause the valve to open. As a result, once the valve opens, the additional pressure causes more fluid material to be deposited than the user typically would have desired.
In addition to the above noted need for simply dispensing a volume of fluid material onto an available surface, there has also been a desire to help in applying them as they are dispensed, such as to a surface. In the prior art, to meet this need, the squeezable container bodies have been equipped with some type of applicator head. For example, in the personal care industry, body wash devices commonly include some type of squeezable container body and an applicator material, such as fabric or foam, applied to an outer surface thereof. In this arrangement, when the fluid material is dispensed to the exterior of the container body, it enters the applicator material and the applicator assists in spreading the fluid as desired. The use of such applicators thereby facilitates the spreading of the fluid within the applicator resulting in better and more even distribution thereof. Applicators are particularly useful for even distribution in fluids employed in the personal care industry, such as for shoe polish, hair colorant, conditioners, the like to ensure a quality even and smooth coat.
Still further, while an applicator enhances the application of dispensed fluid materials, there is a particular need for an effective device that can dispense a two component fluid material, such as for example, hair colorant. Hair colorant typically has two components, including a color and a dye, which need to be precisely mixed for good and consistent coloring results. Previously, a stylist carefully measured and dispensed the two components into a container where they were mixed and then applied to the customer's hair using a brush. There is a need for a device that can mix these two components and deliver them to a person's hair. While in the prior art, the concept of dual chambered product storage containers is not novel, the user typically had little control over the amount or rate at which the material in the two chambers was combined. In other words, in the prior art it is typically an all or nothing proposition when mixing the contents of the two chambers. In other words, the previously available prior art devices are incapable of delivering a substantially equal dose of fluid with each operation because they simply open up the container body and permit the combination of the two fluids that were previously maintained separately in the two chambers. In this context, such a lack of control is highly undesirable when a user is attempting to controllably mix products like hair colorants.
In view of the foregoing, there is need for a device that eliminates prior art dual chambered containers that suffer from various disadvantages detailed above that make them difficult and awkward to use. Further, because these prior art dispensers often provide a user with unexpected results, there is a need for a dual reservoir fluid container that includes a selective metering mechanism that is easy to operate. There is a further need for a dual fluid dispenser that operates in connection with at least two fluid reservoirs that is capable of delivering a metered amount of each of the fluids with each dispensing operation in order to produce predictable flow and a better control of the fluid material application. Many of these needs are met by commonly owned, co-pending U.S. patent application Ser. No. 11/074,817, filed on Mar. 8, 2005 and U.S. patent application Ser. No. 11/951,351, filed on Dec. 6, 2007, which are incorporated herein by reference. This application sets forth a device for dispensing accessory liquids from at least two reservoirs in a metered fashion into a mixing chamber that then dispenses the mixed fluids to an applicator.
In this regard, the present invention preserves the advantages of prior art metering dispensing devices and dual reservoir fluid containers. In addition, the present invention provides new advantages not found in currently available devices and overcomes many disadvantages of such currently available devices.
The present invention is generally directed to a novel and unique fluid container that has at least two separate reservoirs therein and a dispenser for mixing and delivering a substantially equal metered dose of fluid material from the reservoirs with each dispensing operation. In one example, the present invention relates to a dispenser for mixing and delivering hair colorant that allows the user to dispense a metered dose of the hair colorant components in a manner that measures and mixes those components with each dispensing operation. Further, in another embodiment, the invention includes an optional applicator that is provided for even distribution of the dispensed hair colorant material. Still further, it should be appreciated that wile hair colorant is employed as an example herein, other fluids can be dispensed using the present invention, such as conditioner.
Generally, as will be described in detail below, the hair colorant dispenser of the present invention includes two bladders that respectively contain the two components of the hair colorant mixture. Preferably, each bladder includes a one-way valve that exits to a mixing chamber. The two buttons on the top of the device press into the bladders to urge the materials from their respective chambers into the mixing chamber. From the mixing chamber, the mixed materials exit from the comb-like applicator head, which may be made of foam, for delivery onto the user's hair. Preferably, the delivery of the two components is in parallel to a single mixing chamber. Alternatively, the first chamber, with the first component therein, can exit into the second chamber, with the second component therein, in a series flow arrangement where the exit of the second chamber includes the mixed materials for delivery directly to the user's hair.
The metering mechanism employed within the present invention is substantially similar to that found in the above noted U.S. patent application Ser. Nos. 11/074,817 and 11/951,351. The accessory reservoir is formed to include an interior fluid storage region therein. A metering housing, having a preferably flexible construction, is disposed in fluid communication with the fluid storage region and a first one-way valve is disposed between the container and the flexible metering housing. When the flexible metering housing is depressed and released a vacuum action generates a one-way flow from the interior fluid storage region of the container that serves to fill the predetermined volume of the chamber within the metering housing. A second valve, in fluid communication with the metering housing output port, permits one-way fluid flow from the metering chamber to the mixing chamber when the metering housing is depressed again. Each time the metering housing is depressed a substantially equal volume of fluid is dispensed from the reservoirs, while upon release, the metering housing is refilled by drawing fluid from the fluid storage bladders.
In view of the foregoing, a new and unique dispenser for a hair colorant is provided. The new dispenser facilitates the delivery of hair colorant by neatly mixing the components of the hair colorant mixture within the dispenser for controlled delivery of the mixture. It is therefore an object of the present invention to provide a fluid dispensing device that can transfer and mix a substantially equal volume of fluid additive from at least two fluid storage reservoirs with each dispensing operation. These together with other objects of the invention, along with various features of novelty that characterize the invention, are pointed out with particularity in the claims annexed hereto and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated a preferred embodiment of the invention.
In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:
a and 5b are a perspective view of an alternate embodiment dual reservoir dispensing device of the present invention;
Now referring to the drawings, a first embodiment of the dispensing device of the present invention is shown and generally illustrated at 10 in
Turning to
Metering housings are provided at the first and second metering pumps 26, 27. The metering housings include an intake one-way valve 30, such as a check valve, to pull fluid 22, 24 from the fluid storage regions into a metering chamber 32 of a predetermined size. Any type of valve can be used to suit the given application. The intake valve 30 is positioned in a base plate 34 of the metering housing. Thus, fluid 22, 24 can only flow in one way from the fluid storage regions 21, 23 into the metering chamber 32. The metering chamber 32 is defined by a flexible membrane 36 in the form of a button or bulb that is accessible and manipulateable on the exterior surface of the outer housing 12 of the device 10. The button 36 is preferably clear to provide an indicator to the consumer when the metered dosage of fluid material 22, 24 is ready for delivery. Further, it is preferred that the two metering pumps 26, 27 are positioned adjacent one another so that the user can press both metering pumps 26, 27 simultaneously.
An output valve 40 is provided in fluid communication with the metering chamber 32 of the metering housing. Thus, the fluid residing in the metering chamber 32 can only exit through the output valve 40 into the mixing chamber 14 that serves to direct the exit of the fluids 22, 24. In this particular case to the interior of the mixing chamber 14.
In accordance with the present invention, each press of the flexible membrane 36 causes a metered amount of first and second fluid 22, 24 to be forced into the mixing chamber 14. It should be appreciated that the button/membrane 36 can be placed anywhere on the device 10, as needed. Still referring to
It can also be seen in
Turning now to
Turning to
Turning now to
Turning to
In summary, this invention offers many advantages over the prior art by allowing the user flexibility in maintaining two fluid materials as separate components until just prior to use and application.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the appended claims.
This application is related to and claims priority from earlier filed U.S. Provisional Patent Application No. 60/891,312 filed Feb. 23, 2007.
Number | Name | Date | Kind |
---|---|---|---|
886984 | Jopling | May 1908 | A |
1217054 | Pearman | Feb 1917 | A |
1941745 | Higley | Jan 1934 | A |
2714475 | Roehrich | Aug 1955 | A |
2819723 | Meyer | Jan 1958 | A |
2855127 | Lerner et al. | Oct 1958 | A |
3223289 | Bouet | Dec 1965 | A |
3396419 | Richter et al. | Aug 1968 | A |
3617139 | Ross | Nov 1971 | A |
3949137 | Akrongold et al. | Apr 1976 | A |
3981106 | Gallo | Sep 1976 | A |
4004854 | Breer, II | Jan 1977 | A |
4040420 | Speer | Aug 1977 | A |
4074944 | Xavier | Feb 1978 | A |
4098434 | Uhlig | Jul 1978 | A |
4124316 | O'Rourke | Nov 1978 | A |
4127515 | MacRae et al. | Nov 1978 | A |
4188989 | Andersen | Feb 1980 | A |
4687663 | Schaeffer | Aug 1987 | A |
4702397 | Gortz | Oct 1987 | A |
4753006 | Howe | Jun 1988 | A |
4760642 | Kwak | Aug 1988 | A |
4809432 | Schauble | Mar 1989 | A |
4871090 | Hoffmann | Oct 1989 | A |
4886388 | Gulker et al. | Dec 1989 | A |
4888868 | Pritchard | Dec 1989 | A |
4889441 | Tice | Dec 1989 | A |
4890744 | Lane, Jr. et al. | Jan 1990 | A |
4993594 | Becker et al. | Feb 1991 | A |
5014427 | Byrne | May 1991 | A |
5016351 | Drahus | May 1991 | A |
5074765 | Pekar | Dec 1991 | A |
5114255 | Villarreal | May 1992 | A |
5152432 | De Laforcade | Oct 1992 | A |
5168628 | Mock et al. | Dec 1992 | A |
5176510 | Nilsson | Jan 1993 | A |
5249709 | Duckworth et al. | Oct 1993 | A |
5261570 | Hippely et al. | Nov 1993 | A |
5265772 | Bartasevich et al. | Nov 1993 | A |
5303851 | Libit et al. | Apr 1994 | A |
5337478 | Cohen et al. | Aug 1994 | A |
5353961 | Debush | Oct 1994 | A |
5356039 | Christine et al. | Oct 1994 | A |
5372487 | Pekar | Dec 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5441345 | Garvey et al. | Aug 1995 | A |
5482980 | Pcolinsky | Jan 1996 | A |
5505341 | Gueret | Apr 1996 | A |
5555673 | Smith | Sep 1996 | A |
5564190 | Fleetwood | Oct 1996 | A |
5640737 | Boggs | Jun 1997 | A |
5700245 | Sancoff et al. | Dec 1997 | A |
5701674 | Mitchell | Dec 1997 | A |
5704723 | Salisian | Jan 1998 | A |
5761813 | Frick et al. | Jun 1998 | A |
5836482 | Ophardt et al. | Nov 1998 | A |
5842607 | Snider | Dec 1998 | A |
5848730 | Kawase et al. | Dec 1998 | A |
5855066 | Manager | Jan 1999 | A |
5865554 | Lin | Feb 1999 | A |
5934296 | Clay | Aug 1999 | A |
5944032 | Masterson | Aug 1999 | A |
5950928 | Giang et al. | Sep 1999 | A |
5983500 | da Silva | Nov 1999 | A |
6183154 | Coe | Feb 2001 | B1 |
6210064 | White et al. | Apr 2001 | B1 |
6251098 | Rake et al. | Jun 2001 | B1 |
6302607 | Burrowes et al. | Oct 2001 | B1 |
6394316 | Daansen | May 2002 | B1 |
6406207 | Wiegner et al. | Jun 2002 | B1 |
6419118 | Rees et al. | Jul 2002 | B1 |
6454135 | Brozell | Sep 2002 | B1 |
6558629 | Davidson | May 2003 | B1 |
6623201 | Brumlik | Sep 2003 | B2 |
6629799 | Flores, Jr. | Oct 2003 | B2 |
6641307 | Matsuda et al. | Nov 2003 | B2 |
6715952 | Aiken et al. | Apr 2004 | B1 |
6754958 | Haws et al. | Jun 2004 | B2 |
6789321 | Simms | Sep 2004 | B2 |
6789706 | Abergel et al. | Sep 2004 | B2 |
6843368 | Frutin | Jan 2005 | B1 |
6883563 | Smith | Apr 2005 | B2 |
6886254 | Pennella | May 2005 | B1 |
6910274 | Pennella et al. | Jun 2005 | B1 |
6925716 | Bressler et al. | Aug 2005 | B2 |
6929155 | Sayers | Aug 2005 | B1 |
6964097 | Franzini et al. | Nov 2005 | B2 |
6996908 | Orloff et al. | Feb 2006 | B2 |
7043841 | Franzini et al. | May 2006 | B2 |
7121754 | Bressler et al. | Oct 2006 | B2 |
7137203 | Bressler et al. | Nov 2006 | B2 |
7137531 | Arghyris et al. | Nov 2006 | B2 |
7156132 | O'Dougherty et al. | Jan 2007 | B2 |
7159742 | Lee | Jan 2007 | B2 |
7481334 | Arghyris et al. | Jan 2009 | B2 |
20010025859 | Dumont | Oct 2001 | A1 |
20010025860 | Auer | Oct 2001 | A1 |
20020085873 | Katsandres et al. | Jul 2002 | A1 |
20030077106 | Weihrauch | Apr 2003 | A1 |
20030121936 | De Laforcade | Jul 2003 | A1 |
20040092864 | Boehm, Jr. et al. | May 2004 | A1 |
20040140326 | Smart et al. | Jul 2004 | A1 |
20040177510 | Pennella | Sep 2004 | A1 |
20040178284 | Fahy et al. | Sep 2004 | A1 |
20050138814 | Pennella et al. | Jun 2005 | A1 |
20050144785 | Bressler et al. | Jul 2005 | A1 |
20050199651 | Laflamme et al. | Sep 2005 | A1 |
20060072858 | Kurosawa et al. | Apr 2006 | A1 |
20060150386 | Wanli et al. | Jul 2006 | A1 |
20060163282 | Suzuki | Jul 2006 | A1 |
20060249536 | Hartman et al. | Nov 2006 | A1 |
20060254056 | Coffin et al. | Nov 2006 | A1 |
20060255068 | Genosar | Nov 2006 | A1 |
20060272154 | Brevard | Dec 2006 | A1 |
20070017098 | Bressler et al. | Jan 2007 | A1 |
20070068966 | Orzech et al. | Mar 2007 | A1 |
20070084058 | Szczepanowski et al. | Apr 2007 | A1 |
20070214646 | Bezdek | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
4030851 | Apr 1992 | DE |
29719331 | Dec 1997 | DE |
29818058 | Jan 1999 | DE |
2628394 | Sep 1989 | FR |
2683759 | Nov 1991 | FR |
2083142 | Mar 1982 | GB |
6293348 | Oct 1994 | JP |
10165668 | Jun 1998 | JP |
2005199020 | Jul 2005 | JP |
0176972 | Oct 2001 | WO |
0176974 | Oct 2001 | WO |
02071907 | Sep 2002 | WO |
2004096504 | Jul 2003 | WO |
2005086852 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080203110 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60891312 | Feb 2007 | US |