1. Technical Field
This invention relates to the general technical field of exercise, physical fitness and physical therapy equipment and machines and to the more specific technical field of treadmills that can be operated in a rearward walking and running mode to simulate a reverse dragging and pulling exercise. This invention also relates to the more specific technical field of using a weight resistance mechanism to generate a constant static weight resistance for simulating the dragging and pulling of a load, which weight resistance can be adjusted (increased and decreased) while exercising.
2. Prior Art
Exercise, physical fitness and physical therapy equipment and machines are available in various configurations and for various purposes, and are available for all of the major muscle groups. The majority of such equipment and machines, especially in the exercise field, concentrate either on an aerobic or anaerobic workout or on areas of the body such as the legs, the hips and lower torso, the chest and upper torso, the back, the shoulders and the arms.
Exercise treadmills are well known and are used for various purposes, including for walking or running aerobic-type exercises, and for diagnostic and therapeutic purposes. For the known and common purposes, the person (user) on the exercise treadmill normally can perform an exercise routine at a relatively steady and continuous level of physical activity, such as by maintaining a constant walking or running velocity and a constant incline, or at a variable level of physical exercise, such as by varying either or both the velocity and incline of the treadmill during a single session.
Exercise treadmills typically have an endless running surface extending between and movable around rollers or pulleys at each end of the treadmill. The running surface generally is a relatively thin rubber-like material driven by a motor rotating one of the rollers or pulleys. The speed of the motor is adjustable by the user or by a computer program so that the level of exercise can be adjusted to simulate running or walking.
The endless running surface, generally referred to as a belt, typically is supported along its upper length between the rollers or pulleys by one of several well known designs in order to support the weight of the user. The most common approach is to provide a deck or support surface beneath the belt, such as a plastic or metal panel, to provide the required support. A low-friction sheet or laminate, such as TEFLON® brand of synthetic resinous fluorine-containing polymers, can be provided on the deck surface (or indeed can be the material of construction of the deck surface) to reduce the friction between the deck surface and the belt.
Many current exercise treadmills, especially the middle to upper quality or feature level of exercise treadmills, also have the ability to provide a adjustable incline to the treadmill. The incline is accomplished in one of two manners—either the entire apparatus is inclined or just the walking and running surface is inclined. Further, the inclination can be accomplished by either manual or power driven inclination systems, and can be accomplished either at the command of the user or as part of a computerized exercise regimen programmed into the exercise treadmill. An inclination takes advantage of the fact that the exercise effort, or aerobic effect, can be varied with changes in inclination, requiring more exertion on the part of the user when the inclination is greater.
Most known exercise treadmills are structured to allow the user to walk or run in a forward direction, with the belt traveling in a direction that simulates walking or running forward; that is, the belt runs across the top of the deck in a front to back motion. Additionally, the inclination mechanisms in most exercise treadmills are structured to allow the user to walk or run in a level or uphill inclination; that is, the front of the deck can be level with the back of the deck or can be raised relative to the back of the deck to simulate an uphill inclination. Further, the hand rails and controls in most exercise treadmills are structured to complement simulated forward motion and are fixedly attached to the treadmill base.
However, with the exception of this inventor's inventions, this inventor is unaware of any specific exercise treadmill that is structured to allow the user to comfortably simulate a dragging or pulling motion; that is, a backwards walking motion either on a level plane or uphill. Additionally, with the exception of this inventor's inventions, this inventor is unaware of any specific exercise treadmill that provides a constant static weight resistance against dragging or pulling so as to simulate dragging or pulling of a load, which weight resistance can be varied (increased and decreased) by the user. A simulated dragging or pulling motion can be useful for exercising and developing different groupings of muscles and for providing an aerobic workout. Thus it can be seen that an exercise treadmill simulating a dragging or pulling motion would be useful, novel and not obvious, and a significant improvement over the prior art. It is to such an exercise treadmill that the current invention is directed.
The present invention is a cardiovascular cross training device that addresses many needs not met with the current industry offering of treadmills, elliptical devices, stationary bicycles, and stepping devices. Backward walking is incorporated into the fitness and physical rehabilitation programs prescribed by many professional fitness trainers, physical therapists, sports medicine professionals and strength and conditioning professionals. Additionally, many athletes use weight loaded sled dragging (such as a hand held horizontal load) to augment their lower body strength training as well as their overall aerobic and anaerobic conditioning programs. The present invention combines these features.
The muscle activity of the lower body is much greater in backward walking versus forward walking and the heart rate is elevated 30% to 35% higher over the same forward walking speed. Thus, a person can expend more energy in a shorter period of time walking backwards. Adding the additional load factor of a hand held horizontal resistance (that is, a simulated dragging or pulling motion) and the energy expenditure and muscle loading to the lower body is increased. This increased energy output allows an individual to achieve and maintain their desired heart rate walking or running at a fraction of the speed of any forward motion oriented exercise.
Further, the overall force of impact on the legs and body is reduced at a backward walk versus forward motion oriented exercises due to the reduced stride length, foot pattern contact and lower extremity kinematics pattern. The sheer force to the knees is reduced because the sheer force is reversed while walking backwards. Moreover, the range of motion of the knee joint is reduced to incorporating a nearly isometric pattern following contact compared to a more stressful eccentric loading. This can be very beneficial to the exercisers with knee joint injuries or those who experience knee pain during forward motion oriented exercises. Most knee joint injuries can even continue to heal during a backward walking training program. Hip joint stress is reduced during backward walking because the overall range of motion of the hip joint is reduced by incorporating greater hip flexation but much less hip extension.
During backward walking the hamstring muscles are stretched prior to activation and foot plant due to hip flexation. Given the prestretch, the load is not introduced until the weight bearing phase of the movement where the hamstring muscle is much more capable of accepting the load factors. Subsequently, it is more beneficial and less injury prone to add additional hand held horizontal resistance (actual or simulated dragging or pulling motion, hereinafter referred to collectively as a dragging motion or a backward dragging motion) to the ham string muscle in a backward walking motion. Therefore, during a backward dragging motion the user can achieve greater blood flow to and activation of the hamstring muscles at a slower walking speed than walking without the added load factor of the dragging motion.
The present invention is an exercise treadmill for simulating the dragging or pulling of an object on a level surface, up an incline or down a decline. The treadmill has a lower base having the treadmill surface and housing the internal mechanical components of the walking platform, a movable resistance arm or had grip controller, a fixed console support structure to which the resistance arm is attached and on which various control switches and displays are located, and a weight resistance mechanism located proximal to and illustratively on the side of the console support structure. In one embodiment, the weight resistance mechanism can be operatively connected to the resistance arm via a cable. In another embodiment, the weight resistance mechanism can be operatively connected to the resistance arm by lever, rods, or the like. In yet another embodiment, the weight resistance mechanism can be operatively directly connected to the resistance arm. In another embodiment, the hand grip controller can be operatively attached to the weight resistance mechanism via a cable that can pass through and can be operatively supported by the console support structure.
The movable resistance arm can be at least one section pivotally or otherwise movable connected to the fixed console support structure and operatively connected to the weight resistance mechanism via additional sections, linkages, and/or cables or the like. In this embodiment, the movable resistance arm can have a hand grip bar or portion and on which a hand controller can be mounted. Alternatively, the movable resistance arm can be a hand grip bar operatively connected to the weight resistance mechanism via additional sections, linkages, and/or cables or the like, but not necessarily connected to the fixed console support structure. Also alternatively, the movable resistance arm can be a hand grip bar operatively connected to the weight resistance mechanism via cables or the like, and not connected to the fixed console support structure, although the fixed console support can have a cable support device.
In reverse pulling or dragging operation, when a user steps onto the treadmill and grips the hand grip bar and starts the treadmill belt moving, the user begins to walk or run in a simulated backwards direction relative to the console support structure, causing the user to pull on the hand grip portion of the resistance arm in a pulling direction. Alternatively, the treadmill may be set up to begin to move automatically at a speed and at an inclination according to a value entered from the hand controller (which can either be on the resistance arm or can be on a hand grip controller) or on the control console. This pulling transfers from the resistance arm or hand grip controller, to the main cable or other connecting linkages and/or cables, which is or are operatively connected to the weight resistance mechanism, thus acting on the weight resistance mechanism. As disclosed above, the action of the resistance arm or hand grip controller on the weight resistance mechanism can be by many means, such as cables, wires, rods, levers, or the like, directly or indirectly, and structurally attached or in cooperative communication.
The weight resistance mechanism can be set by the user to a specific amount, such as for example 10 kilograms, comparable to known weight resistance mechanism such as weight stacks. Thus, when the user pulls on the movable resistance arm or hand grip, the weight resistance mechanism exerts a counterforce on the user of the set weight, 10 kilograms in this example. The counterforce is static and constant at the set weight throughout the entire range of movement of the movable resistance arm or hand grip, except in some embodiments at the very start of the range of motion when the weight resistance mechanism is resting on a stop. That is, the weight resistance mechanism exerts a counterforce on the user of the set weight, 10 kilograms in this example, whether the user has pulled the movable resistance arm or hand grip one centimeter or one meter, and this set weight is static and constant, at 10 kilograms in this example, unless the weight resistance mechanism is reset to a different amount. Thus, the degree of weight resistance of the weight resistance mechanism can be controlled by the user to simulate dragging or pulling a weight such that the exercise regimen is similar to walking or running backwards while dragging or pulling an object of a weight comparable to the setting of the weight resistance mechanism. The higher the setting of the weight resistance mechanism, the heavier the simulated object being pulled. The degree of weight resistance also is adjustable in that the user can set the specific amount of weight resistance to any amount within the parameters of the weight resistance mechanism structure prior to and during the exercise regimen, depending on the embodiment of the invention.
In a preferred embodiment, the weight resistance mechanism is a moment arm mechanism comprising a moment arm, an adjustable weight, and a drive mechanism for moving the adjustable weight relative to or along the moment arm. As the adjustable weight is adjusted along the moment arm relative to a pivot point of the moment arm, the weight resistance of the moment arm is increased or decreased, thus simulating the dragging or pulling of various or varying load weights. The moment arm is operatively connected to the movable resistance arm via the main cable, thus transferring the weight resistance effect to the user. Thus, when the user pulls on the movable resistance arm or hand grip, or hand grip controller, so as to activate the moment arm, the moment arm creates a constant and static counterforce equivalent to the specific weight amount set by the user.
In other preferred embodiments, the weight resistance mechanism is a pneumatic mechanism comprising a pneumatic cylinder, an air compressor, and various connecting hoses. In known pneumatic mechanisms, the resistance of the pneumatic cylinder can be set to certain values corresponding to a known weight resistance by the setting of the compressor (the higher the pressure of the compressed air produced by the compressor, the higher the resistance of the pneumatic cylinder, and the higher the equivalent weight resistance). Similarly, the weight resistance mechanism can be a hydraulic cylinder and the air a fluid.
In still other preferred embodiments, the weight resistance mechanism is an electric motor and clutch braking system comprising an electric motor and a clutch assembly. In known systems of this type, the electric motor imparts a force through the clutch brake to the movable resistance arm or hand grip, which can correspond to a known weight resistance by the power supplied to the motor or to the clutch brake. Pulling on the movable resistance arm or hand grip, or hand grip controller, causes a force in a rotational direction counter to the rotational direction of the motor and clutch brake, creating a counterforce that can be measured in an equivalent weight resistance.
The invention also can be a combination of a conventional treadmill and the reverse dragging motion treadmill. To accomplish this, the hand controller and movable resistance arm or hand grip controller can be set in a locked position for conventional treadmill operation and set in an unlocked position for reverse dragging operation. Further, the lower base housing the treadmill belt motor and the weight resistance mechanism can be a relatively larger structure sitting under and supporting the invention or a relatively smaller structure from which the treadmill belt and platform extend. In the first instance, the elevation motor or means for raising and lowering the treadmill belt platform for incline and decline operation can be located within the lower base housing. In the second instance, the elevation motor or means can be located in a separate relatively smaller structure attached to the end of the treadmill platform opposite the end of the treadmill platform attached to the lower base housing.
Generally speaking, the internal mechanical components of the treadmill are similar to (or can be similar to or the same as) the internal mechanical components of known treadmills. The treadmill comprises an endless belt looped about rollers or pulleys so as to provide a platform on which the user can stand, walk and/or run. A deck below a portion of the belt supports the belt and the user. A belt motor cooperates with the belt and/or the rollers or pulleys to move the belt, thus creating a moving platform on which the user can walk or run for the exercise regimen. An incline motor cooperates with the platform, the deck, the rollers or pulleys or rear legs to incline the belt to simulate a hill.
These features, and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art when the following detailed description of the preferred embodiments is read in conjunction with the appended figures.
Referring now to the appended figures, the invention will be described in connection with representative preferred embodiments.
Console support structure 200 preferably is fixedly attached to base 12 and comprises two uprights 210 that are secured to base 12 at or along the sides of base 12 at points proximal to the front end of base 12 (see
Resistance arm pivot rod 202 preferably is movably attached to the console support structure 200 and extends generally horizontally between uprights 210 and is pivotally attached to each upright 210, thus allowing resistance arm pivot rod 202 to rotate axially between uprights 210. Bearings 214 are one means by which resistance arm pivot rod 202 can be rotationally secured or journaled to uprights 210. As can be seen in
Moment arm pivot rod 252 also extends generally horizontally between uprights 210 and can be pivotally attached to each upright 210, thus allowing moment arm pivot rod 252 to rotate axially generally between uprights 210. Bearings 214 are one means by which moment arm pivot rod 252 can be rotationally secured or journaled to uprights 210. Bearings 214 can be attached directly to uprights 210 or can be mounted on uprights 210 via brackets or the like. For example, in some circumstances, it can be advantageous to mount moment arm pivot rod 252 in front of console support structure 200 rather than directly between uprights 210. In such an embodiment, additional brackets would support bearings 214 at a position in front of uprights 210, that is, at a position on the opposite side of uprights 210 from user U and treadmill belt 20, or at a position behind uprights 210, that is, at a position on the same side of uprights 210 as user U and treadmill belt 20. One end of moment arm pivot rod 252 can extend though one of the bearings 214 and through one of the uprights 210 such that moment arm pivot rod 252 can be operatively connected to moment arm weight resistance mechanism 300. Alternatively, if moment arm pivot rod 252 is mounted in front of console support structure 200, then moment arm pivot rod 252 would pass in front of and not through upright 210, as can be seen in
Resistance arm 14 can comprise one, two, three or more resistance arm sections, and preferably three or five resistance arm sections, which include hand grip portion 216 as a section. As illustrated in
In the embodiment shown in
Lower resistance arms 14B are attached to resistance arm pivot rod 202 preferably at locations proximal to bearings 214 and uprights 210, such that operational movement of lower resistance arms 14B causes resistance arm pivot rod 202 to rotate axially (within bearings 214 in the illustrative embodiment shown in
The use of pivotally connected upper resistance arm or arms 14A and lower resistance arms 14B, and hand grip portion 216 (as disclosed in connection with
Hand controller 16 is mounted generally towards the center of hand grip portion 216 of upper resistance arm 14A, which also is proximal to user U when user U is in the correct position for operating the treadmill 10. The combination of hinges 28, 28A and the rotation of resistance arm pivot rod 202 allows desired motion of resistance arm 14 and hand controller 16 relative to user U. The use of a movable hand grip portion 216 comprising a hand controller 16 for operating the treadmill 10, rather than the common use of a stationary or fixed control console, allows the user to maintain more convenient control of the operation of the treadmill 10 during the backwards dragging motion as, unlike in a conventional forward movement treadmill, the user is effectively attempting to move away from the control console rather than towards the control console. Further, unlike in a conventional forward movement treadmill where the user either needs no additional support and merely needs to be able to reach the control console when changing speed or inclination, or needs additional support from being thrown backwards off of the treadmill due to the motion of the endless belt, and therefore has no need for a movable resistance arm 14, hand grip portion 216, or hand controller 16, on the present treadmill 10, the user is required to maintain a grip on a portion of the device to effect the dragging motion, and the use of a fixed hand grip would not allow the activation of the weight resistance mechanism 300. The movable hand controller 16 solves the problem of allowing the user to activate the weight resistance mechanism 300 and control the weight resistance mechanism 300 and the treadmill 10, while at the same time maintain a position on the treadmill 10 and conduct the exercise regiment by pulling against an adjustable but constant and static weight resistance.
As can be seen in
Tri-pulleys 304 and console pulleys 306 can be and preferably are fixed class 1 pulleys that are mounted on or within console 212 to direct and redirect the force of main cable 302 and do not move, except to rotate as main cable 302 moves over them. Lifting pulley 308 can be and preferably is a movable class 2 pulley to transform the force of main cable 302 to cam cable 326. Although all pulleys 304, 306, 308 can be fixed pulleys or movable pulleys, or a combination of fixed and movable pulleys, depending on the relative force needed to operate the moment arm weight resistance mechanism 300, this combination of fixed and movable pulleys provides a suitable transformation of the user's U energy to the actuation of the moment arm weight resistance mechanism 300.
A first embodiment of moment arm weight resistance mechanism 300 as illustratively shown in
A second embodiment of moment arm weight resistance mechanism 300 as illustratively shown in
A comparison of
Although moment arm 314 is shown on the side of treadmill 10 and extending from front to back in the illustrative examples shown in
As can be seen in
In the open arm embodiment, weight adjusting drive 318 is operatively connected to weight adjusting motor 324 and to weight 316 and can be used to transfer the motion generated by weight adjusting motor 324 to weight 316 and move weight along moment arm 314. In the illustrative example shown, weight adjusting drive 318 is a linear screw attached at one end to weight adjusting motor 324 and attached at another end to weight adjusting drive support 320. Specifically, weight adjusting drive support 320 is journaled into weight adjusting drive support 320 via a bearing, a low friction device, or the equivalent. Weight adjusting motor 324, in this example, turns weight adjusting device 318, which in turn cooperates with a complimentary internal threaded passage on weight 316 or, as disclosed in connection with
In the closed arm embodiment, weight adjusting drive 318 is operatively connected to weight adjusting motor 324 and to weight 316 and can be used to transfer the motion generated by weight adjusting motor 324 to weight 316 and move weight along moment arm 314. In the illustrative example shown, weight adjusting drive 318 is a linear screw attached at one end to weight adjusting motor 324 and is free-floating at another end. Weight adjusting motor 324, in this example, turns weight adjusting device 318, which in turn cooperates with a complimentary internal threaded passage or, as disclosed in connection with
Weight adjusting motor 324 can be a bidirectional electric motor secured on the upper surface of moment arm. Preferably, weight adjusting motor 324 is located proximal to the pivot point 322 as weight adjusting motor 324 does have some weight and, if located on the free end 330 of moment arm 314, would impart a certain amount of weight to moment arm 314 creating an increased base moment about pivot point 322. Weight adjusting motor 324 can be selected to move weight 316 relative to or along moment arm 314 away from or towards pivot point 322, and therefore must be of sufficient power to accomplish this task. Alternatively, weight adjusting motor 324 can be mounted outside of moment arm 314 and a hole can be located on the end of moment arm 314 to allow weight adjusting drive to extend therethrough and into the interior of moment arm 314 to cooperate with weight 316.
Weight 316 can be any structure having mass. In the illustrative example shown, weight 316 is a solid mass having an internal threaded passage extending from a first side to an opposite second side or, as disclosed in connection with
Weight 316 causes a moment about pivot point 322, thus urging a rotation of moment arm pivot rod 252 about its axis. As moment arm pivot rod 252 is rotationally urged, cam 312 also is rotationally urged in the same direction, thus acting on cam cable 326 by pulling cam cable 326 downward or at least imparting a downward tensional force on cam cable 326. The downward force on cam cable 326 is imparted to lifting pulley 308, which imparts a tensional force on main cable 302. The tensional force on main cable 302 is imparted to resistance arm 14, which imparts a pulling force on the user U grasping the resistance arm 14. This creates the pulling or dragging sensation and weight resistance of the invention.
As long as a moment is created about pivot point and the weight 316 remains at the same position along the moment arm 314, simple physics dictates that the magnitude of the moment will remain approximately constant throughout the rotational arc provided for in this invention, thus imparting an approximately constant force on the cable 326 and resistance arm 14 system. Thus, user U will be presented with an approximately constant force simulating the dragging or pulling action (the force pulls back on resistance arm 14 opposite to the direction user U is pulling). This force also is static in that the force applied by moment arm 314 and weight 316 in one direction is balanced by the force applied by user U in the opposite direction, for a net force of zero. Thus, the invention provides an approximately constant static force for the user U. By moving weight 316 along moment arm 314, the magnitude of the moment, and therefore the magnitude of the force applied to resistance arm 14, can be adjusted and changed so as to provide different magnitudes of force to user U and different amounts of exertion during the exercise regimens.
The amount or level of pulling force imparted to the user can be adjusted by moving the weight 316 along the moment arm 314. By pulling force it is meant the counterforce created by the weight resistance mechanism in response to the user pulling on the resistance arm 14 or hand grip controller 216A shown in
Main cable 302 and cam cable 326 can be of any flexible structure, such as a rope, a chain, a belt, monofilaments, braided wires, flexible materials, and other suitable equivalents, that allow a transfer of force between resistance arm 14 and moment arm weight resistance mechanism 300, and is not limited to a standard cable. As disclosed herein, main cable 302 can be directed around one or more pulleys 304, 306, 308 to direct or redirect main cable 302 between the resistance arm 14 and the moment arm weight resistance mechanism 300, and to prevent main cable 302 from becoming entangled in the internal mechanical components of treadmill 10. Thus, in operation, when user U grips resistance arm 14 and starts belt 20 moving, user U begins to walk or run in a simulated backwards direction relative to console 212, causing user U to pull on resistance arm 14. This force transfers to main cable 302, which in turn acts on moment arm weight resistance mechanism 300 by lifting moment arm 314, thus creating the moment due to the weight of the weight 316 (and the moment arm itself, as well as any components on or attached to the moment arm 314), resulting in the pulling force, which in this respect also can be termed a counterforce to the force created by the user U pulling on the resistance arm or the hand grip controller 216A shown in
The degree of weight resistance can be controlled by user U. At settings in which the resistance arm 14 is not docked and weight 316 is creating a moment on moment arm 314 about pivot point 322, user U would be simulating dragging or pulling a weight (the force created by moment arm 314 as transferred to user U) and the exercise regimen would be similar to walking or running backwards while dragging or pulling an object of a weight comparable to the setting of the moment arm weight resistance mechanism 300. The higher the setting of the moment arm weight resistance mechanism 300 (that is, with weight 316 further from pivot point 322), the heavier the simulated object being pulled. With this arrangement, it is therefore possible to vary the weight resistance being dragged or pulled during the exercise regimen. However, once the desired weight resistance is set, the weight resistance is constant and static as transferred to the resistance arm 14 or hand grip controller 216A (see
A comparison of the position of resistance arm 14 in
Additional displays can include a mile display to display the simulated distance traveled by user U during the exercise regimen, a calorie display to display the current rate of user U calorie expenditure or the total calories expended by user U during the exercise regimen. Further, hand controller 16 and console display 218 can include an input key pad with which user U can communicate with a microprocessor that operates treadmill 10 so as to operate treadmill 10 as well as set the parameters for exercise regimens. Also included on hand controller 16 or console display 218 is or can be on-off buttons, emergency stop button, increase buttons to increase a parameter, decrease buttons to decrease parameters, and other functional input devices. All of these are known in the treadmill art. Further, hand grips 216 also can comprise input means (not shown) for reading user's U heart rate, as is known in the art.
As can be seen in
Treadmill 10 utilizes a known microprocessor (not shown) or other suitable electronic controller to control and operate the various features of the invention. For example, the speed of belt 20, can be controlled by the microprocessor or other suitable electronic controller. The speed is adjustable from controls on hand controller 16, hand grip controller 216A, or console 212 making it possible to vary the speed of belt 20 during the exercise regimen. Further, the inclination of belt 20 also can be controlled by the microprocessor or other suitable electronic controller. For example, the inclination of the base 12, and thus the treadmill 10 can be illustrated by a simple incline mechanism in which a lever leg 302 is rotated by an incline motor to raise and lower base 12. Actuation of incline motor causes the rotation of lever-leg 36 in the desired direction, thus raising or lowering base 21 and belt platform 34, thus causing the decline or incline, respectively, of belt platform 34. The degree of inclination chosen by user U is adjustable from controls on hand controller 16 or console 212 making it possible to vary the inclination of belt 20 during the exercise regimen.
Additionally connected to the microprocessor or other suitable electronic controller are the various display and other elements of the hand controller 16 and the console display 218. For the sake of simplicity, the signals are transmitted to and from the microprocessor or other suitable electronic controller to the hand controller 16, hand grip controller 216A, and console display 218, and are operatively connected to switches, dials, etcetera on the hand controller 16 and console display 218 and the specific elements, such as belt motor, incline motor, and moment arm weight resistance mechanism 300. Again, the use of this type of microprocessor or other suitable electronic controller is well known in the treadmill art.
The invention also can comprise additional optional features. For example, the invention can comprise a safety mechanism to prevent user U from inadvertently speeding up the movement of belt 20, and from speeding up the movement of belt 20 to a speed faster than what is inputted. In other words, treadmill 10 can further comprise a means for preventing belt 20 from running out from under user U should either user U move too fast relative to belt 20 or belt 20 move too fast relative to user U. This also would help prevent the force of user's U foot plant from undesirably increasing the speed of belt 20. Clutches attached to belt 20 can be used, among other known mechanisms. For another example, step offs optionally can be located on the sides and ends of the base 12 and can be a substantial width to allow for a wider platform for user U to step onto or step off of treadmill 10. Side rails and kill switches also can be used. Heart rate monitors can be used, and the microprocessor, or other suitable electronic controllers, can be configured to allow for heart rate monitoring and for the adjustment of belt 20 speed and incline and the level of weight resistance to maintain a desired heart rate.
In stark contrast to known treadmills, the present invention accomplishes a different exercise regimen than an aerobic walking or running workout. Initially, belt 20 can travel in the opposite direction than the belt on known treadmills to provide the basis for the dragging or pulling motion. Further, the use of a moment arm weight resistance mechanism 300 in combination with a walking or running motion in general and a backwards walking or running motion in particular provides a more complex exercise regimen. It has been found that the combination of walking or running backwards in conjunction with the simulation of dragging or pulling a load provides a useful aerobic and/or anaerobic work out and can strengthen various muscles and muscle groups, specifically leg muscles and the gluteus maximus and also possibly arm, chest, shoulder and back muscles.
Other alternatives and embodiments can comprise one or more of the following features. The treadmill drive motor assembly and incline assembly can be positioned at either end, or in the middle, of the base. The belt platform can incline and decline in both directions, providing incline or decline resistance for both conventional treadmill operation and for reverse treadmill operation. Additionally, the invention can have more common features including the ability to incline and decline at various or continuous degree settings and a belt that moves at various or continuous speeds. Further, there can be two or more resistance arms with each resistance arm or the equivalent being a one-, two- or multi-piece structure with the hand console being pivotally or hingedly attached to one or more of the resistance arms or the equivalent. Alternative weight adjusting drives and motors can include electromagnets, mechanical levers, and the like.
Additional alternative include eliminating cam 312 and attaching the cam cable 326 directly to the moment arm 314, or, in the alternative, the cam 312, cam cable 326, pulley 308, and pulley frame 308A can be eliminated and main cable 302 can be attached directly to moment arm 314. Pulley 308, pulley frame 308A, and cam cable 326 can be eliminated and main cable 302 can be attached directly to the moment arm 314. Cam 312 can be eliminated and the cam cable 326 can be attached directly to the end of the moment arm distal from the pivot point 322, or in the alternative, the cam 312, cam cable 326, pulley 308, and pulley frame 308A can be eliminated and main cable 302 can be attached directly to the end of the moment arm distal from the pivot point 322.
In normal operation, user U will step onto belt 20 and grasp resistance arm 14 or hand grip controller 216A, positioning himself or herself generally centrally on belt 20 so as to face the console 212. As belt 20 begins to move, user U will start a rearward walking or running motion towards the rear of treadmill 10, with belt 20 moving accordingly, such that user U will remain generally in the same position centrally on belt 20 as treadmill 10 is operating. Alternatively, treadmill 10 may be set up to begin to move automatically at a speed according to a value entered from hand controller 16, hand grip controller 216A, or console 212. Alternatively, belt 20 can be in a manual mode, moving only when the user U walks. The pace of the walking or running motion may be increased or decreased depending upon the speed of belt 20. The speed of belt 20 can be controlled by the adjustment of the controls on hand controller 16, hand grip controller 216A, or console 212, along with the adjustment of the inclination of treadmill 10 and other functions and features. Belt 20 also can comprise two belts, one for each foot, as an alternative. The user U pulls on resistance arm 14 or hand grip controller 216A, which as previously disclosed actuates moment arm weight resistance mechanism 300. The user U can adjust the amount or level of weight resistance, either prior to stepping on the machine or during the exercise routine itself while the user U is carrying out the pulling or dragging motion, and can proceed to enjoying a pulling or dragging exercise regimen.
The weight resistance mechanism can be set by the user to a specific amount, such as for example 10 kilograms, comparable to known weight resistance mechanism such as weight stacks. Thus, when the user pulls on the movable resistance arm or hand grip, the weight resistance mechanism exerts a counterforce on the user of the set weight, 10 kilograms in this example. The counterforce is static and approximately constant at the set weight throughout the entire range of movement of the movable resistance arm, hand grip or hand grip controller, except in some embodiments at the very start of the range of motion when the weight resistance mechanism is resting on a stop. That is, the weight resistance mechanism exerts a counterforce on the user of the set weight, 10 kilograms in this example, whether the user has pulled the movable resistance arm, hand grip or hand grip controller one centimeter or one meter, and this set weight is static and approximately constant, at 10 kilograms in this example, unless the weight resistance mechanism is reset to a different amount. Thus, the degree of weight resistance of the weight resistance mechanism can be controlled by the user to simulate dragging or pulling a weight such that the exercise regimen is similar to walking or running backwards while dragging or pulling an object of a weight comparable to the setting of the weight resistance mechanism. The higher the setting of the weight resistance mechanism, the greater the force acting on the resistance arm, hand grip or hand grip controller, and the heavier the simulated object being pulled. The degree of weight resistance also is adjustable in that the user can set the specific amount of weight resistance to any amount within the parameters of the weight resistance mechanism structure prior to and during the exercise regimen, depending on the embodiment of the invention.
In preferred embodiments, the weight resistance mechanism is a moment arm mechanism comprising a moment arm, an adjustable weight, and a drive mechanism for moving the adjustable weight relative to or along the moment arm. As the adjustable weight is adjusted along the moment arm relative to a pivot point of the moment arm, the weight resistance of the moment arm is increased or decreased, thus simulating the dragging or pulling of various or varying load weights. The moment arm is operatively connected to the movable resistance arm via the main cable, thus transferring the weight resistance effect to the user. Thus, when the user pulls on the movable resistance arm of hand grip so as to activate the moment arm, the moment arm creates an approximately constant and static counterforce equivalent to the specific weight amount set by the user.
Thus, in a simple form the invention is an exercise machine for simulating a dragging and pulling action comprising an endless movable surface looped around rollers or pulleys to form an upper run and a lower run, the moveable surface being rotated when one of the rollers or pulleys is rotated, thereby creating an exercise surface for walking or running, the improvement comprising (a) a constant, adjustable, one directional resistance means that produces a load or force for simulating a dragging and pulling action and (b) one or more handle(s) that is/are operatively attached to the resistance means that the user can grasp and or pull while walking or running backwards on the treadmill to simulate the dragging or pulling action. The resistance arm or hand grip controller is/are acted upon with a constant adjustable one directional resistance (that is resistance only in the direction pulling the handle(s) away from the user) when being used to simulate a dragging or pulling action.
The endless moveable surface can be operable in both a forward and reverse direction so as to be also usable as a conventional forward walking or running treadmill. The exercise machine also can comprise a grade or elevation adjustment mechanism for adjusting the walking or running surface between various incline, flat and decline positions.
The resistance means can be produced by any of the following means: leverage, moment arm or cantilevered members coupled with one or more solid, semi-solid or liquid filled mass(s); electric motors, electronic or eddie current brakes; one or more metal or other solid mass weights; pneumatics or hydraulics; various types of springs, friction members, flexible rods, tension devices, or the like; and any combination thereof.
The console, hand grip or hand grip controller can comprise controls for manipulating the various functions of the machine by the user such as but not limited to: the direction of travel of the walking/running surface, the speed of the walking/running surface, the grade or elevation of the walking/running surface, the amount of force of the resistance system applied to the resistance arm, hand grip or hand grip controller, informational data useful to the user. The machine function controls and informational data also may be contained on one or more stationary housing(s) on any part of the fixed frame.
The resistance arm or hand grip also can be attached to some portion of the fixed frame of the machine in a pivoting, linear slide or arcing slide fashion, or attached only to the operative connective means that is attached to the resistance means. Such operative connecting means include belts, ropes, cables, chains or other suitable flexible materials as well as rigid levers, arms, linkages and the like or any combination thereof.
The exercise machine of the present invention can simulate a dragging and pulling action by the following illustrative method:
a) A user steps onto a moveable endless surface looped around rollers on either end as with known treadmills and grasp moveable pulling handle(s) that is/are operatively connected to a resistance means that produces a constant, adjustable, one directional resistance against the pulling handle(s).
b) The user manipulates the controls of the machine such that the endless moveable surface moves in the direction that the user is facing causing the user to walk or run in a backwards direction.
c) While walking or running backwards, the user pulls on the handle(s), which in turn actuates the resistance means, which imparts a constant, adjustable one directional resistance on the pulling handle(s) in a direction away from the user, that is, in a direction opposite the force of the resistance on the pulling handle(s).
d) While continuing to walk or run backwards, the user then either can hold the handle(s) in a fixed position anywhere in the moveable range of motion of the handle(s) to simulate a dragging action or can pull on and release the force against the handles to produce a pulling and dragging action or any combination thereof for the duration of the exercise period.
e) Throughout the duration of the exercise period, the user can manipulate all functions and informational data of the machine via controls contained on the movable handle(s) and or mounted on a stationary portion of the frame of the machine.
While the invention has been described in connection with certain preferred embodiments, it is not intended to limit the spirit or scope of the invention to the particular forms set forth, but is intended to cover such alternatives, modifications, and equivalents as may be included within the true spirit and scope of the invention as defined by the appended claims.