The present invention relates generally to beverage dispensing equipment and more particularly to post-mix beverage dispensing equipment having the capacity to change between the dispensing of carbonated and non-carbonated drinks.
Post-mix beverage dispensing equipment is well known in the art and generally provides for the mixing of a diluent, consisting of carbonated or flat water, with flavoring syrup. Post-mix valves are secured to a dispenser body or frame to which a diluent water line and a syrup line are plumbed. In past dispensers, each valve was dedicated to either dispensing a carbonated or a non-carbonated drink. However, today there is great desire to have the flexibility to be able to change between dispensing carbonated drinks, such as soda pop, to noncarbonated drinks, such as juice and sports beverages with the same valve. Various attempts have been made to allow changeover between plain water and carbonated water lines so that each valve has the potential to dispense either carbonated or plain water based drinks. However, problems have arisen as to cost, mechanical complexity, lack of ability to be able to convert all the valves on a particular dispenser, and ease with which service personnel can effect the changeover. Accordingly, it would be very desirable to have a post-mix beverage dispenser that overcomes these drawbacks.
The present invention concerns a post-mix beverage dispenser having a plurality of beverage dispensing valves that are easily changed over between dispensing carbonated or non-carbonated drinks. In the preferred embodiment, a dual diluent manifold is mounted within the dispenser at a front end thereof. A plurality of post-mix beverage dispensing valves are mounted thereabove on a front surface of the dispenser. The manifold consists of an elongate rectangular block machined or molded to include a plain water channel and a carbonated water channel extending along the length thereof and along a bottom portion thereof. Each channel is in fluid communication with a plurality of holes or orifices that extend downward from a top surface of the manifold and transversely to their respective channel. Thus, there exist orifice pairs extending along the manifold, one of which fluidly communicates with the plain water channel and one of which communicates with the carbonated water channel. The plain and carbonated water channels have inlet ends for receiving fittings for connection with tubing that extends to cooled sources of plain and carbonated water respectively.
Water outlet fittings provide for quick insertion fluid tight connection of flexible water supply tubes to one of the plain or carbonated water orifices. The water supply tubes also have an inlet fitting on the opposite end thereof for fluid tight securing with an inlet that communicates diluent to each post-mix valve. Stop plugs provide for blocking any flow of water from the plain or carbonated water orifices that are not supplying diluent to a valve. A removable retaining means is used to hold each of the water outlet fittings and stop plugs in place so that the fluid tight securing thereof with each manifold orifice is maintained.
In operation, those of skill will understand that the retaining means can be released to permit service personnel to, for example, remove a water outlet fitting connected with a carbonated water orifice and to remove the stop plug from the corresponding plain water orifice. Each can then be exchanged with the other whereby the water outlet is now inserted into and retained in the plain water orifice and the stop plug is inserted into and retained in the carbonated water orifice. After replacing of the retaining means the particular post-mix valve formerly receiving carbonated water is now receiving plain water. In this manner, every post-mix valve on the dispenser is then fully capable of dispensing either carbonated or noncarbonated drinks. Moreover, the front end location of the manifold along with the easily inserted and removed water outlet fittings and stop plugs, and the easily removable and replaceable retaining means permit this change over to be done quickly and efficiently in the field. Those of skill will also appreciate that the manifold and associated components are simple and inexpensive to manufacture. Also, it can be understood that existing dispensers can be retrofitted with changeover devices of the present invention. Additionally, the present invention can be used with electrically cooled as well as ice cooled beverage dispensers.
A better understanding of the structure, function and operation as well as the objects and advantages of the present invention can be had by reference to the following detailed description that refers to the following figures, wherein:
The change over device of the present invention is shown in the various figures in the context of an ice-cooled combination ice/beverage dispenser 1. As seen by specifically referring to
As is well known, and as understood by referring to
Dispenser 1 includes a pair of dual diluent manifold systems generally designated by the numerals 20a and 20b and each having an exterior molded insulation cover 21a and 21b that can be opened in a clam-shell fashion. Systems 20a and 20b are identical right and left hand versions of the other. Thus, system 20a will be described in further detail with the understanding that the description thereof will apply equally to its mirror image counterpart 20b. As better understood by also referring to
Outlet fittings 44 include an insertion end portion 44a having two annular grooves 44b for receiving O-rings 46 and includes an annular retainer groove 48. Fittings 44 also include a ferruled or barbed tube connection end portion 44c. As seen in
Fittings 44 and stop plugs 58 are sized to be fluid tightly inserted into either of the equally sized plain water and carbonated water outlet orifices 28 and 30. When fully inserted therein, it can be understood that a retainer plate 64, see also seen in
In operation, those of skill will appreciate that by the removal of retaining bracket 64, outlets 44 and stops 58 can be quickly removed from their respective outlet orifices 28 and 30 in which they are inserted. Thus, one outlet 44 can, for example, be removed from a carbonated water orifice 30 and a stop 58 can be removed from the correspondingly paired plain water outlet orifice 28. After which, the relative positions thereof can exchanged whereby the outlet 44 is now in the plain water orifice 28 and the stop 58 is then placed in the corresponding carbonated water orifice 30. The retaining bracket 64 is then reinserted and secured to block 22. Those of skill will understand that all the valves 4 can be easily and quickly changed over between plain or carbonated water in this manner wherein the flexible tubing 50 provides for and facilitates the necessary movement. It can also be seen that the system of the present invention can be retrofitted to existing electrically and ice cooled beverage dispensers. In the illustrated embodiment, two manifold systems 20a and 20b are used wherein each manifold block 22 serves five of the ten valves. The number of manifolds and the number of valves served by each are a matter of design skill for those in the art. It can also be understood that the manifold system or systems of the present invention can be placed at various locations within a dispenser. The placement at the front of dispenser 1 is preferred due to the arrangement of the outlets from the cold plate 2 and access provided by the removable splash panel 8.
The present invention can also be used in any of a variety of general applications where either of two fluids is needed to be selectively sent to a mixing valve or outlet. In fact, it can be understood that block 22 could have any of a plurality of fluid channels connecting with one or more outlet orifices so that any of a plurality of diluents or specifically selected liquids could be selectively direct to one or more outlets, valves or the like.
This application claims the benefit of Provisional Application No. 60/368,281, filed Mar. 27, 2002.
Number | Name | Date | Kind |
---|---|---|---|
20020084284 | Landers et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030183652 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60368281 | Mar 2002 | US |