The present invention relates to antennas. More specifically, the present invention relates to a physically small horizontal omnidirectional antenna which can be configured for high frequency band or low frequency band applications.
The telecommunications revolution of the late 20th and early 21st century has led to a need and a demand for access to wireless services. Access to signals ranging from wireless networking signals to mobile telephone signals, there is now a call for wireless services to be available and ubiquitous as possible. While such wireless services are now possible, there is a further demand that equipment providing such services be as unobtrusive as possible. To this end, antennas which provide access to radio signals for such services are, preferably, as small and unobtrusive as possible.
Since the users accessing the wireless services may be at any angle to the antenna, a MIMO arrangement including at least a vertically polarized and a horizontally polarized omnidirectional antenna is the most logical choice for quite a few applications. Unfortunately, current horizontally polarized omnidirectional antennas are notorious for being large and bulky. Being able to provide physically small horizontally polarized omnidirectional antennas allows for a number of advantages. For one, a smaller antenna would allow for arrays with more elements and, therefore, a higher number of MIMO (multiple in, multiple out) data streams for the same amount of physical array area.
It should be noted that implementation of antennas in MIMO arrangements, which can increase the data capacity of wireless networks, is usually required for new base station antennas or access points. For indoor MIMO applications when the antenna is mounted on the ceiling, two types of omnidirectional antennas are required—one which includes a horizontal polarized antenna and another which includes a vertical polarized antenna. For clarity, one antenna needs to have its electrical field in the θ direction (usually referred to as a vertical omnidirectional antenna) and the other antenna needs to have its electrical field in the Φ direction (usually referred to as a horizontal omnidirectional). A vertically polarized omnidirectional antenna is easily achievable by using a monopole. However, producing a horizontally polarized omnidirectional pattern based on the duality theorem requires a uniform current loop. A uniform loop of current is only achievable when the dimensions of the loop are very small compared to the signal wavelength. Such an antenna would have a very low efficiency and cannot be used for indoor access points. Conversely, loops with a larger radius cannot provide the required uniform current distribution around the loops since the current will change its direction after a half wavelength of signal.
To provide the required uniform current distribution, different approaches have been used in literature including an antenna using four dipoles with each being fed with proper phase and amplitude to provide the required current distribution. Another approach is the Alford loop (and its derivatives). Unfortunately, the Alford loop requires special feeding approaches and is only suitable for certain technologies.
Other current technologies for omnidirectional antennas have the drawback of high circuit complexity required for MIMO feeds. Another drawback is the requirement for a large physical area for the antenna array as each omnidirectional antenna can be physically large.
There is therefore a need for systems and devices which mitigate if not overcome the shortcomings of the prior art.
The present invention provides systems and devices relating to antennas and antenna systems. A horizontally polarized omnidirectional antenna has two dipoles with each dipole being in a V-configuration such that the arms of the dipole define an angle. The two dipoles are arranged so that the angles defined by each of the dipoles face and open toward each other. The omnidirectional antenna can be configured to operate with specific frequency bands. By nesting two instances of this antenna, with one configured for high band frequencies and one configured for low band frequencies, a dualband omnidirectional antenna can be obtained.
In a first aspect, the present invention provides an antenna comprising:
In a second aspect, the present invention provides an antenna comprising:
The embodiments of the present invention will now be described by reference to the following figures, in which identical reference numerals in different figures indicate identical elements and in which:
Referring to
To explain the invention, it should be noted that if two currents with opposite directions are separated from each other by a distance d, there will always be a null in the pattern along their normal bisecting plane. This will reduce the cross polarization component in the main planes. The spacing between the currents as shown in
One main challenge is in how to produce the current distribution shown in the figures. The approach taken in the present invention only requires two dipoles. Since the spacing between the two dipoles can be small, the resulting antenna can be physically small. As well, the feeding network can also be simple such as one where both dipoles are fed using, in one implementation, a 3 dB splitter (e.g. element 75 in
Regarding implementation, the dual dipoles of the antenna can be implemented as illustrated in
In terms of variants, it should be noted that the angles A and B (as noted in
It should be clear that the implementations illustrated in the Figures use symmetrical dipoles as in each dipole is a mirror of the other dipole. However, this is not necessary as antennas where one dipole has a different angle from the other dipole. To clarify, if one uses the terminology used for
It should also be clear that the implementations illustrated in the Figures use symmetrical dimensions for the arms. This means that the same dimensions for the arms are used for the two dipoles, i.e. dipole arm length is constant for the two dipoles. However, implementations where one dipole has one arm longer than the other are also possible. The other dipole can also have one dipole arm longer than the other, resulting in a rectangular top down outline of the dipole arms. For the symmetrical implementation illustrated in the Figures, the top down outline of the dipole arms is that of a square.
It should be noted that the resulting dual dipole antenna may be used for different frequency bands. The spacing between the two dipoles would be dependent on the frequencies (and thereby wavelengths) of the signals for which the antenna will be used. Experiments have shown that the dipoles can be separated by a distance of between 0.3 to 0.7 of a signal wavelength.
It should be clear that, as noted above, the preferred separation distance is between 0.3 to 0.7 of a signal wavelength. For a certain frequency band, implementations have used a frequency whose wavelength is approximately midway through the frequency band for the distance calculations. As an example, for a desired frequency band of between 1695 MHz-2690 MHz (or 1.695 GHz to 2.690 GHz), a middle frequency of approximately 2.2 GHz can be used. For such a middle frequency, the signal wavelength would be approximately 136 mm. Since the separation is desired to be between 0.3 to 0.7 of a signal wavelength, a separation of 0.5 (or half) of the 136 mm wavelength can be used. This results in a separation distance between the dipoles of 68 mm. With such a separation distance, and taking the extremes of the frequency band of 1.695 GHs to 2.690 GHz (i.e. of a wavelength band of from 178.7 mm to 111.4 mm), the separation distance between the two dipoles therefore ranges from 0.38 of the longest wavelength to 0.61 of the shortest wavelength in the desired frequency band. For clarity, the 68 mm fixed separation distance is equal to 0.38×178.7 mm (the longest wavelength in the desired frequency band) and to 0.61×111.44 mm (the shortest wavelength in the desired frequency band). Care should be taken when determining the separation distance between the dipoles so that, preferably, this distance remains between 0.3 to 0.7 of any wavelength in the desired frequency range. This is preferred to ensure that a proper omnidirectional pattern is produced.
In another implementation of the invention, an antenna for use with the 698-960 MHz frequency band had a separation distance of 160 mm between the two vertices of the dipoles. In another implementation, an antenna for use with the 1695-2690 MHz frequency band had a spacing of 60 mm between the two vertices of the dipoles.
For clarity, the distance between the dipoles is, in this case, measured to be the distance between the vertices of the two dipoles.
Since the antenna may be configured for different frequency bands, a dual band antenna using nested V-configured antennas can be created. A low band antenna configured for low frequencies can be created while a high frequency antenna can be placed in the space between the V-configured dipoles of the low band antenna. Such a two-port dual band antenna is illustrated in
As can be seen in
It should be clear that, following from the example illustrated in
For the dual-band omnidirectional antennas in
Similar to
It should be noted that aspects of the invention may be used in various antenna configurations. Referring to
A person understanding this invention may now conceive of alternative structures and embodiments or variations of the above all of which are intended to fall within the scope of the invention as defined in the claims that follow.
Number | Date | Country | |
---|---|---|---|
62349846 | Jun 2016 | US |