1. Field of the Invention
The invention relates to a dual clutch arrangement operable to selectively couple two structures such as shafts.
2. Description of Related Prior Art
It can be desirable to selectively couple two structures, such as shafts, gears, or plates for example, in order to jointly rotate the two structures. The structures can be uncoupled when only one of the structures is to rotate or when the two structures are to rotate at different speeds. A clutch can be operably positioned to couple the two structures to rotate at the same speed. Alternatively, the clutch can be disengaged to allow the two structures to rotate relative to one another.
In summary, the invention is a dual clutch arrangement. The dual clutch arrangement includes a first input rotatable member. The dual clutch arrangement also includes an output rotatable member. The dual clutch arrangement also includes a first clutch coupling the first input rotatable member and the output rotatable member such that the first input rotatable member drives the output rotatable member in rotation. The first clutch is operable to be overrun. The dual clutch arrangement also includes a second input rotatable member. The dual clutch arrangement also includes a second clutch operable to selectively couple the second input rotatable member and the output rotatable member such that the second input rotatable member drives the output rotatable member in rotation. The first clutch is overrun when the second clutch is engaged. The dual clutch arrangement can be one exemplary way of practicing a method of operating a turbine engine to produce thrust for a vehicle, directing air into the turbine engine with a fan during said operating step, and changing a speed of the fan during said operating step to change a bypass ratio of the turbine engine without changing a speed of rotation of a shaft driving the fan.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
The inventor has developed a dual clutch arrangement that can be practiced in any operating environment in which it is desired to rotate a structure, such as a shaft or any other rotatable member, at different speeds. As set forth below, the invention can be practiced in a turbine engine to vary the rotational speed of a fan, but the invention is not limited to turbine engines. Applying the dual clutch arrangement in a turbine engine allows the turbine engine to be operated in a new and non-obvious method; the bypass ratio of the turbine engine can be changed during operation of the turbine engine by changing the rotational speed of the fan without changing the rotational speed of the shaft driving the fan. The turbine engine can operate with the fan rotating at a relatively lower speed in a first mode of operation and in a second mode of operation with the fan rotating at a relatively higher speed. As a result, the bypass ratio during the first mode of operation is different than the bypass ratio during the second mode of operation. In the first mode of operation, the turbine engine can be operated at a higher level of fuel efficiency and/or at a lower rate of fuel consumption. In the second mode of operation, the turbine engine can be operated at a higher level of thrust output. It is noted that this inventive method of operating a turbine engine can be carried with other arrangements and is not limited to the dual clutch arrangement of the exemplary embodiment described below.
Referring to
Shafts 30, 32 are shown disposed for rotation about the centerline axis 26 of the turbine engine 10. Alternative embodiments of the invention can include any number of shafts. The shafts 30, 32 can be journaled together for relative rotation. The shaft 30 can be a low pressure shaft supporting low pressure turbine blade rows 34, 36 of a low pressure portion of the turbine section 22. In alternative embodiments of the invention, the low pressure shaft 30 can also support compressor blades of a low pressure portion of the compressor section 18.
The shaft 32 can encircle the shaft 30. As set forth above, the shafts 30, 32 can be journaled together, wherein bearings are disposed between the shafts 30, 32 to permit relative rotation. The shaft 32 can be a high pressure shaft supporting high pressure turbine blade rows 38, 40 of a high pressure portion of the turbine section 22. In the exemplary embodiment, the shaft 32 can also support the blade rows of the compressor section 18. The high pressure portion of the turbine section 22 can thus drive the multi-stage compressor section in the exemplary embodiment. It is noted that this arrangement is not required of the broader invention.
It is noted that either shaft 30, 32 can drive other structures, such as a gear train, a fan, one or more propeller shafts, a rotor, a tower shaft or any other shaft, or any other structure. In the schematic view of
The fans 14, 16 can also direct a portion of the working fluid to a bypass duct 44. The bypass duct 44 can be an annular gap between a compressor casing 46 of the compressor section 18 and an outer casing or nacelle 48 of the turbine engine 10. Bypass flow passes through the bypass duct 44 and may or may not rejoin the portion of the flow that passes through the core engine (the compressor section 18, the combustor section 20, and the turbine section 22). The bypass flow and the core engine flow can join upstream of the exhaust 24 through an integrated propelling nozzle 50 as shown in
The bypass ratio of the turbine engine is the ratio between the mass flow rate of air passing through the core engine and the mass flow rate of air passing through the bypass duct. If the fan 14 drives two kilograms of air around the core engine and into the bypass duct 44 for every kilogram that passes through the core engine, the engine is said to have a bypass ratio of 2, or 2:1. Thus, in a bypass ratio of “2:1” the first number can correspond to the mass flow rate of air passing through the bypass duct 44 and the second number can correspond to the mass flow rate of air passing through the core engine.
Generally, bypass ratios can range from 0 to 17. A relatively high bypass ratio, such as 11-17, is generally associated with civilian aircraft. In addition, a relatively high bypass ratio can result in relatively lower exhaust speed but also in reduced fuel consumption. Relatively high bypass ratios are also generally associated with lower noise, since the relatively large flow of air surrounding the exhaust from the core engine helps to buffer the noise produced by the core engine flow. A lower bypass ratio, such as 0 to 2, generally results in higher exhaust speed and increased fuel consumption. A lower bypass ratio is generally desirable to sustain higher airspeeds and is associated with military aircraft.
The mass flow rates of air passing through the core engine and through the bypass duct 44 are related to the cross-sectional area of the respective inlets of the core engine and the bypass duct 44. The inlet of the core engine is referenced schematically at 52 and the inlet of the bypass duct 44 is referenced schematically at 54. The mass flow rates are also related to the mean or generalized velocities of the air entering the respective inlets 52, 54. The fan 16 can impart a pressure increase to the working fluid and this pressure increase is manifest by the velocity of the working fluid. As set forth below, the speed of rotation of the fan 16 can be varied and, as a result, the velocity of the working fluid can change during operation. Further, the bypass ratio can change when the generalized velocities of the air entering the respective inlets 52, 54 change.
Referring now to
In the exemplary embodiment of the invention, the rotation of the first shaft member 60 through the first clutch 56 can produce a particular output speed for the first shaft member 60, such as a low-speed mode of operation. The first shaft member 60 can be fixed for rotation with a second shaft member 80 through at least one bolt 82. Referring to
The fan 16 and the shaft members 60, 80, 84 can also be selectively coupled directly to the shaft 30 to rotate at relatively high speeds. The second clutch 58 can be operably disposed to selectively couple the output shaft defined by the shaft members 60, 80, 84 with the shaft 30. In the exemplary embodiment of the invention, the second clutch 58 can be a friction plate clutch having a first pressing plate defined by the shaft member 80, a second pressing plate 88, and a plurality of friction plates such as friction plate 90 positioned between the first pressing plate defined by the shaft member 80 and the second pressing plate 88.
The second clutch 58 can be disengaged during the low-speed mode of operation for the output shaft defined by the shaft members 60, 80, 84 in the exemplary embodiment of the invention. The second clutch 58 can be engaged when a high-speed mode of operation for the output shaft defined by the shaft members 60, 80, 84 is desired. Referring now to
The first link 94 can be moved in a direction represented by an arrow 102 to move the second link 96 and the pressing plate 88 toward the pressing plate 80, thereby increasing the frictional forces between the friction plates. A spring 104 can bias the first link 94 in a direction opposite to the arrow 56 when the actuator 92 is disengaged. A bearing 106 can be disposed between the first and second links 94, 96 to allow the second link 96 and the pressing plates 80, 88 to rotate relative to the first link 94.
The exemplary second clutch 58 can include friction plates 108, 110, 112, 114 fixed to an extension 116 of the shaft 30. The shaft 30 and the extension 116 are fixed for rotation together. In the exemplary embodiment of the invention, the shaft 30 and the extension 116 are separately formed structures, but could be integral in alternative embodiments of the invention. Thus, the friction plates 108, 110, 112, 114 and the shaft 30 can be fixed for rotation together through the connection between the friction plates 108, 110, 112, 114 and the extension 116.
The exemplary second clutch 58 can also include friction plates 118, 120, 122, 124 fixed to the pressing plate 80. The pressing plate 80 and the friction plates 118, 120, 122, 124 can be fixed for rotation together. When the pressing plates 80, 88 are urged together, the friction plates (numbered and unnumbered in the drawings) are pressed together. Referring again to
When the second clutch 58 is engaged, the first shaft member 60 can over-run the first clutch 56. In other words, the first shaft member 60 can rotate faster than the inner sleeve 66 (shown in
It is noted that in the exemplary embodiment the outer race 60 of the first clutch 56 and a first pressing plate 80 of the second clutch 58 can be fixed directly together for concurrent rotation. In alternative embodiments of the invention, the outer race 60 of the first clutch 56 and a first pressing plate 80 of the second clutch 58 can be integral. It is also noted that in the exemplary embodiment the forward fan 14 can be driven only by the shaft 30. In alternative embodiments of the broader invention, the fan 14 can be driven along more than path of power transmission.
As shown by the exemplary embodiment, the first and second clutches 56, 58 can be disposed on opposite sides of the output shaft along the centerline axis 26. Also, the first and second clutches 56, 58 can be spaced different distances from the axis 26. It is noted that that the first and second clutches 56, 58 can be radially stacked in alternative embodiments of the invention, wherein the first and second clutches 56, 58 would generally overlap along the axis 26.
Referring again to
The member 132 can define a spline section 134. The lock mechanism 126 can include a moveable locking portion 136 operable to selectively lock the extension 116 and the member 132 together through the respective spline sections 82, 84, and 88. The exemplary locking portion 136 can include a first link 138, a second link 140, and a locking sleeve 142. The first link 138 can be guided in sliding movement by the stationary structure 98. The first link 138 can be moved by any means, including electrically, hydraulically, or pneumatically by a source of power 144 (shown schematically).
The first link 138 can be moved in a direction represented by an arrow 146 to move the second link 140 in the direction represented by the arrow 146. A spring 148 can bias the first link 138 in a direction opposite to the arrow 146 when the lock mechanism 126 is disengaged. A bearing 150 can be disposed between the first and second links 138, 140 to allow the second link 140 to rotate relative to the first link 138. The second link 140 can define a spline section 152 that engages the spline section 134 to guide axial movement of second link 140. Thus, the second link 140 can be coupled to the member 132 for rotation together and is therefore coupled to the output shaft defined by the shaft members 60, 80, 84 as well.
The second link 140 and the locking sleeve 142 can be engaged for relative movement. In the exemplary embodiment of the invention, the second link 140 and the locking sleeve 142 can move relative to one another axially. A spring 154 can be disposed between the second link 140 and the locking sleeve 142. In operation, the first and second links 138, 140 can be moved axially in the direction represented by the arrow 146 by movement of the first link 138. When spline sections 156 and 158 of the locking sleeve 142 abut the spline sections 128, 130 of the extension 116, respectively, the locking sleeve 142 can stop moving if the confronting spline sections 156-128 and 158-130 are not radially aligned. The spring 154 can then compress, biasing the locking sleeve 142 in the direction represented by the arrow 146.
As the spring 154 is compressed, the locking sleeve 142 can rotate relative to the second link 140. The locking sleeve 142 and the second link 140 by respective, mating helical splines, referenced at 160. The locking sleeve 142 can continue rotating relative to the second link 140 until the confronting spline sections 156-128 and 158-130 become aligned. When that occurs, the load generated the spring 154 can urge the confronting spline sections 156-128 and 158-130 into mating engagement. The confronting spline sections 156-128 and 158-130 can snap into place and lock together the member 132, the second link 140, the locking sleeve 142, and extension 116. Through this linkage, the output shaft defined by the shaft members 60, 80, 84 and the shaft 30 are locked together for the transmission of relatively high torque loads.
The second link 140 and the locking sleeve 142 can thus define a locking ring assembly movable along the axis 26 between a locked position and an unlocked position. The spline section 152 can define a first locking portion extending radially from the locking ring assembly circumferentially about the axis 26 for engaging the output shaft. The spline section 156 can define a second locking portion extending radially from the locking ring assembly opposite the first locking portion circumferentially about the axis 26 for engaging the shaft 30 (through the extension 116 in the exemplary embodiment). The spline section 158 can define a third locking portion spaced from the second locking portion along the axis 26 and extending radially from the locking ring assembly opposite the first locking portion circumferentially about the axis 26 for engaging the shaft 30 (through the extension 116 in the exemplary embodiment).
In the exemplary embodiment, the fan 16 can be driven in rotation along at least two separate paths of power transmission. The first path extends from the shaft 30 and through the gear arrangement 42 and the first clutch 56. The second path extends from the shaft 30 and through the second clutch 56. As a sprag clutch, the first exemplary clutch 56 can positively lock the fan 16 when the fan 16 is being driven along the first path. In other words, the output shaft defined by the shaft members 60, 80, 84 does not slip when driven through the first path. A sprag clutch is a positive-locking clutch. The exemplary second clutch 58 can be supplemented by the exemplary lock mechanism 126, which is structurally distinct from the exemplary second clutch 58. Thus, the output shaft and fan 16 can be positively locked when the fan 16 is being driven along any of the paths of power transmission.
Referring again to
When the fan 16 and the output shaft defined by the shaft members 60, 80, 84 (shown in
When the fan 16 and the output shaft defined by the shaft members 60, 80, 84 (shown in
It is also noted that other mechanisms and approaches can be applied in conjunction with the exemplary embodiment to modify the bypass ratio. For example, additional valves/vanes can be positioned relative to the bypass duct 44 to adjust the mass flow rate of air through the bypass duct 44. Also, bypass flow can be diverted downstream of the inlet 54 to adjust the mass flow rate of air through the bypass duct 44.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. The right to claim elements and/or sub-combinations of the combinations disclosed herein is hereby reserved.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/052,659 for a CLUTCH ARRANGEMENT FOR SHAFTS, filed on May 13, 2008, which is hereby incorporated by reference in its entirety.
The present invention was made under U.S. Government Contract Number F33615-03-D-2357 awarded by the Department of Defense, and the government may have certain rights in the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3722213 | Carter et al. | Mar 1973 | A |
4047842 | Avena et al. | Sep 1977 | A |
4064692 | Johnson et al. | Dec 1977 | A |
4080785 | Koff et al. | Mar 1978 | A |
4679394 | Taylor | Jul 1987 | A |
4786016 | Presz, Jr. et al. | Nov 1988 | A |
4791783 | Neitzel | Dec 1988 | A |
4829850 | Soloy | May 1989 | A |
5120516 | Ham et al. | Jun 1992 | A |
5201798 | Hogan | Apr 1993 | A |
5267433 | Burch | Dec 1993 | A |
5281190 | Koivunen | Jan 1994 | A |
5452988 | Short et al. | Sep 1995 | A |
5478203 | Barker et al. | Dec 1995 | A |
5524847 | Brodell et al. | Jun 1996 | A |
5529263 | Rudolph | Jun 1996 | A |
5771681 | Rudolph | Jun 1998 | A |
5813214 | Moniz et al. | Sep 1998 | A |
5908080 | Bigley et al. | Jun 1999 | A |
5992592 | Showalter | Nov 1999 | A |
5996754 | Reed, Jr. et al. | Dec 1999 | A |
6010304 | Moniz et al. | Jan 2000 | A |
6012561 | Reed, Jr. et al. | Jan 2000 | A |
6021880 | Reed, Jr. et al. | Feb 2000 | A |
6027424 | Reynolds | Feb 2000 | A |
6044719 | Reed, Jr. et al. | Apr 2000 | A |
6044931 | Reed, Jr. et al. | Apr 2000 | A |
6071076 | Ansari et al. | Jun 2000 | A |
6082511 | Shirataki | Jul 2000 | A |
6209311 | Itoh et al. | Apr 2001 | B1 |
6364809 | Cherry | Apr 2002 | B1 |
6463821 | Reed, Jr. et al. | Oct 2002 | B1 |
6546735 | Moniz et al. | Apr 2003 | B1 |
6619030 | Seda et al. | Sep 2003 | B1 |
6684626 | Orlando et al. | Feb 2004 | B1 |
6711887 | Orlando et al. | Mar 2004 | B2 |
6739120 | Moniz et al. | May 2004 | B2 |
6745880 | Yuergens | Jun 2004 | B1 |
6763652 | Baughman et al. | Jul 2004 | B2 |
6763653 | Orlando et al. | Jul 2004 | B2 |
6763654 | Orlando et al. | Jul 2004 | B2 |
6766891 | Kerr | Jul 2004 | B2 |
6773368 | Williames | Aug 2004 | B1 |
6935837 | Moniz et al. | Aug 2005 | B2 |
7007488 | Orlando et al. | Mar 2006 | B2 |
7096674 | Orlando et al. | Aug 2006 | B2 |
7186073 | Orlando et al. | Mar 2007 | B2 |
7195446 | Seda et al. | Mar 2007 | B2 |
7195447 | Moniz et al. | Mar 2007 | B2 |
7269938 | Moniz et al. | Sep 2007 | B2 |
7278946 | Williams et al. | Oct 2007 | B2 |
7290386 | Orlando et al. | Nov 2007 | B2 |
7296398 | Moniz et al. | Nov 2007 | B2 |
7299621 | Bart et al. | Nov 2007 | B2 |
7334392 | Moniz et al. | Feb 2008 | B2 |
7334981 | Moniz et al. | Feb 2008 | B2 |
7353647 | Orlando et al. | Apr 2008 | B2 |
7363995 | Downs et al. | Apr 2008 | B2 |
7430852 | Beutin et al. | Oct 2008 | B2 |
7458202 | Moniz et al. | Dec 2008 | B2 |
7481062 | Gaines et al. | Jan 2009 | B2 |
7490460 | Moniz et al. | Feb 2009 | B2 |
7490461 | Moniz et al. | Feb 2009 | B2 |
7493753 | Moniz et al. | Feb 2009 | B2 |
7493754 | Moniz et al. | Feb 2009 | B2 |
7500352 | Bradbrook | Mar 2009 | B2 |
7510371 | Orlando et al. | Mar 2009 | B2 |
7513102 | Moniz et al. | Apr 2009 | B2 |
7513103 | Orlando et al. | Apr 2009 | B2 |
7526913 | Orlando et al. | May 2009 | B2 |
20030163984 | Seda et al. | Sep 2003 | A1 |
20040020186 | Orlando et al. | Feb 2004 | A1 |
20060288686 | Cherry et al. | Dec 2006 | A1 |
20070084183 | Moniz et al. | Apr 2007 | A1 |
20070084186 | Orlando et al. | Apr 2007 | A1 |
20070087892 | Orlando et al. | Apr 2007 | A1 |
20070125066 | Orlando et al. | Jun 2007 | A1 |
20070137175 | Moniz | Jun 2007 | A1 |
20070157596 | Moniz | Jul 2007 | A1 |
20070189848 | Clemens | Aug 2007 | A1 |
20070220999 | Hatori et al. | Sep 2007 | A1 |
20070234704 | Moniz et al. | Oct 2007 | A1 |
20070240399 | Orlando et al. | Oct 2007 | A1 |
20080014095 | Moniz et al. | Jan 2008 | A1 |
20080053099 | Venkataramani et al. | Mar 2008 | A1 |
20080053100 | Venkataramani et al. | Mar 2008 | A1 |
20080072567 | Moniz et al. | Mar 2008 | A1 |
20080072568 | Moniz et al. | Mar 2008 | A1 |
20080072569 | Moniz et al. | Mar 2008 | A1 |
20080075590 | Moniz et al. | Mar 2008 | A1 |
20080098713 | Orlando et al. | May 2008 | A1 |
20080098714 | Orlando et al. | May 2008 | A1 |
20080098715 | Orlando et al. | May 2008 | A1 |
20080098716 | Orlando et al. | May 2008 | A1 |
20080098717 | Orlando et al. | May 2008 | A1 |
20080098718 | Henry et al. | May 2008 | A1 |
20080110152 | Kemper et al. | May 2008 | A1 |
20080110153 | Seda et al. | May 2008 | A1 |
20080110154 | Kemper et al. | May 2008 | A1 |
20080112791 | Lee et al. | May 2008 | A1 |
20080112793 | Lee et al. | May 2008 | A1 |
20080112794 | Lee et al. | May 2008 | A1 |
20080112795 | Lee et al. | May 2008 | A1 |
20080112801 | Moniz et al. | May 2008 | A1 |
20080112802 | Orlando et al. | May 2008 | A1 |
20080148708 | Chou et al. | Jun 2008 | A1 |
20080148881 | Moniz et al. | Jun 2008 | A1 |
20080152477 | Moniz et al. | Jun 2008 | A1 |
20080159851 | Moniz et al. | Jul 2008 | A1 |
20080159852 | Stephenson et al. | Jul 2008 | A1 |
20080159856 | Moniz et al. | Jul 2008 | A1 |
20090064683 | Moniz et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1619370 | Jan 2006 | EP |
1271007 | Nov 2006 | EP |
1060237 | Mar 1967 | GB |
2424048 | Sep 2006 | GB |
Entry |
---|
European Search Report, Feb. 7, 2012, EP 09251309, Rolls Royce Corporation, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20090320491 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61052659 | May 2008 | US |