This application is a 35 USC § 371 national stage of PCT/CN2018/081159, which was filed Mar. 29, 2018 and claims priority to Chinese Application No. 201710198379.5, which was filed on Mar. 29, 2017, and is entitled “A dual-clutch automatic transmission cooling and lubrication hydraulic control system and vehicle,” both of which are incorporated herein by reference as if fully set forth.
The present invention relates to the technical field of vehicle hydraulic components, in particular to a dual-clutch automatic transmission cooling and lubrication hydraulic control system. The present invention also relates to the vehicle equipped with the dual-clutch automatic transmission cooling and lubrication hydraulic control system.
At present, most of vehicles use dual-clutch automatic transmissions. With a dual-clutch automatic transmission, the transmission body shall have a compact overall structure and a large torque transmission capability. However, when a dual-clutch automatic transmission is used, its internal dual clutch and shifting gears and bearings will generate a large amount of heat due to friction and engagement, therefore, it is necessary to provide a cooling and lubricating liquid hydraulic control system to dissipate heat in time, otherwise it may cause ablation and pitting corrosion of heat producing parts.
Most of the cooling and lubricating liquid hydraulic control systems adopt a mechanical pump for oil supply in the existing structures, which may cause a large displacement of the mechanical pump and low economy performance of fuels. Moreover, the working mode of mechanical pump alone is not suitable for a hybrid transmission structure, resulting in a high R&D cost and losing its competitiveness. In addition, the cooling control structure of the cooling and lubricating liquid hydraulic control system in the existing structures has a poor variability, which cannot be adjusted according to the operating temperature of the transmission, so it has poor practicability.
In view of this, the present invention aims to provide a dual-clutch automatic transmission cooling and lubrication hydraulic control system for the cooling and lubrication of dual-clutch automatic transmissions, having good practicability.
In order to achieve the above object, the present invention adopts the following technical solutions:
A dual-clutch automatic transmission cooling and lubrication hydraulic control system, comprising:
a clutch lubrication control valve, the outlet end of the clutch lubrication control valve being connected with a clutch lubricating oil circuit;
a gear lubrication control valve, the inlet end of the gear lubrication control valve being connected with the inlet end of the clutch lubrication control valve in parallel at the first common end, the outlet end of the gear lubrication control valve is connected to a gear and bearing lubricating oil circuit;
a mechanical pump, the inlet end being connected to the oil tank, and the outlet end of the mechanical pump being connected with the first control valve;
an electronic pump, the inlet end being connected to the oil tank, the outlet end of the electronic pump being connected with the second control valve, the outlet end of the second control valve being connected with the outlet end of the first control valve at the second common end;
a cooler, connected in series between the first common end and the second common end.
Further, a cold source conduit of the cooler is connected in a loop with an engine cooling system.
Further, the cold source conduit of the cooler is connected in series with an electric water pump.
Further, an outer end of the cooler is connected in series with a filter with a bypass valve.
Further, a bypass valve that operates in response to a pressure difference across the cooler is connected in parallel at both ends of the cooler.
Further, the outlet end of the first control valve is connected with an oil return pipe that is in communication with the inlet end of the mechanical pump.
Further, the first common end is connected with a pressure limiting valve that operates in response to the pressure threshold of the first common end, and the outlet end of the pressure limiting valve is connected to the inlet end of the mechanical pump.
Further, an adsorption filter is connected to the inlet end of both the mechanical pump and the electronic pump.
Further, the clutch lubrication control valve and the gear lubrication control valve are both proportional flow control valves.
The present invention has the following advantages compared to the prior art:
For the dual-clutch automatic transmission cooling and lubrication hydraulic control system of the present invention, the mechanical pump and the electronic pump are disposed in parallel, and the first control valve and the second control valve are provided on the mechanical pump and the electronic pump respectively, thereby different working modes may be adopted according to actual needs, reducing the defects such as large displacement of the mechanical pump when working alone. In addition, by providing a clutch lubrication control valve and a gear lubrication control valve, it is also convenient to control the amount of oil flowing through the clutches, gears and bearings, to ensure the rational used of oil, presenting good practicability.
Another object of the present invention is to provide a vehicle on which a dual clutch automatic transmission is mounted and the described dual-clutch automatic transmission cooling and lubrication hydraulic control system is provided.
The vehicle and dual-clutch automatic transmission cooling and lubrication hydraulic control system of the present invention can achieve the same beneficial effects as that of the prior art, and it is not described herein again.
The accompanying drawings, which constitute a part of the present invention, are provided to facilitate further understanding the present invention; the illustrative embodiments and associated description in the present invention are provided to explain the present invention, and shall not be deemed as constituting any improper limitation to the present invention. In the figures:
1—mechanical pump, 2—the first connecting line, 3—adsorption filter, 4—check valve, 5—the first control valve, 6—pilot solenoid valve, 7—the second connecting line, 8—the second common end, 9—oil return pipe, 10—accumulator, 11—electronic pump, 12—the third connecting line, 13—the second control valve, 14—the fourth connecting line, 15—clutch lubrication control valve, 16—gear lubrication control valve, 17—the fifth connecting line, 18—the sixth connecting line, 19—the first common end, 20—the seventh connecting line, 21—cooler, 22—cold source conduit, 23—engine cooling system, 24—electric water pump, 25—the first filter, 26—the first bypass valve, 27—the eighth connecting line, 28—the second bypass valve, 29—pressure limiting valve.
It is noted that the embodiments and the features in the embodiments in the present invention can be combined freely, provided that there is no confliction between them.
Hereunder the present invention will be detailed in an embodiment with reference to the accompanying drawings.
The present embodiment relates to a dual-clutch automatic transmission cooling and lubrication hydraulic control system, comprising a clutch lubrication control valve whose outlet end is connected with a clutch lubricating oil circuit, a gear lubrication control valve whose outlet end is connected with a gear and bearing lubricating oil circuit, the inlet end of the gear lubrication control valve being connected with the inlet end of the clutch lubrication control valve in parallel at the first common end, further comprising a mechanical pump and an electronic pump whose inlet ends are connected to an oil tank respectively. The outlet end of the mechanical pump is connected with the first control valve. The outlet end of the electronic pump is connected with the second control valve, and the outlet end of the second control valve is connected with the outlet end of the first control valve in parallel at the second common end. A cooler is disposed between the first common end and the second common end.
For the dual-clutch automatic transmission cooling and lubrication hydraulic control system, the mechanical pump and the electronic pump are disposed in parallel, and the first control valve and the second control valve are provided on the mechanical pump and the electronic pump respectively, thereby different working modes, such as a mechanical pump working alone, an electronic pump working alone, or simultaneously working of a mechanical pump and an electronic pump, may be adopted according to actual needs, thereby reducing the defects of large displacement of the mechanical pump when working alone, and facilitating control on the amount of oil flowing through the clutches, gears and bearings, presenting good practicability.
Based on the foregoing design concept, an exemplary structure of a dual-clutch automatic transmission cooling and lubrication hydraulic control system of the present embodiment is shown in
For the connection between the pilot solenoid valve 6 and the first control valve 5 in the present embodiment, reference may be made to the prior art, and details are not described herein again. In addition, in the present embodiment, an accumulator 10 is provided at the outlet connection of the pilot solenoid valve 6, and the hydraulic shock pressure in the circuit can be absorbed by disposing the accumulator 10, so as to control the first control valve 5 more smoothly and steadily.
In the present embodiment, the electronic pump 11 is in communication with the oil tank via the third connecting line 12, and similarly, an adsorption filter 3 and a check valve 4 are also disposed on the third connecting line 12, and the second control valve 13 is disposed at the outlet end of the third connecting line 12. In this embodiment, the second control valve 13 is a solenoid directional valve, one of the outlet ends of the second control valve 13 is connected in series with the inlet end of the pilot solenoid valve 6, and the other outlet end of the second control valve 13 is connected with a fourth connecting line 14, and the fourth connecting line 14 is connected in parallel with the foregoing second connecting line 7 at the second common end 8. In the above connection structure, when the electronic pump 11 is powered off, the third connecting line 12 is electrically connected to the pilot solenoid valve 6 (since a check valve is provided on the third connecting line 12, the oil can be guaranteed not to flow reversely). When the electronic pump 11 is working, the second control valve 13 performs a reversing action, to turn on the third connecting line 12 and the second common end 8 for outputting oil.
In the present embodiment, the clutch lubrication control valve 15 and the gear lubrication control valve 16 both adopt proportional flow control valves, to enhance the accuracy of lubrication control. As shown in
In order to reduce the entry of impurities into the clutch lubricating oil circuit and the gear and bearing lubricating oil circuit, as shown in
As shown in
In this embodiment, the first common end 19 is further connected with a pressure limiting valve 29 that operates in response to the pressure threshold of the first common end 19, and the outlet end of the pressure limiting valve 29 is connected to the inlet end of the mechanical pump 1. As shown in
The dual-clutch automatic transmission cooling and lubrication hydraulic control system is used as follows:
As shown in
In the above process, when the flow capacity of the cooler 21 is insufficient, the second bypass valve 28 is opened to allow the oil to be connected to the clutch lubrication control valve 15 and the gear lubrication control valve 16 via the eighth connecting line 27. In this embodiment, when the output flow of the mechanical pump 1 cannot meet the cooling requirement under the large friction condition of the clutch, as shown in
In addition, in this embodiment, only the electronic pump 11 can work alone in the hybrid power control system to perform the cooling lubrication functions, and its working process can be as shown in
The present embodiment relates to a vehicle on which a dual clutch automatic transmission is mounted, and the dual-clutch automatic transmission cooling and lubrication hydraulic control system described in Embodiment 1 is provided. By adopting the dual-clutch automatic transmission cooling and lubrication hydraulic control system described in Embodiment 1, the vehicle has a variety of working modes, thereby reducing the working pressure of the mechanical pump, lowering the displacement of the mechanical pump, and improving fuel economy.
While the present invention is described above in some preferred embodiments, the present invention is not limited to those preferred embodiments. Any modification, equivalent replacement, and improvement made without departing from the spirit and principle of the present invention shall be deemed as falling into the protected domain of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201710198379.5 | Mar 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/081159 | 3/29/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/177384 | 10/4/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9458921 | Garabello | Oct 2016 | B2 |
9581177 | Schuller | Feb 2017 | B2 |
9863294 | Kodama | Jan 2018 | B2 |
10443707 | Spangler | Oct 2019 | B2 |
20020069847 | Iwano | Jun 2002 | A1 |
20020128107 | Wakayama | Sep 2002 | A1 |
20030116396 | Kuhstrebe | Jun 2003 | A1 |
20060006042 | Koenig | Jan 2006 | A1 |
20060070600 | Hara | Apr 2006 | A1 |
20080256943 | Shimizu | Oct 2008 | A1 |
20080308355 | Kakinami | Dec 2008 | A1 |
20090215585 | Grethel | Aug 2009 | A1 |
20090232673 | Reisch | Sep 2009 | A1 |
20100018808 | Gloge | Jan 2010 | A1 |
20130319366 | Karasawa | Dec 2013 | A1 |
20130333980 | Tsunashima | Dec 2013 | A1 |
20140169994 | Schuller | Jun 2014 | A1 |
20140373524 | Schuller | Dec 2014 | A1 |
20170219085 | Kiyokami | Aug 2017 | A1 |
20180274662 | Spangler | Sep 2018 | A1 |
20190128399 | Shin | May 2019 | A1 |
20200032894 | Liu | Jan 2020 | A1 |
20210190199 | Trutschel | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
103277505 | Sep 2013 | CN |
104160180 | Nov 2014 | CN |
105003645 | Oct 2015 | CN |
103518081 | Mar 2016 | CN |
105626844 | Jun 2016 | CN |
205639582 | Oct 2016 | CN |
103968048 | Apr 2018 | CN |
102009046369 | May 2011 | DE |
2015-034619 | Feb 2015 | JP |
2006099947 | Sep 2006 | WO |
2012125337 | Sep 2012 | WO |
2012125337 | Sep 2012 | WO |
2016152193 | Sep 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20200032894 A1 | Jan 2020 | US |