The present teachings generally relate to dual diaphragm assemblies. More particularly, the present teachings relate to a dual diaphragm assembly for a sanitation system. Additionally, the present teachings relate to a diaphragm assembly for a sanitation system having a waste chamber that drains toward an outlet.
A flush toilet basically operates to deliver a source of flush water to a bowl and transfer waste from the bowl to a remote location. Various types of systems are known, ranging from toilets that rely exclusively on flushing water for the transfer of waste to the remote location to vacuum system for assisting in the transfer of waste. While known systems have proven to be generally acceptable for their intended uses, a continuous need remains for improvement in the pertinent art.
According to one particular aspect, the present teachings may provide a sanitary system includes a toilet, a source of flush water in fluid communication with the toilet, and a dual diaphragm pump assembly. The pump assembly includes a housing defining a working chamber, a water pump chamber and a waste pump chamber. A first diaphragm is disposed in the housing. The first diaphragm separates the water pump chamber and the working chamber. A second diaphragm is disposed in the housing. The second diaphragm separates the waste pump chamber and the working chamber. A common driver member interconnects the first diaphragm and the second diaphragm. A water inlet at least partially defines a water inlet path between a source of flush water and the water pump chamber. A water outlet at least partially defines a water outlet path between the water pump chamber and a bowl of the toilet. A waste inlet at least partially defines a waste inlet path between the bowl of the toilet and the waste pump chamber. A waste outlet is in fluid communication with the waste chamber. Movement of the driven member to a first position creates a positive pressure in the water pump chamber and a negative pressure in the waste pump chamber. Movement of the driven member to a second position creates a negative pressure in the water pump chamber and a positive pressure in the waste pump chamber.
According to another aspect, the present teachings may provide a waste pump for a sanitary system. The waste pump includes a housing defining a working chamber and a waste chamber. The waste chamber has a horizontally extending portion and a vertically extending portion. A waste diaphragm is disposed in the housing. The waste diaphragm separates the waste chamber and the working chamber. A driver member is disposed in the housing and is interconnected to the waste diaphragm. A waste inlet is in fluid communication with the vertically extending portion of the waste chamber. A waste outlet is in fluid communication with the vertically extending portion of the waste chamber. Movement of the driven member to a first position creates a negative pressure in the waste pump chamber and movement of the driven member to a second position creates a positive pressure in the waste pump chamber.
Further areas of applicability of the present teachings will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present teachings will become more fully understood from the detailed description and the accompanying drawings in which the disclosed subject matter is drawn to scale, wherein:
The following description of various aspects of the present teachings is merely exemplary in nature and is in no way intended to limit the invention, its application or uses.
With initial reference to the environmental view of
With continued reference to
The working chamber 14 is disposed between the water chamber 16 and the waste chamber 18. In the embodiment illustrated, the chambers 14-18 are horizontally arranged with the water chamber 16 above the working chamber 14 and the waste chamber 18 below the working chamber 14. In other embodiments, water chamber 16 may be disposed below the working chamber 14 and the waste chamber 18 above the working chamber 14. In still other embodiments, the chambers 14-18 may be vertically arranged.
A first membrane or diaphragm 20 may be disposed within the housing 12 to separate the working chamber 14 from the first chamber 16. A second membrane or diaphragm 22 may be disposed within the housing 12 to separate the working chamber 14 from the second chamber 16. The diaphragms 20 and 22 may be constructed of EPDM, other rubber or other suitable material. As will be addressed below, the diaphragms 20, 22 may be constructed to cooperate with the housing 12 to retain the diaphragms 20, 22 relative to the housing 12.
The housing 12 may include a plurality of sections. The sections may be generally cylindrical or of other suitable shape. As illustrated, the housing 12 may include a first or upper section 24, a second or intermediate section 26 and a third or lower section 28. The first diaphragm 20 may be peripherally captured between the first and second sections 24 and 26 of the housing 12. The second diaphragm 22 may be peripherally captured between the second and third sections 26 and 28 of the housing 12. The sections of the housing 24, 26 and 28 may be constructed of polypropylene or other suitable material.
As shown, the adjacent sections of the housing 12 may be integrally formed to include cooperating peripheral flanges for capturing the respective diaphragms 20, 22. The diaphragms 20, 22 may be formed to include upper and lower peripheral beads. As shown in
The upper section 24 of the housing 12 may define an upper cavity 25. The upper cavity 25 may receive a switch 25 for controlling actuation of the pump assembly 10. Operation of the switch 25 will be understood to be conventional insofar as the present teachings are concerned.
The third section 28 may be integrally or otherwise formed to include a base portion 33 suitable for mounting the pump assembly 10 to a floor or other rigid surface with fasteners or the like. As perhaps most particularly shown in
The configuration of the waste chamber 18 allows the pump assembly 10 to more effectively move water and sewage given a lack of air within the chamber 18. This is because water is incompressible as opposed to air. With a lack of air in the waste chamber 18 and a negative pressure created by the diaphragm 22, water/sewage will substantially fill the waste chamber 18. Then, with a positive pressure created by the diaphragm 20, the waste chamber 18 near completely empties the water/sewage to more effectively draw in the most amount of water/sewage possible in the next movement of the diaphragm 22. The waste chamber 18 is also particularly designed to drain completely toward the outlet 46 when the pump is off assembly 10, such drainage reducing the amount of sewage left in the pump assembly 10, thereby reducing the odor permeating from the toilet 11.
The first and second sections 24 and 26 may be coupled to one another with a clamp arrangement 30 that circumferentially surrounds the housing 12. Similarly, the second and third sections 26 and 28 may be coupled to one another with a substantially identical clamp arrangement 30 that circumferentially surrounds the housing 12. The clamp arrangements 30 may include first and second components 32 and 34 coupled to one other with fasteners or in any manner well known in the art. The clamp arrangements 30 may define a circumferential groove for receiving the cooperating flanges of the adjacent housing sections. The clamp arrangements 30 may be constructed of acetal, polyoxymethylene, other plastic, or other suitable material.
A driven member or shaft 36 may be disposed in the housing 12 for reciprocal movement and may interconnect the first and second diaphragms 20 and 22 between a first position and a second position. The driven member 36 may include disc-shaped upper and lower members 37 and 39 coupled by an intermediate member 41. The driven member 36 may be coupled to the respective diaphragms 20 and 22 with fasteners 38, for example. Washers may be positioned on the side of the diaphragms 20 and 22 opposite the respective disc-shaped members 37 and 39. The fasteners 38 may pass through the washers and the respective diaphragm 20 or 22 and threadably engage the respective upper or lower member 37 or 39.
The driven member 36 is illustrated throughout the drawings in a neutral position between the first position and the second position. With reference to the cross-sectional views of
A water inlet 40 may at least partially define a water inlet path between the source of flush water 13 and the water chamber 16. A water outlet 42 may at least partially define a water outlet path between the water chamber 16 and a bowl of the toilet (not shown). A waste inlet 44 may at least partially define a waste inlet path between the bowl of the toilet and the waste chamber 18. A waste outlet 46 may be in fluid communication with the waste chamber 18. The waste outlet 46 may be disposed proximate the bottom of the waste chamber 18 to facilitate drainage of the waste chamber 18. Valves 50 may be disposed in each of the water inlet path, the water outlet path, the waste inlet path and the waste outlet path for controlling the flow of water and waste. The valves may be one-way valves 50.
A rotatable motor arm 52 may be coupled to the shaft 36 for reciprocating the shaft 36 between the first and second position. When the motor arm 52 is rotated about its axis, a crank arm 54 may turn inside a slot 56 (see
In response to actuation by the switch 37, the driven member 36 is reciprocated between the first and second positions. The diaphragms 20 and 22 simultaneously cooperate with the associated one-way valves 50 operate to create a negative pressure to draw fluid into each pump and then a positive pressure to push fluid out of each pump. More particularly, when the driven member 36 moves the first position (up in
The waste chamber 18 is particularly adapted to pump water/sewage out of the toilet 11 and into a holding tank assembly 10, sewer, or overboard in addition to being mounted to the floor and support the pump in a vertical orientation. The work chamber 14 includes a horizontally extending portion 18A in communication with a vertically extending portion 18B. The horizontally extending portion 18A is sized and positioned such that upon downward translation of the shaft 36, contents within the horizontally extending portion 18A are near completely displaced.
The sanitation system may further include shroud for substantially concealing the pump assembly 10. The shroud may be secured to the pump assembly 10 in any manner well known in the art. The shroud provides a neat appearance and a surface that is easy cleaned.
It will now be appreciated that a pump assembly 10 is provided potentially having a lower cost, quieter operation and a more reliable mechanism. In this regard, the dual diaphragm arrangement of the present teachings compares favorably with conventionally pumping mechanism incorporating a hard plastic impeller for evacuating waste from a bowl and a flexible rubber impeller that supplies fresh water to the bowl. Such conventional structures are loud and experience significant wear when run dry. The dual diaphragm arrangement of the present teachings greatly reduces noise associated with the pump assembly 10 and has the ability to run dry for extended periods of time without undue wear.
As shown in the drawings, the present teachings may be used to provide a common unit for both waste and water pumping. The flexibility of the present teachings anticipates additional applications. In this regard, the present teachings may be used as a single waste pump by eliminating the water pump or a single water pump by eliminating the waste pump. Additionally, the present teachings may be adapted for use with a dual waste pump where the water pump is replaced with a second waste pump or a dual water pump where the waste pump is replaced with a second water pump.
The description of the present teachings is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention. Furthermore, the present invention has been described with reference to two particular embodiments having many common and some distinct features. One skilled in the art will recognize that these features may be used singularly or in any combination based on the requirements and specifications of a given application or design.
This application claims the benefit of U.S. Provisional Application No. 60/978,578, filed on Oct. 9, 2007. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3039399 | Everett | Jun 1962 | A |
3228036 | Gast et al. | Jan 1966 | A |
3741689 | Rupp | Jun 1973 | A |
4931000 | Felming, Jr. | Jun 1990 | A |
5551843 | Hauser | Sep 1996 | A |
5649809 | Stapelfeldt | Jul 1997 | A |
5836751 | De Villiers | Nov 1998 | A |
5851109 | Reynolds | Dec 1998 | A |
6082979 | Friedman | Jul 2000 | A |
6126419 | Hansen | Oct 2000 | A |
6354817 | Chang | Mar 2002 | B1 |
7013793 | Dang | Mar 2006 | B2 |
20030012668 | Simmons | Jan 2003 | A1 |
20050191190 | Maki et al. | Sep 2005 | A1 |
20050271525 | Muramatsu et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
1 972 728 | Sep 2008 | EP |
539 247 | Sep 1941 | GB |
03 119230 | May 1991 | JP |
Entry |
---|
European Search Report for Application No. EP 08 01 7599; dated Jan. 22, 2009, 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20090092505 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60978578 | Oct 2007 | US |