The present invention relates to a dual dispenser comprising two different fluid reservoirs, two pumps, and a common dispenser head, the common dispenser head including an outlet channel that forms a dispenser orifice, the outlet channel being fed with fluids coming from both pumps. Advantageous fields of application of the present invention are the fields of cosmetics, pharmacy, and perfumery.
In the prior art, dual dispensers that are capable of dispensing two different fluids coming from distinct reservoirs through a single common dispenser orifice have been known for some time. Document FR 2 654 016 is an example: it describes a dual dispenser including a rotary spacer that is movable above the actuator rod of one of the pumps so as to vary the extent to which the actuator rod is depressed, and thus vary the dose to be mixed with the dose expelled by the other pump.
An object of the present invention is not to vary the dose to be dispensed by the pumps by acting on the stroke of one of the actuator rods, but rather to offset the dispensing of the fluids at the end of stroke, so that only one fluid is dispensed through the dispenser orifice at the end of the dispensing stage. In other words, outside the dispensing stage, the dispenser orifice is in contact with only one fluid, or indeed the dispenser orifice is in contact with both fluids only during dispensing stages.
To achieve this object, the present invention proposes a dual dispenser comprising two pumps that are associated respectively with two different fluid reservoirs, and a common dispenser head, the common dispenser head including an outlet channel that forms a dispenser orifice, the outlet channel being fed with the fluids coming from both pumps;
Thus, from the rest position of the common dispenser head, both bearing elements begin by following paths that are identical, symmetrical, and synchronous, and then, when the second actuator rod having a short stroke is fully depressed, the bearing elements cause the pivot member to pivot/turn, such that the bearing element associated with the first actuator rod having a long stroke continues to follow its axial path until the first actuator rod is fully depressed. It is preferable for the actuation forces of the two actuator rods to be substantially or completely identical. Otherwise, it would be necessary to provide axial guide means in order to enable both bearing elements to move in identical, symmetrical, and synchronous manner.
According to an advantageous characteristic of the invention, both bearing elements are secured to the outlet channel. Still more preferably, both bearing elements extend on either side of the outlet channel, advantageously in symmetrical manner. By way of example, the outlet channel may be rectilinear over at least a fraction of its length, and both bearing elements may extend symmetrically and oppositely from the channel.
In another advantageous aspect of the invention, both bearing elements pivot about the outlet channel. This causes the outlet channel to turn a little about its own axis, since it acts as a pivot pin for both bearing elements.
In another advantageous aspect of the invention, the pivot member may include at least one thrust transmission zone, and advantageously two thrust transmission zones, such that axial thrust exerted on the thrust transmission zone causes both bearing elements and the outlet channel to begin by moving in translation over the short stroke, and then causes the outlet channel to turn a little about its own axis and the bearing elements to pivot so as to terminate the long stroke. In other words, the outlet channel and its two bearing elements move firstly in translation over the short stroke, and then they pivot about the contact point of the bearing element that is in abutment against the second actuator rod that is fully depressed. The bearing element associated with the first actuator rod continues its downward movement, not in translation, but, on the contrary, describing an arc of a circle having a radius that corresponds to the spacing between the contact points of the two bearing elements. The outlet channel also describes a circular arc, but with a radius that is smaller, namely half the radius of the arc of the bearing elements.
According to another advantageous characteristic of the invention, the common dispenser head includes a cover that comes into bearing contact against the thrust transmission zones. Advantageously, the outlet channel includes a thrust transmission zone in the proximity of each of its ends. Advantageously, the bearing elements extend substantially perpendicularly to the outlet channel, between the two thrust transmission zones. Forming two thrust transmission zones makes it possible to distribute the thrust in balanced manner over the length of the outlet channel, and positioning the transmission zones at the ends of the channel makes it possible to keep the channel completely stable while it is moving.
In a very advantageous aspect, the first actuator rod having the long stroke may be connected to the outlet channel closer to the dispenser orifice than the second actuator rod having the short stroke. Thus, the fluid coming from the first actuator rod (having a long stroke) passes alone and last through the dispenser orifice during each dispensing stage, such that in the rest position, there is only the fluid coming from the first actuator rod at the dispenser orifice. This is particularly advantageous when the fluid coming from the second actuator rod is sensitive, “denaturable”, or “deterioratable” on contact with air. By using a fluid (coming from the first actuator rod) that is more stable and/or that has disinfectant or bactericidal properties, it is guaranteed that there will be no contaminated or spoilt fluid residue at the dispenser orifice.
In a practical embodiment, each actuator rod may be covered by a cap that defines both a bearing plate for its respective bearing element, and also a connection endpiece that receives a flexible hose that is connected to the outlet channel. The cap may be merely force-fitted on the free end of the actuator rod.
The spirit of the invention resides in the principle of actuating both pumps by means of a rotary member that begins by moving in translation over the stroke common to both pumps, and then turns or pivots so as to terminate the actuation of the pump that has the longer stroke. Thus, at the end of the dispensing stage, one of the pumps continues to dispense fluid after the other pump so as to expose the dispenser orifice, and a section of the outlet channel, to only one fluid, that advantageously has stable, disinfectant, and/or bactericidal properties.
The invention is described below in greater detail with reference to the accompanying drawings, which show an embodiment of the invention by way of non-limiting example.
Reference is made to
Thus, the dispenser of the invention includes two pumps P1 and P2, each including a respective pump body P10 and P20 and two respective actuator rods P11 and P21 that are movable axially down and up in the corresponding pump bodies P10 and P20 against respective return springs that are not shown. The actuator rods P11 and P21 that project upwards out from the bodies P10 and P20 are movable over strokes of heights that are different, namely a long stroke for the actuator rod P11 and a shorter stroke for the actuator rod P21. Each of the pumps P1 and P2 defines a respective pump chamber, which pump chambers are of volumes that may be identical or different.
In addition, it may be advantageous for both actuator rods P11 and P21 to present press resistance that is substantially or completely identical. If not, it would be necessary, in the context of the invention, to envisage specific means to compensate for any difference in press resistance between the two actuator rods.
Each pump P1, P2 also includes a fastener ring P12, P22 for mounting the pump in stationary and leaktight manner on the neck of a corresponding reservoir (not shown). The type of fastening is not critical to the present invention.
The dual dispenser of the invention also includes a support ring 3 that defines two reception housings 3P1 and 3P2 for the pumps P1 and P2 respectively. As can be seen in
The dual dispenser of the invention also includes two caps C1 and C2 that cap the free ends of the actuator rods P11 and P21 respectively, as can be seen in
The dual dispenser of the invention also includes a pivot member 1 that may advantageously be made as a single part. The pivot member 1 includes an outlet channel 10 that, in this embodiment, presents a rectilinear configuration. The outlet channel 10 is closed at one of its ends and, at its other end, it defines an opening 12 into which there is fitted a nozzle 13 that defines a dispenser orifice 14. Thus, the fluid that arrives in the outlet channel 10 leaves through the dispenser orifice 14 of the nozzle 13 that closes the opening 12. It should also be observed that both ends of the channel 10 are reinforced in such a manner as to define two thrust transmission zones 11, as explained below. The outlet channel 10 includes two connector endpieces 16, 17 each of which receives a flexible hose 18, 19, connected to the connector endpieces C12, C22 respectively of the caps C1 and C2. The flexible hoses 18 and 19 may be fitted into the endpieces 16, 17, C12, and C22, or, in a variant, they may be made integrally either with the pivot member 1 or with the caps C1 and C2. In
The pivot member 1 also forms two bearing elements 1C1 and 1C2 that extend perpendicularly to the outlet channel 10 in symmetrical and opposite manner. It could be said that the outlet channel 10 and the two bearing elements 1C1 and 1C2 present a configuration that is generally in the shape of a cross. As a result, the two bearing elements 1C1 and 1C2 are secured to each other by means of the outlet channel 10. Each bearing element is in the form of an elongate tab that, at its free end, defines a bearing head 15 that points downwards, and that comes into contact with the bearing plate C11, C21 of a corresponding cap C1, C2, as shown in
The dual dispenser of the invention also includes a cover 2 that, in this embodiment, is of a shape that is oval, and that defines a top bearing surface 21 and a peripheral skirt 22 that is perforated with a hole 23 that comes to face the nozzle 13. The cover 2 also includes a holder bushing 24 in which the cap C1 is received in stationary manner. In addition, the cover 2 also includes a guide bushing 25 that surrounds the cap C2, enabling it to slide therein. As can be seen in
The two caps C1 and C2, the pivot member 1, and the cover 2 co-operate with one another to form a fluid dispenser head that is common to both pumps P1 and P2.
In
The user who continues to exert a thrust force on the bearing surface 21 moves the cover 2 further downwards, transmitting thrust to the pivot member 1 via both thrust transmission zones 11 of the outlet channel 10. Given that the head 15 of the bearing element 1C2 is blocked in position as a result of the actuator rod P21 being fully depressed, the thrust transmitted to the outlet channel 10 causes additional downward movement of the bearing head 15 of the bearing element 1C1. This causes the actuator rod P11 to be depressed fully, such that it performs its complete long stroke. During this additional stroke, fluid coming from the pump P1 is injected into the outlet channel 10 and then through the dispenser orifice 14. It should be observed that only the fluid coming from the pump P1 passes through the dispenser orifice 14 at the end of the dispensing stage, since dispensing of the other fluid coming from the pump P2 finishes once the actuator rod P21 has performed its entire short stroke.
By comparing
As a result of only the pump P1 dispensing fluid at the end of the dispensing stage, the fluid coming from the pump P2 can be eliminated when the dispenser is in its rest position. Thus, the fluid coming from the pump P2 is present at the dispenser orifice 14 only while dispensing is taking place, and even then not throughout a dispensing stage, since at the end of the dispensing stage only the fluid coming from the pump P1 passes through the dispenser orifice 14. It should also be recalled that the fluid coming from the pump P1 is injected into the outlet channel 10 in the proximity of the nozzle 13, via the connector endpiece 16, as can be seen in
The dual dispenser of the present invention is particularly advantageous for dispensing two fluids of different natures and/or properties. For example, the fluid dispensed by the pump P2 could be a fluid that is sensitive or that degrades easily, while the fluid dispensed by the pump P1 could be a fluid that is more stable, less fragile, or that presents bactericidal or disinfectant properties. By way of example, provision could be made for the pump P1 to dispense an alcohol solution. Thus, at the end of each dispensing stage, the dispenser orifice 14 is cleaned by passing a tiny dose of alcohol solution that ensures that the nozzle 13 is properly cleaned.
The invention thus provides a dual dispenser having a dispenser orifice that cannot be the seat of a proliferation of microbes or of bacteria that could be harmful to the user or to the fluids that are dispensed.
Number | Date | Country | Kind |
---|---|---|---|
1558351 | Sep 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2016/052240 | 9/8/2016 | WO | 00 |